Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.683
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139217

RESUMEN

In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.


Asunto(s)
Bacteriófagos , Antígenos O , Antígenos O/metabolismo , Escherichia coli/metabolismo , Bacteriófagos/metabolismo , Colifagos/metabolismo , Lipopolisacáridos/metabolismo
2.
J Virol ; 97(7): e0066723, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310294

RESUMEN

Receptor-binding proteins (RBPs) allow phages to dock onto their host and initiate infection through the recognition of proteinaceous or saccharidic receptors located on the cell surface. FhuA is the ferrichrome hydroxamate transporter in Escherichia coli and serves as a receptor for the well-characterized phages T1, T5, and phi80. To further characterize how other FhuA-dependent phages attach to FhuA, we isolated and published the genomes of three new FhuA-dependent coliphages: JLBYU37, JLBYU41, and JLBYU60. We identified the egions of FhuA involved in phage attachment by testing the effect of mutant fhuA alleles containing single-loop deletions of extracellular loops (L3, L4, L5, L8, L10, and L11) on phage infectivity. Deletion of loop 8 resulted in complete resistance to SO1-like phages JLBYU37 and JLBYU60 and the previously isolated vB_EcoD_Teewinot phage, but no single-loop deletions significantly altered the infection of T1-like JLBYU41. Additionally, lipopolysaccharide (LPS) truncation coupled with the L5 mutant significantly impaired the infectivity of JLBYU37 and JLBYU60. Moreover, significant reductions in the infectivity of JLBYU41 were observed upon LPS truncation in the L8 mutant strain. Analysis of the evolutionary relationships among FhuA-dependent phage RBPs highlights the conservation of L8 dependence in JLBYU37, JLBYU60, Teewinot, T5, and phi80, but also showcases how positive selective pressure and/or homologous recombination also selected for L4 dependence in T1 and even the lack of complete loop dependence in JLBYU41. IMPORTANCE Phage attachment is the first step of phage infection and plays a role in governing host specificity. Characterizing the interactions taking place between phage tail fibers and bacterial receptors that better equip bacteria to survive within the human body may provide insights to aid the development of phage therapeutics.


Asunto(s)
Bacteriófagos , Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/química , Proteínas Bacterianas/metabolismo , Ferricromo/metabolismo , Ferricromo/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipopolisacáridos/metabolismo , Receptores Virales/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Colifagos/genética , Colifagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
3.
mBio ; 12(6): e0294721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34844426

RESUMEN

Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin's DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage. IMPORTANCE Transcriptional regulation of bacterial toxin-antitoxin (TA) systems allows compensation of toxin and antitoxin proteins to maintain a neutral state and avoid cell intoxication unless TA genes are lost. Such models have been primarily studied in plasmids, but TAs are equally present in other mobile genetic elements, such as transposons and prophages. Here, we demonstrate that the expression of a TA system located in a lambdoid cryptic prophage is transcriptionally coupled to the prophage immunity region and relies on phage transcription factors. Moreover, competition between transcription factors results in bistable expression, which generates cell-to-cell heterogeneity in the population, but without, however, leading to any detectable phenotype, even in cells expressing the TA system. We show that despite the lack of protein sequence similarity, this locus retains major lambda prophage regulation features.


Asunto(s)
Colifagos/genética , Escherichia coli O157/virología , Profagos/genética , Sistemas Toxina-Antitoxina , Proteínas Virales/genética , Secuencia de Bases , Colifagos/metabolismo , Regulación Viral de la Expresión Génica , Genoma Viral , Operón , Plásmidos/genética , Plásmidos/metabolismo , Profagos/metabolismo , Proteínas Virales/metabolismo
4.
Nucleic Acids Res ; 49(19): 11257-11273, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34657954

RESUMEN

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.


Asunto(s)
Proteínas Bacterianas/química , Colifagos/genética , Enzimas de Restricción-Modificación del ADN/química , Escherichia coli/genética , Escherichia/genética , Plásmidos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Colifagos/metabolismo , Cristalografía por Rayos X , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/metabolismo , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Escherichia/metabolismo , Escherichia/virología , Escherichia coli/metabolismo , Escherichia coli/virología , Expresión Génica , Islas Genómicas , Genómica/métodos , Modelos Moleculares , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Nat Commun ; 12(1): 5959, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645844

RESUMEN

The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.


Asunto(s)
Evolución Molecular Dirigida/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferasas/genética , Periplasma/genética , Proteína Disulfuro Isomerasas/genética , Trastuzumab/genética , Sitios de Unión , Clonación Molecular , Colifagos/genética , Colifagos/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inteínas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Periplasma/virología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteína Disulfuro Isomerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Empalme de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Trastuzumab/metabolismo
6.
Nucleic Acids Res ; 48(21): 12030-12041, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211866

RESUMEN

The CII protein of temperate coliphage 186, like the unrelated CII protein of phage λ, is a transcriptional activator that primes expression of the CI immunity repressor and is critical for efficient establishment of lysogeny. 186-CII is also highly unstable, and we show that in vivo degradation is mediated by both FtsH and RseP. We investigated the role of CII instability by constructing a 186 phage encoding a protease resistant CII. The stabilised-CII phage was defective in the lysis-lysogeny decision: choosing lysogeny with close to 100% frequency after infection, and forming prophages that were defective in entering lytic development after UV treatment. While lysogenic CI concentration was unaffected by CII stabilisation, lysogenic transcription and CI expression was elevated after UV. A stochastic model of the 186 network after infection indicated that an unstable CII allowed a rapid increase in CI expression without a large overshoot of the lysogenic level, suggesting that instability enables a decisive commitment to lysogeny with a rapid attainment of sensitivity to prophage induction.


Asunto(s)
Proteasas ATP-Dependientes/genética , Colifagos/genética , Endopeptidasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lisogenia , Proteínas de la Membrana/genética , Profagos/genética , Proteínas Virales/genética , Proteasas ATP-Dependientes/metabolismo , Colifagos/crecimiento & desarrollo , Colifagos/metabolismo , Colifagos/efectos de la radiación , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Estadísticos , Profagos/crecimiento & desarrollo , Profagos/metabolismo , Profagos/efectos de la radiación , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Procesos Estocásticos , Activación Transcripcional , Rayos Ultravioleta , Proteínas Virales/metabolismo
7.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354127

RESUMEN

The phAPEC6 genome encodes 551 predicted gene products, with the vast majority (83%) of unknown function. Of these, 62 have been identified as virion-associated proteins by mass spectrometry (ESI-MS/MS), including the major capsid protein (Gp225; present in 1620 copies), which shows a HK97 capsid protein-based fold. Cryo-electron microscopy experiments showed that the 350-kbp DNA molecule of Escherichia coli virus phAPEC6 is packaged in at least 15 concentric layers in the phage capsid. A capsid inner body rod is also present, measuring about 91 nm by 18 nm and oriented along the portal axis. In the phAPEC6 contractile tail, 25 hexameric stacked rings can be distinguished, built of the identified tail sheath protein (Gp277). Cryo-EM reconstruction reveals the base of the unique hairy fibers observed during an initial transmission electron microscopy (TEM) analysis. These very unusual filaments are ordered at three annular positions along the contractile sheath, as well as around the capsid, and may be involved in host interaction.


Asunto(s)
Colifagos/ultraestructura , Proteínas Virales/química , Proteínas Virales/metabolismo , Colifagos/genética , Colifagos/metabolismo , Microscopía por Crioelectrón , Tamaño del Genoma , Estructura Molecular , Espectrometría de Masas en Tándem , Empaquetamiento del Genoma Viral , Proteínas Virales/genética , Virión/química , Virión/metabolismo
8.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238583

RESUMEN

Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions.IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Colifagos/genética , Escherichia coli K12/virología , Lipopolisacáridos/metabolismo , Porinas/genética , Receptores Virales/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Evolución Biológica , Colifagos/clasificación , Colifagos/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Prueba de Complementación Genética , Especificidad del Huésped , Lipopolisacáridos/química , Interacciones Microbianas/genética , Filogenia , Porinas/metabolismo , Receptores Virales/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
DNA Res ; 27(1)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167561

RESUMEN

Restriction-modification systems (R-M) are one of the antiviral defense tools used by bacteria, and those of the Type II family are composed of a restriction endonuclease (REase) and a DNA methyltransferase (MTase). Most entering DNA molecules are usually cleaved by the REase before they can be methylated by MTase, although the observed level of fragmented DNA may vary significantly. Using a model EcoRI R-M system, we report that the balance between DNA methylation and cleavage may be severely affected by transcriptional signals coming from outside the R-M operon. By modulating the activity of the promoter, we obtained a broad range of restriction phenotypes for the EcoRI R-M system that differed by up to 4 orders of magnitude in our biological assays. Surprisingly, we found that high expression levels of the R-M proteins were associated with reduced restriction of invading bacteriophage DNA. Our results suggested that the regulatory balance of cleavage and methylation was highly sensitive to fluctuations in transcriptional signals both up- and downstream of the R-M operon. Our data provided further insights into Type II R-M system maintenance and the potential conflict within the host bacterium.


Asunto(s)
Colifagos/metabolismo , Desoxirribonucleasa EcoRI/metabolismo , Escherichia coli/enzimología , Escherichia coli/virología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Colifagos/genética , División del ADN , Metilación de ADN/genética , Desoxirribonucleasa EcoRI/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón/genética , Plásmidos/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
10.
Food Environ Virol ; 12(2): 148-157, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32006190

RESUMEN

Enteric bacteriophages (somatic coliphages, F-specific coliphages or both together) are now recognized as useful viral indicators in water, shellfish, and biosolids and are being progressively included in national and international sanitary regulations. Among them, somatic coliphages have an advantage in that they usually outnumber F-RNA coliphages in water environments. Their enumeration using Modified Scholten's (MS) media, following the ISO 10705-2 standard for the growth of Escherichia coli host strain WG5, is highly efficient and a common practice worldwide. These media contain a high concentration of nutrients, which may be modified to save costs without loss of bacterial growth host efficiency. This study explored reducing the concentration of nutrients in the current formulation and/or incorporating new components to improve the host bacterial growth and/or the enumeration of somatic coliphages at an affordable analytical cost. A twofold dilution of the original MS media was found not to affect the bacterial growth rate. The addition of combinations of assayed compounds to twofold diluted MS media slightly enhanced its analytical performance without altering bacterial growth. By generating savings in both cost and time while maintaining optimal results, media dilution could be applied to design new simple applications for coliphage enumeration.


Asunto(s)
Bacteriófagos/crecimiento & desarrollo , Colifagos/crecimiento & desarrollo , Medios de Cultivo/metabolismo , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/metabolismo , Colifagos/genética , Colifagos/aislamiento & purificación , Colifagos/metabolismo , Medios de Cultivo/química , Escherichia coli/virología , Cultivo de Virus/instrumentación , Cultivo de Virus/métodos
11.
Inflammation ; 43(2): 595-604, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31792757

RESUMEN

Bacteriophages present alternatives to antibiotics. In the age of superbugs and antibiotic resistance, the field of medicine is trying to create new antibiotics or derivatives of the old ones to eliminate bacterial infections. Bacteriophages are specific to a certain type of bacterial species and effectively kill the bacteria of target. In order to effectively use the bacteriophages as medicine, their possible side effects should be properly analyzed and one of those includes their activities on the immune system cells. In this study, we isolated two new Escherichia coli bacteriophages and tested their effect on the activation state of the mammalian macrophages. The bacteriophages were host specific and had substantial adsorption rates on E. coli. Moreover, they were able to effectively stimulate the macrophages in the absence of a bacterial stimulant, lipopolysaccharides. This implies that these bacteriophages can be used against E. coli infections in which proper immune system activation is missing. This study is the first one to our knowledge specifically showing the immunostimulatory effect of newly isolated E. coli bacteriophages on the macrophages. It is important to determine the effect of bacteriophages on the immune system cells before their use as antibiotics.


Asunto(s)
Colifagos/inmunología , Escherichia coli/inmunología , Inmunización/métodos , Mediadores de Inflamación/inmunología , Macrófagos/inmunología , Animales , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Supervivencia Celular , Colifagos/metabolismo , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Células RAW 264.7
12.
Viruses ; 11(10)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561510

RESUMEN

Shigella ssp. and enterotoxigenic Escherichiacoli are the most common etiological agents of diarrheal diseases in malnourished children under five years of age in developing countries. The ever-growing issue of antibiotic resistance and the potential negative impact of antibiotic use on infant commensal microbiota are significant challenges to current therapeutic approaches. Bacteriophages (or phages) represent an alternative treatment that can be used to treat specific bacterial infections. In the present study, we screened water samples from both environmental and industrial sources for phages capable of infecting E. coli laboratory strains within our collection. Nineteen phages were isolatedand tested for their ability to infect strains within the ECOR collection and E. coli O157:H7 Δstx. Furthermore, since coliphages have been reported to cross-infect certain Shigella spp., we also evaluated the ability of the nineteen phages to infect a representative Shigella sonnei strain from our collection. Based on having distinct (although overlapping in some cases) host ranges, ten phage isolates were selected for genome sequence and morphological characterization. Together, these ten selected phages were shown to infect most of the ECOR library, with 61 of the 72 strains infected by at least one phage from our collection. Genome analysis of the ten phages allowed classification into five previously described genetic subgroups plus one previously underrepresented subgroup.


Asunto(s)
Colifagos/genética , Colifagos/aislamiento & purificación , Escherichia coli/virología , Colifagos/metabolismo , Colifagos/ultraestructura , Escherichia coli/clasificación , Escherichia coli O157/virología , Variación Genética , Genoma Viral/genética , Especificidad del Huésped , Proteómica , Shigella/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Microbiología del Agua
13.
Sci Rep ; 9(1): 9685, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273267

RESUMEN

The etiopathogenesis of type 1 diabetes (T1D), a common autoimmune disorder, is not completely understood. Recent studies suggested the gut microbiome plays a role in T1D. We have used public longitudinal microbiome data from T1D patients to analyze amyloid-producing bacterial composition and found a significant association between initially high amyloid-producing Escherichia coli abundance, subsequent E. coli depletion prior to seroconversion, and T1D development. In children who presented seroconversion or developed T1D, we observed an increase in the E. coli phage/E. coli ratio prior to E. coli depletion, suggesting that the decrease in E. coli was due to prophage activation. Evaluation of the role of phages in amyloid release from E. coli biofilms in vitro suggested an indirect role of the bacterial phages in the modulation of host immunity. This study for the first time suggests that amyloid-producing E. coli, their phages, and bacteria-derived amyloid might be involved in pro-diabetic pathway activation in children at risk for T1D.


Asunto(s)
Amiloide/metabolismo , Autoinmunidad/inmunología , Colifagos/metabolismo , Diabetes Mellitus Tipo 1/etiología , Escherichia coli/metabolismo , Microbioma Gastrointestinal/inmunología , Preescolar , Colifagos/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Escherichia coli/inmunología , Humanos , Lactante , Recién Nacido , Estudios Longitudinales , Estudios Prospectivos
14.
Nucleic Acids Res ; 47(13): 7118-7129, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31180482

RESUMEN

The gene cro promotes lytic growth of phages through binding of Cro protein dimers to regulatory DNA sites. Most Cro proteins are one-to-one orthologs, yet their sequence, structure and binding site sequences are quite divergent across lambdoid phages. We report the cocrystal structure of bacteriophage N15 Cro with a symmetric consensus site. We contrast this complex with an orthologous structure from phage λ, which has a dissimilar binding site sequence and a Cro protein that is highly divergent in sequence, dimerization interface and protein fold. The N15 Cro complex has less DNA bending and smaller DNA-induced changes in protein structure. N15 Cro makes fewer direct contacts and hydrogen bonds to bases, relying mostly on water-mediated and Van der Waals contacts to recognize the sequence. The recognition helices of N15 Cro and λ Cro make mostly nonhomologous and nonanalogous contacts. Interface alignment scores show that half-site binding geometries of N15 Cro and λ Cro are less similar to each other than to distantly related CI repressors. Despite this divergence, the Cro family shows several code-like protein-DNA sequence covariations. In some cases, orthologous genes can achieve a similar biological function using very different specific molecular interactions.


Asunto(s)
Colifagos/metabolismo , Regiones Operadoras Genéticas , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química , Bacteriófago P22/metabolismo , Bacteriófago lambda/metabolismo , Secuencia de Consenso , Cristalografía por Rayos X , ADN Bacteriano/metabolismo , Evolución Molecular , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo
15.
Biotechnol Bioeng ; 116(7): 1820-1826, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30882900

RESUMEN

Phage Φ80 can infect Escherichia coli in a stealthy manner and persist by forming lysogens. Such Φ80 lysogens are fairly common and often go undetected unless the host is grown at temperatures below 37°C. Since low growth temperatures are required for growing temperature-sensitive mutants and often preferred for large-scale applications such as protein production, Φ80-resistant strains would be useful. We report the construction of E. coli strains that cannot be efficiently lysogenized or infected by bacteriophage Φ80. These strains contain combinations of deletions or mutations in the bacterial attachment site for Φ80 integration and/or deletions in the genes required for phage absorption to the host outer membrane. These strains should help contain and prevent Φ80 infection of E. coli cultures in a laboratory or industrial setting.


Asunto(s)
Colifagos , Escherichia coli , Lisogenia , Colifagos/genética , Colifagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virología
16.
EcoSal Plus ; 8(2)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30681066

RESUMEN

Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range of ecological niches. This physical barrier is the first line of defense against noxious compounds and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a complex structure, composed of at least five capsid proteins assembled in a long thread-shaped particle, that protects the viral DNA. Despite their difference in size and complexity, group A colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host for entry. They first bind to a receptor located at the surface of the target bacteria before specifically recruiting components of the Tol system to cross the outer membrane and find their way through the periplasm. The Tol system is thought to use the proton motive force of the inner membrane to maintain outer membrane integrity during the life cycle of the cell. This review describes the sequential docking mechanisms of group A colicins and filamentous phages during their uptake by their bacterial host, with a specific focus on the translocation step, promoted by interactions with the Tol system.


Asunto(s)
Bacterias/metabolismo , Bacterias/virología , Colicinas/metabolismo , Interacciones Microbiota-Huesped , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Colifagos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos , Proteínas Periplasmáticas , Unión Proteica , Transporte de Proteínas
17.
Cell Host Microbe ; 23(5): 607-617.e6, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29746832

RESUMEN

Bacteriophage-encoded genetic elements control bacterial biological functions. Enterohemorrhagic Escherichia coli (EHEC) strains harbor lambda-phages encoding the Shiga-toxin (Stx), which is expressed during the phage lytic cycle and associated with exacerbated disease. Phages also reside dormant within bacterial chromosomes through their lysogenic cycle, but how this impacts EHEC virulence remains unknown. We find that during lysogeny the phage transcription factor Cro activates the EHEC type III secretion system (T3SS). EHEC lambdoid phages are lysogenic under anaerobic conditions when Cro binds to and activates the promoters of T3SS genes. Interestingly, the Cro sequence varies among phages carried by different EHEC outbreak strains, and these changes affect Cro-dependent T3SS regulation. Additionally, infecting mice with the related pathogen C. rodentium harboring the bacteriophage cro from EHEC results in greater T3SS gene expression and enhanced virulence. Collectively, these findings reveal the role of phages in impacting EHEC virulence and their potential to affect outbreak strains.


Asunto(s)
Colifagos/metabolismo , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Represoras/farmacología , Proteínas Reguladoras y Accesorias Virales/farmacología , Factores de Virulencia/genética , Animales , Cromosomas Bacterianos/efectos de los fármacos , Citrobacter rodentium/patogenicidad , Colifagos/genética , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/patología , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enterohemorrágica/virología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Genes Bacterianos/efectos de los fármacos , Células HeLa , Humanos , Lípidos , Lisogenia , Ratones , Ratones Endogámicos C3H , Proteínas Represoras/genética , Toxina Shiga/genética , Factores de Transcripción , Sistemas de Secreción Tipo III/efectos de los fármacos , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Ensayo de Placa Viral , Proteínas Reguladoras y Accesorias Virales/genética , Virulencia/efectos de los fármacos , Virulencia/genética
18.
PLoS One ; 13(2): e0192507, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29408864

RESUMEN

The recent rise of multidrug-resistant Gram-negative bacteria represents a serious threat to public health and makes the search for novel effective alternatives to antibiotics a compelling need. Bacteriophage (Phage) lysins are enzymes that hydrolyze the cell wall of bacteria and represent a promising alternative to tackle this ever-increasing problem. Despite their use is believed to be restricted to Gram-positive bacteria, recent findings have shown that they can also be used against Gram-negative bacteria. By using a phage genome-based screening approach, we identified and characterized a novel lysin, PlyE146, encoded by an Escherichia coli prophage and with a predicted molecular mass of ca. 17 kDa. PlyE146 is composed of a C-terminal cationic peptide and a N-terminal N-acetylmuramidase domain. Histidine-tagged PlyE146 was overexpressed from a plasmid in Lactococcus lactis NZ9000 and purified by NI-NTA chromatography. PlyE146 exhibited in vitro optimal bactericidal activity against E. coli K12 (3.6 log10 CFU/mL decrease) after 2 h of incubation at 37°C at a concentration of 400 µg/mL in the absence of NaCl and at pH 6.0. Under these conditions, PlyE146 displayed antimicrobial activity towards several other E. coli, Pseudomonas aeruginosa (3 to 3.8-log10 CFU/mL decrease) and Acinetobacter baumannii (4.9 to >5-log10 CFU/mL decrease) strains. Therefore, PlyE146 represents a promising therapeutic agent against E. coli, P. aeruginosa and A. baumannii infections. However, further studies are required to improve the efficacy of PlyE146 under physiological conditions.


Asunto(s)
Colifagos/metabolismo , Bacterias Gramnegativas/metabolismo , Antibacterianos/farmacología , Western Blotting , Glicósido Hidrolasas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Microscopía Electrónica de Transmisión
19.
PLoS One ; 13(1): e0190534, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29300761

RESUMEN

Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area-around or within city-with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology between free STEC-specific phages and STEC bacteria for further pre-harvest food safety management in produce environment.


Asunto(s)
Colifagos/metabolismo , Escherichia coli Shiga-Toxigénica/virología , California , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , Prevalencia
20.
PLoS One ; 13(1): e0190850, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29329326

RESUMEN

To date, IL-17A antibodies remain the only therapeutic approach to correct the abnormal activation of the IL-17A/IL-17R signaling complex. Why is it that despite the remarkable success of IL-17 antibodies, there is no small molecule antagonist of IL-17A in the clinic? Here we offer a unique approach to address this question. In order to understand the interaction of IL-17A with its receptor, we combined peptide discovery using phage display with HDX, crystallography, and functional assays to map and characterize hot regions that contribute to most of the energetics of the IL-17A/IL-17R interaction. These functional maps are proposed to serve as a guide to aid in the development of small molecules that bind to IL-17A and block its interaction with IL-17RA.


Asunto(s)
Colifagos/metabolismo , Interleucina-17/metabolismo , Péptidos/metabolismo , Receptores de Interleucina-17/metabolismo , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Células HT29 , Humanos , Interleucina-17/química , Modelos Moleculares , Receptores de Interleucina-17/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...