Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 15(9): e1008369, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525193

RESUMEN

The Y chromosome harbors nine multi-copy ampliconic gene families expressed exclusively in testis. The gene copies within each family are >99% identical to each other, which poses a major challenge in evaluating their copy number. Recent studies demonstrated high variation in Y ampliconic gene copy number among humans. However, how this variation affects expression levels in human testis remains understudied. Here we developed a novel computational tool Ampliconic Copy Number Estimator (AmpliCoNE) that utilizes read sequencing depth information to estimate Y ampliconic gene copy number per family. We applied this tool to whole-genome sequencing data of 149 men with matched testis expression data whose samples are part of the Genotype-Tissue Expression (GTEx) project. We found that the Y ampliconic gene families with low copy number in humans were deleted or pseudogenized in non-human great apes, suggesting relaxation of functional constraints. Among the Y ampliconic gene families, higher copy number leads to higher expression. Within the Y ampliconic gene families, copy number does not influence gene expression, rather a high tolerance for variation in gene expression was observed in testis of presumably healthy men. No differences in gene expression levels were found among major Y haplogroups. Age positively correlated with expression levels of the HSFY and PRY gene families in the African subhaplogroup E1b, but not in the European subhaplogroups R1b and I1. We also found that expression of five Y ampliconic gene families is coordinated with that of their non-Y (i.e. X or autosomal) homologs. Indeed, five ampliconic gene families had consistently lower expression levels when compared to their non-Y homologs suggesting dosage regulation, while the HSFY family had higher expression levels than its X homolog and thus lacked dosage regulation.


Asunto(s)
Cromosomas Humanos Y/genética , Genes Ligados a Y/genética , Análisis de Secuencia de ADN/métodos , Animales , Cromosomas Humanos Y/fisiología , Variaciones en el Número de Copia de ADN/genética , Bases de Datos Genéticas , Compensación de Dosificación (Genética)/genética , Compensación de Dosificación (Genética)/fisiología , Epigénesis Genética/genética , Dosificación de Gen/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Genes Ligados a Y/fisiología , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Masculino , Familia de Multigenes/genética , Testículo/metabolismo
2.
PLoS Genet ; 15(9): e1008333, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31537017

RESUMEN

In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.


Asunto(s)
Compensación de Dosificación (Genética)/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Compensación de Dosificación (Genética)/fisiología , Epigénesis Genética/genética , Femenino , Silenciador del Gen/fisiología , Humanos , Masculino , Mamíferos/genética , ARN Largo no Codificante/fisiología , Cromosoma X/genética , Inactivación del Cromosoma X/genética
3.
Genes Dev ; 33(15-16): 1031-1047, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31196865

RESUMEN

Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits.


Asunto(s)
Aneuploidia , Citosol/metabolismo , Compensación de Dosificación (Genética)/fisiología , Agregado de Proteínas/genética , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Agregación Patológica de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 27(1): 20-29.e3, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943402

RESUMEN

Dosage compensation of sex-chromosome gene expression between male and female mammals is achieved via X chromosome inactivation (XCI) by employing epigenetic modifications to randomly silence one X chromosome during early embryogenesis. Human pluripotent stem cells (hPSCs) were reported to present various states of XCI that differ according to the expression of the long non-coding RNA XIST and the degree of X chromosome silencing. To obtain a comprehensive perspective on XCI in female hPSCs, we performed a large-scale analysis characterizing different XCI parameters in more than 700 RNA high-throughput sequencing samples. Our findings suggest differences in XCI status between most published samples of embryonic stem cells (ESCs) and induced PSCs (iPSCs). While the majority of iPSC lines maintain an inactive X chromosome, ESC lines tend to silence the expression of XIST and upregulate distal chromosomal regions. Our study highlights significant epigenetic heterogeneity within hPSCs, which may bear implications for their use in research and regenerative therapy.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Análisis de Secuencia de ADN , Inactivación del Cromosoma X/genética , Células Cultivadas , Cromosomas Humanos X/genética , Cromosomas Humanos X/metabolismo , Compensación de Dosificación (Genética)/fisiología , Epigénesis Genética/fisiología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Células Madre Pluripotentes/fisiología , Análisis de Secuencia de ADN/métodos
5.
PLoS Genet ; 14(2): e1007212, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29420541

RESUMEN

The lack of a mutant phenotype in homozygous mutant individuals' due to compensatory gene expression triggered upstream of protein function has been identified as genetic compensation. Whilst this intriguing process has been recognized in zebrafish, the presence of homozygous loss of function mutations in healthy human individuals suggests that compensation may not be restricted to this model. Loss of skeletal α-actin results in nemaline myopathy and we have previously shown that the pathological symptoms of the disease and reduction in muscle performance are recapitulated in a zebrafish antisense morpholino knockdown model. Here we reveal that a genetic actc1b mutant exhibits mild muscle defects and is unaffected by injection of the actc1b targeting morpholino. We further show that the milder phenotype results from a compensatory transcriptional upregulation of an actin paralogue providing a novel approach to be explored for the treatment of actin myopathy. Our findings provide further evidence that genetic compensation may influence the penetrance of disease-causing mutations.


Asunto(s)
Actinas/genética , Compensación de Dosificación (Genética)/fisiología , Músculo Esquelético/patología , Mutación , Miopatías Nemalínicas/genética , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Músculo Esquelético/metabolismo , Miopatías Nemalínicas/patología , Penetrancia , Fenotipo , Isoformas de Proteínas/genética , Pez Cebra/embriología , Pez Cebra/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-28840663

RESUMEN

Noncoding RNAs (ncRNAs) have emerged as crucial players in chromatin regulation. Their diversity allows them to partake in the regulation of numerous cellular processes across species. During development, long and short ncRNAs act in conjunction with each other where long ncRNAs (lncRNAs) are best understood in establishing appropriate gene expression patterns, while short ncRNAs (sRNAs) are known to establish constitutive heterochromatin and suppress mobile elements. Additionally, increasing evidence demonstrates roles of sRNAs in several typically lncRNA-mediated processes such as dosage compensation, indicating a complex regulatory network of noncoding RNAs. Together, various ncRNAs establish many mitotically heritable epigenetic marks during development. Additionally, they participate in mechanisms that regulate maintenance of these epigenetic marks during the lifespan of the organism. Interestingly, some epigenetic traits are transmitted to the next generation(s) via paramutations or transgenerational inheritance mediated by sRNAs. In this review, we give an overview of the various functions and regulations of ncRNAs and the mechanisms they employ in the establishment and maintenance of epigenetic marks and multi-generational transmission of epigenetic traits. WIREs RNA 2017, 8:e1435. doi: 10.1002/wrna.1435 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Compensación de Dosificación (Genética)/fisiología , Redes Reguladoras de Genes/fisiología , Heterocromatina/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Heterocromatina/genética , Humanos , ARN Largo no Codificante/genética
7.
Development ; 144(15): 2784-2797, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28684628

RESUMEN

Xist RNA, which is responsible for X inactivation, is a key epigenetic player in the embryogenesis of female mammals. Of the several repeats conserved in Xist RNA, the A-repeat has been shown to be essential for its silencing function in differentiating embryonic stem cells. Here, we introduced a new Xist allele into mouse that produces mutated Xist RNA lacking the A-repeat (XistCAGΔ5' ). XistCAGΔ5' RNA expressed in the embryo coated the X chromosome but failed to silence it. Although imprinted X inactivation was substantially compromised upon paternal transmission, allele-specific RNA-seq in the trophoblast revealed that XistCAGΔ5' RNA still retained some silencing ability. Furthermore, the failure of imprinted X inactivation had more significant impacts than expected on genome-wide gene expression. It is likely that dosage compensation is required not only for equalizing X-linked gene expression between the sexes but also for proper global gene regulation in differentiated female somatic cells.


Asunto(s)
Compensación de Dosificación (Genética)/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Trofoblastos/metabolismo , Alelos , Animales , Células Cultivadas , Compensación de Dosificación (Genética)/genética , Células Madre Embrionarias/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Cromosoma X/genética , Inactivación del Cromosoma X/genética
8.
Adv Exp Med Biol ; 886: 33-49, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26659486

RESUMEN

Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.


Asunto(s)
Cromosomas Humanos X/metabolismo , Cromosomas Humanos Y/metabolismo , Compensación de Dosificación (Genética)/fisiología , ARN Largo no Codificante/metabolismo , Procesos de Determinación del Sexo/fisiología , Animales , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Femenino , Humanos , Masculino , ARN Largo no Codificante/genética
9.
Dev Cell ; 33(5): 498-9, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26058053

RESUMEN

Eukaryotic chromosomes are organized into topological domains, but how these are established and maintained is poorly understood. Writing in Nature, Crane et al. (2015) show that a specialized condensin complex enforces the domain boundaries along the C. elegans X chromosome to equalize transcription from the X between males and hermaphrodites.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética)/fisiología , Complejos Multiproteicos/metabolismo , Cromosoma X/metabolismo , Animales , Femenino , Masculino
10.
Nature ; 523(7559): 240-4, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26030525

RESUMEN

The three-dimensional organization of a genome plays a critical role in regulating gene expression, yet little is known about the machinery and mechanisms that determine higher-order chromosome structure. Here we perform genome-wide chromosome conformation capture analysis, fluorescent in situ hybridization (FISH), and RNA-seq to obtain comprehensive three-dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X chromosome dosage compensation, which balances gene expression between XX hermaphrodites and XO males. The dosage compensation complex (DCC), a condensin complex, binds to both hermaphrodite X chromosomes via sequence-specific recruitment elements on X (rex sites) to reduce chromosome-wide gene expression by half. Most DCC condensin subunits also act in other condensin complexes to control the compaction and resolution of all mitotic and meiotic chromosomes. By comparing chromosome structure in wild-type and DCC-defective embryos, we show that the DCC remodels hermaphrodite X chromosomes into a sex-specific spatial conformation distinct from autosomes. Dosage-compensated X chromosomes consist of self-interacting domains (∼1 Mb) resembling mammalian topologically associating domains (TADs). TADs on X chromosomes have stronger boundaries and more regular spacing than on autosomes. Many TAD boundaries on X chromosomes coincide with the highest-affinity rex sites and become diminished or lost in DCC-defective mutants, thereby converting the topology of X to a conformation resembling autosomes. rex sites engage in DCC-dependent long-range interactions, with the most frequent interactions occurring between rex sites at DCC-dependent TAD boundaries. These results imply that the DCC reshapes the topology of X chromosomes by forming new TAD boundaries and reinforcing weak boundaries through interactions between its highest-affinity binding sites. As this model predicts, deletion of an endogenous rex site at a DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the boundary. Thus, the DCC imposes a distinct higher-order structure onto X chromosomes while regulating gene expression chromosome-wide.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética)/fisiología , Complejos Multiproteicos/metabolismo , Cromosoma X/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Compensación de Dosificación (Genética)/genética , Femenino , Regulación de la Expresión Génica , Hibridación Fluorescente in Situ , Masculino , Unión Proteica , Análisis de Secuencia de ARN , Cromosoma X/genética
11.
Cold Spring Harb Perspect Biol ; 6(12): a017715, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25280765

RESUMEN

Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.


Asunto(s)
Evolución Molecular , Aptitud Genética/genética , Modelos Genéticos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Animales , Compensación de Dosificación (Genética)/fisiología , Densidad de Población , Selección Genética , Factores Sexuales
12.
Biochim Biophys Acta ; 1839(3): 234-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24406325

RESUMEN

Dosage compensation is the essential process that equalizes the dosage of X-linked genes between the sexes in heterogametic species. Because all of the genes along the length of a single chromosome are co-regulated, dosage compensation serves as a model system for understanding how domains of coordinate gene regulation are established. Dosage compensation has been best studied in mammals, flies and worms. Although dosage compensation systems are seemingly diverse across species, there are key shared principles of nucleation and spreading that are critical for accurate targeting of the dosage compensation complex to the X-chromosome(s). We will highlight the mechanisms by which long non-coding RNAs function together with DNA sequence elements to tether dosage compensation complexes to the X-chromosome. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Asunto(s)
Cromosomas Humanos X/fisiología , Compensación de Dosificación (Genética)/fisiología , ARN Largo no Codificante/fisiología , Animales , Femenino , Humanos , Masculino
13.
PLoS One ; 8(4): e60450, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565249

RESUMEN

Male Drosophila are monosomic for the X chromosome, but survive due to dosage compensation. They use the Male Specific Lethal (MSL) complex composed of noncoding roX RNA and histone modifying enzymes to hypertranscribe most genes along the X ∼1.6-1.8 fold relative to each female allele. It is not known how the MSL complex achieves this precise adjustment to a large and diverse set of target genes. We carried out a genetic screen searching for novel factors that regulate dosage compensation in flies. This strategy generated thirty alleles in a previously uncharacterized gene, over compensating males (ocm) that antagonizes some aspect of MSL activity. The mutations were initially recovered because they derepressed an MSL-dependent eye color reporter. Null ocm mutations are lethal to both sexes early in development revealing an essential function. Combinations of hypomorphic ocm alleles display a male specific lethality similar to mutations in the classic msl genes, but ocm males die due to excessive, rather than lack of dosage compensation. Males that die due to very low MSL activity can be partially rescued by ocm mutations. Likewise, males that would die from ocm mutations can be rescued by reducing the dose of various msl and roX genes. ocm encodes a large nuclear protein that shares a novel cysteine rich motif with known transcription factors.


Asunto(s)
Compensación de Dosificación (Genética)/fisiología , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética)/genética , Proteínas de Drosophila/genética , Femenino , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Cromosoma X/metabolismo
14.
Prenat Diagn ; 33(6): 598-601, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23533085

RESUMEN

Uniparental disomy (UPD) is an uncommon chromosome condition, but UPD involving chromosome 21 is rarely reported. We reported here a case who had first trimester screening test for Down syndrome, chorionic villus sampling for fetal karyotyping, quantitative fluorescence polymerase chain reaction (QF-PCR), as well as non-invasive prenatal testing (NIPT) by maternal plasma sequencing. There were discordant results between fetal karyotyping and NIPT due to UPD 21combined with confined placental mosaicism of trisomy 21. This demonstrated that it is possible to detect placental mosaicism by NIPT, but further studies are required to confirm its sensitivity. Therefore, all positive NIPT results must be confirmed by conventional invasive test and karyotyping. QF-PCR has the additional benefit in diagnosing UPD.


Asunto(s)
Cromosomas Humanos Par 21/genética , Cariotipificación/métodos , Diagnóstico Prenatal/métodos , Análisis de Secuencia de ADN/métodos , Disomía Uniparental/diagnóstico , Adulto , Compensación de Dosificación (Genética)/fisiología , Femenino , Humanos , Mosaicismo , Embarazo/sangre , Trisomía/diagnóstico , Trisomía/genética , Disomía Uniparental/genética
15.
PLoS One ; 7(10): e46854, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056488

RESUMEN

Dosage compensation, the process whereby expression of sex-linked genes remains similar between sexes (despite heterogamety) and balanced with autosomal expression, was long believed to be essential. However, recent research has shown that several lineages, including birds, butterflies, monotremes and sticklebacks, lack chromosome-wide dosage compensation mechanisms and do not completely balance the expression of sex-linked and autosomal genes. To obtain further understanding of avian sex-biased gene expression, we studied Z-linked gene expression in the brain of two songbirds of different genera (zebra finch, Taeniopygia guttata, and common whitethroat, Sylvia communis) using microarray technology. In both species, the male-bias in gene expression was significantly higher for Z than for autosomes, although the ratio of Z-linked to autosomal expression (Z:A) was relatively close to one in both sexes (range: 0.89-1.01). Interestingly, the Z-linked male-bias in gene expression increased with expression level, and genes with low expression showed the lowest degree of sex-bias. These results support the view that the heterogametic females have up-regulated their single Z-linked homologues to a high extent when the W-chromosome degraded and thereby managed to largely balance their Z:A expression with the exception of highly expressed genes. The male-bias in highly expressed genes points towards male-driven selection on Z-linked loci, and this and other possible hypotheses are discussed.


Asunto(s)
Cromosomas/genética , Caracteres Sexuales , Procesos de Determinación del Sexo/genética , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Transcriptoma/fisiología , Animales , Compensación de Dosificación (Genética)/fisiología , Evolución Molecular , Femenino , Masculino
16.
Semin Cell Dev Biol ; 21(2): 194-200, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19815084

RESUMEN

X inactivation is the mechanism by which mammals adjust the X-linked gene dosage between the sexes. The dosage difference between XX females and XY males is functionally equalized by silencing one of the two X chromosomes in female cells. This dosage-compensation mechanism is based on the long functional Xist RNA. Here, we review our understanding of dosage compensation and Xist function in the context of disease.


Asunto(s)
Compensación de Dosificación (Genética)/fisiología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , ARN no Traducido/fisiología , Inactivación del Cromosoma X/fisiología , Animales , Femenino , Humanos , Masculino , ARN Largo no Codificante
17.
Genetika ; 46(10): 1430-4, 2010 Oct.
Artículo en Ruso | MEDLINE | ID: mdl-21254570

RESUMEN

For the dosage compensation to occur, genes on the single male X chromosomes in Drosophila must be selectively bound and acetylated by the ribonucleoprotein complex called MSL complex. It remained unknown how such exquisite specificity is achieved, and whether specific DNA sequences were involved. In the present work we demonstrate that it is transcription of the gene on the X chromosome that is important for MSL targeting, irrespective of gene origin and DNA sequence.


Asunto(s)
Cromosomas de Insectos/metabolismo , Compensación de Dosificación (Genética)/fisiología , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas/metabolismo , Transcripción Genética/fisiología , Cromosoma X/metabolismo , Animales , Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino , Ribonucleoproteínas/genética , Cromosoma X/genética
18.
Reprod Fertil Dev ; 21(8): 952-63, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19874719

RESUMEN

A common theme in the evolution of sex chromosomes is the massive loss of genes on the sex-specific chromosome (Y or W), leading to a gene imbalance between males (XY) and females (XX) in a male heterogametic species, or between ZZ and ZW in a female heterogametic species. Different mechanisms have evolved to compensate for this difference in dosage of X-borne genes between sexes. In therian mammals, one of the X chromosomes is inactivated, whereas bird dosage compensation is partial and gene-specific. In therian mammals, hallmarks of the inactive X are monoallelic gene expression, late DNA replication and chromatin condensation. Platypuses have five pairs of X chromosomes in females and five X and five Y chromosomes in males. Gene expression analysis suggests a more bird-like partial and gene-specific dosage compensation mechanism. We investigated replication timing and chromosome condensation of three of the five X chromosomes in female platypus. Our data suggest asynchronous replication of X-specific regions on X(1), X(3) and X(5) but show significantly different condensation between homologues for X(3) only, and not for X(1) or X(5). We discuss these results in relation to recent gene expression analysis of X-linked genes, which together give us insights into possible mechanisms of dosage compensation in platypus.


Asunto(s)
Empaquetamiento del ADN/fisiología , Momento de Replicación del ADN/fisiología , Ornitorrinco/genética , Cromosoma X/fisiología , Animales , Células Cultivadas , Replicación del ADN/fisiología , Compensación de Dosificación (Genética)/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ornitorrinco/fisiología , Cromosoma X/genética , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...