Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.460
Filtrar
1.
Nat Commun ; 15(1): 3367, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719808

RESUMEN

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Asunto(s)
Antihelmínticos , Caenorhabditis elegans , Complejo I de Transporte de Electrón , Ubiquinona/análogos & derivados , Animales , Antihelmínticos/farmacología , Antihelmínticos/química , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Caenorhabditis elegans/metabolismo , Bencimidazoles/farmacología , Bencimidazoles/química , Especificidad de la Especie , Quinonas/química , Quinonas/farmacología , Quinonas/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/química
3.
Cell Death Dis ; 15(5): 311, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697987

RESUMEN

Cancer cells are highly dependent on bioenergetic processes to support their growth and survival. Disruption of metabolic pathways, particularly by targeting the mitochondrial electron transport chain complexes (ETC-I to V) has become an attractive therapeutic strategy. As a result, the search for clinically effective new respiratory chain inhibitors with minimized adverse effects is a major goal. Here, we characterize a new OXPHOS inhibitor compound called MS-L6, which behaves as an inhibitor of ETC-I, combining inhibition of NADH oxidation and uncoupling effect. MS-L6 is effective on both intact and sub-mitochondrial particles, indicating that its efficacy does not depend on its accumulation within the mitochondria. MS-L6 reduces ATP synthesis and induces a metabolic shift with increased glucose consumption and lactate production in cancer cell lines. MS-L6 either dose-dependently inhibits cell proliferation or induces cell death in a variety of cancer cell lines, including B-cell and T-cell lymphomas as well as pediatric sarcoma. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI-1) partially restores the viability of B-lymphoma cells treated with MS-L6, demonstrating that the inhibition of NADH oxidation is functionally linked to its cytotoxic effect. Furthermore, MS-L6 administration induces robust inhibition of lymphoma tumor growth in two murine xenograft models without toxicity. Thus, our data present MS-L6 as an inhibitor of OXPHOS, with a dual mechanism of action on the respiratory chain and with potent antitumor properties in preclinical models, positioning it as the pioneering member of a promising drug class to be evaluated for cancer therapy. MS-L6 exerts dual mitochondrial effects: ETC-I inhibition and uncoupling of OXPHOS. In cancer cells, MS-L6 inhibited ETC-I at least 5 times more than in isolated rat hepatocytes. These mitochondrial effects lead to energy collapse in cancer cells, resulting in proliferation arrest and cell death. In contrast, hepatocytes which completely and rapidly inactivated this molecule, restored their energy status and survived exposure to MS-L6 without apparent toxicity.


Asunto(s)
Antineoplásicos , Proliferación Celular , Complejo I de Transporte de Electrón , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Antineoplásicos/farmacología , Ratones , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Desacopladores/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Ratas , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/antagonistas & inhibidores
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732047

RESUMEN

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Enfermedad de Leigh , Ratones Noqueados , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Animales , Barrera Hematoencefálica/metabolismo , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias/metabolismo , Mitocondrias/genética
5.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759628

RESUMEN

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Complejo I de Transporte de Electrón , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteínas Serina-Treonina Quinasas , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal , Femenino
6.
Biochem J ; 481(7): 499-514, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38572757

RESUMEN

Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.


Asunto(s)
Complejo I de Transporte de Electrón , Protones , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Antiportadores/metabolismo , Electrones , Simulación de Dinámica Molecular , Oxidación-Reducción , Benzoquinonas
7.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604809

RESUMEN

BACKGROUND: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS: Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS: We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS: Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Compuestos Bicíclicos Heterocíclicos con Puentes , Metformina , Sulfonamidas , Humanos , Femenino , Complejo I de Transporte de Electrón/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células Dendríticas , Metformina/farmacología , Metformina/uso terapéutico , Microambiente Tumoral
8.
Pediatr Neurol ; 155: 91-103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626668

RESUMEN

BACKGROUND: Pathogenic variants in the NDUFV1 gene disrupt mitochondrial complex I, leading to neuroregression with leukoencephalopathy and basal ganglia involvement on neuroimaging. This study aims to provide a concise review on NDUFV1-related disorders while adding the largest cohort from a single center to the existing literature. METHODS: We retrospectively collected genetically proven cases of NDUFV1 pathogenic variants from our center over the last decade and explored reported instances in existing literature. Magnetic resonance imaging (MRI) patterns observed in these patients were split into three types-Leigh (putamen, basal ganglia, thalamus, and brainstem involvement), mitochondrial leukodystrophy (ML) (cerebral white matter involvement with cystic cavitations), and mixed (both). RESULTS: Analysis included 44 children (seven from our center and 37 from literature). The most prevalent comorbidities were hypertonia, ocular abnormalities, feeding issues, and hypotonia at onset. Children with the Leigh-type MRI pattern exhibited significantly higher rates of breathing difficulties, whereas those with a mixed phenotype had a higher prevalence of dystonia. The c.1156C>T variant in exon 8 of the NDUFV1 gene was the most common variant among individuals of Asian ethnicity and is predominantly associated with irritability and dystonia. Seizures and Leigh pattern of MRI of the brain was found to be less commonly associated with this variant. Higher rate of mortality was observed in children with Leigh-type pattern on brain MRI and those who did not receive mitochondrial cocktail. CONCLUSIONS: MRI phenotyping might help predict outcome. Appropriate and timely treatment with mitochondrial cocktail may reduce the probability of death and may positively impact the long-term outcomes, regardless of the genetic variant or age of onset.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedades Mitocondriales , NADH Deshidrogenasa , Humanos , Estudios Retrospectivos , Masculino , Complejo I de Transporte de Electrón/genética , Femenino , Preescolar , Lactante , Niño , NADH Deshidrogenasa/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedad de Leigh/genética , Enfermedad de Leigh/diagnóstico por imagen , Adolescente
9.
J Transl Med ; 22(1): 390, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671439

RESUMEN

BACKGROUND: The progression of diabetic cardiomyopathy (DCM) is noticeably influenced by mitochondrial dysfunction. Variants of caveolin 3 (CAV3) play important roles in cardiovascular diseases. However, the potential roles of CAV3 in mitochondrial function in DCM and the related mechanisms have not yet been elucidated. METHODS: Cardiomyocytes were cultured under high-glucose and high-fat (HGHF) conditions in vitro, and db/db mice were employed as a diabetes model in vivo. To investigate the role of CAV3 in DCM and to elucidate the molecular mechanisms underlying its involvement in mitochondrial function, we conducted Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and functional experiments. RESULTS: Our findings demonstrated significant downregulation of CAV3 in the cardiac tissue of db/db mice, which was found to be associated with cardiomyocyte apoptosis in DCM. Importantly, cardiac-specific overexpression of CAV3 effectively inhibited the progression of DCM, as it protected against cardiac dysfunction and cardiac remodeling associated by alleviating cardiomyocyte mitochondrial dysfunction. Furthermore, mass spectrometry analysis and immunoprecipitation assays indicated that CAV3 interacted with NDUFA10, a subunit of mitochondrial complex I. CAV3 overexpression reduced the degradation of lysosomal pathway in NDUFA10, restored the activity of mitochondrial complex I and improved mitochondrial function. Finally, our study demonstrated that CAV3 overexpression restored mitochondrial function and subsequently alleviated DCM partially through NDUFA10. CONCLUSIONS: The current study provides evidence that CAV3 expression is significantly downregulated in DCM. Upregulation of CAV3 interacts with NDUFA10, inhibits the degradation of lysosomal pathway in NDUFA10, a subunit of mitochondrial complex I, restores the activity of mitochondrial complex I, ameliorates mitochondrial dysfunction, and thereby protects against DCM. These findings indicate that targeting CAV3 may be a promising approach for the treatment of DCM.


Asunto(s)
Caveolina 3 , Cardiomiopatías Diabéticas , Complejo I de Transporte de Electrón , Mitocondrias , Miocitos Cardíacos , Animales , Masculino , Ratones , Apoptosis , Caveolina 3/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Complejo I de Transporte de Electrón/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
10.
Genes (Basel) ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674434

RESUMEN

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Femenino , Preescolar , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Linaje , Eliminación de Secuencia
11.
PLoS One ; 19(4): e0300630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578754

RESUMEN

The destructive impact of fungi in agriculture and animal and human health, coincident with increases in antifungal resistance, underscores the need for new and alternative drug targets to counteract these trends. Cellular metabolism relies on many intermediates with intrinsic toxicity and promiscuous enzymatic activity generates others. Fuller knowledge of these toxic entities and their generation may offer opportunities of antifungal development. From this perspective our observation of media-conditional lethal metabolism in respiratory mutants of the opportunistic fungal pathogen Candida albicans was of interest. C. albicans mutants defective in NADH:ubiquinone oxidoreductase (Complex I of the electron transport chain) exhibit normal growth in synthetic complete medium. In YPD medium, however, the mutants grow normally until early stationary phase whereupon a dramatic loss of viability occurs. Upwards of 90% of cells die over the subsequent four to six hours with a loss of membrane integrity. The extent of cell death was proportional to the amount of BactoPeptone, and to a lesser extent, the amount of yeast extract. YPD medium conditioned by growth of the mutant was toxic to wild-type cells indicating mutant metabolism established a toxic milieu in the media. Conditioned media contained a volatile component that contributed to toxicity, but only in the presence of a component of BactoPeptone. Fractionation experiments revealed purine nucleosides or bases as the synergistic component. GC-mass spectrometry analysis revealed acetal (1,1-diethoxyethane) as the active volatile. This previously unreported and lethal synergistic interaction of acetal and purines suggests a hitherto unrecognized toxic metabolism potentially exploitable in the search for antifungal targets.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Humanos , Candida albicans/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Acetales/metabolismo , Complejo I de Transporte de Electrón/metabolismo
12.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38680020

RESUMEN

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Complejo I de Transporte de Electrón , Interferón gamma , Enfermedad de Leigh , Ratones Noqueados , Animales , Enfermedad de Leigh/patología , Enfermedad de Leigh/genética , Interferón gamma/metabolismo , Ratones , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Ratones Endogámicos C57BL , Tronco Encefálico/patología , Tronco Encefálico/metabolismo
13.
Int J Biochem Cell Biol ; 171: 106583, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657899

RESUMEN

Protein crotonylation plays a role in regulating cellular metabolism, gene expression, and other biological processes. NDUFA9 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9) is closely associated with the activity and function of mitochondrial respiratory chain complex I. Mitochondrial function and respiratory chain are closely related to browning of white adipocytes, it's speculated that NDUFA9 and its crotonylation are associated with browning of white adipocytes. Firstly, the effect of NDUFA9 on white adipose tissue was verified in white fat browning model mice, and it was found that NDUFA9 promoted mitochondrial respiration, thermogenesis, and browning of white adipose tissue. Secondly, in cellular studies, it was discovered that NDUFA9 facilitated browning of white adipocytes by enhancing mitochondrial function, mitochondrial complex I activity, ATP synthesis, and mitochondrial respiration. Again, the level of NDUFA9 crotonylation was increased by treating cells with vorinostat (SAHA)+sodium crotonate (NaCr) and overexpressing NDUFA9, it was found that NDUFA9 crotonylation promoted browning of white adipocytes. Meanwhile, the acetylation level of NDUFA9 was increased by treating cells with SAHA+sodium acetate (NaAc) and overexpressing NDUFA9, the assay revealed that NDUFA9 acetylation inhibited white adipocytes browning. Finally, combined with the competitive relationship between acetylation and crotonylation, it was also demonstrated that NDUFA9 crotonylation promoted browning of white adipocytes. Above results indicate that NDUFA9 and its crotonylation modification promote mitochondrial function, which in turn promotes browning of white adipocytes. This study establishes a theoretical foundation for the management and intervention of obesity, which is crucial in addressing obesity and related medical conditions in the future.


Asunto(s)
Adipocitos Blancos , Mitocondrias , Animales , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Adipocitos Blancos/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/citología , Masculino , Ratones Endogámicos C57BL , Termogénesis/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Marrones/efectos de los fármacos , Células 3T3-L1 , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/citología , Acetilación/efectos de los fármacos
14.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684731

RESUMEN

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismo
15.
J Cell Mol Med ; 28(8): e18276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546629

RESUMEN

Histidine triad nucleotide-binding protein 2 (HINT2) is an enzyme found in mitochondria that functions as a nucleotide hydrolase and transferase. Prior studies have demonstrated that HINT2 plays a crucial role in ischemic heart disease, but its importance in cardiac remodelling remains unknown. Therefore, the current study intends to determine the role of HINT2 in cardiac remodelling. HINT2 expression levels were found to be lower in failing hearts and hypertrophy cardiomyocytes. The mice that overexpressed HINT2 exhibited reduced myocyte hypertrophy and cardiac dysfunction in response to stress. In contrast, the deficiency of HINT2 in the heart of mice resulted in a worsening hypertrophic phenotype. Further analysis indicated that upregulated genes were predominantly associated with the oxidative phosphorylation and mitochondrial complex I pathways in HINT2-overexpressed mice after aortic banding (AB) treatment. This suggests that HINT2 increases the expression of NADH dehydrogenase (ubiquinone) flavoprotein (NDUF) genes. In cellular studies, rotenone was used to disrupt mitochondrial complex I, and the protective effect of HINT2 overexpression was nullified. Lastly, we predicted that thyroid hormone receptor beta might regulate HINT2 transcriptional activity. To conclusion, the current study showcased that HINT2 alleviates pressure overload-induced cardiac remodelling by influencing the activity and assembly of mitochondrial complex I. Thus, targeting HINT2 could be a novel therapeutic strategy for reducing cardiac remodelling.


Asunto(s)
Corazón , Remodelación Ventricular , Animales , Ratones , Remodelación Ventricular/genética , Mitocondrias , Hipertrofia , Complejo I de Transporte de Electrón/genética , Nucleótidos , Hidrolasas , Proteínas Mitocondriales/genética
16.
Nature ; 628(8006): 195-203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480879

RESUMEN

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Asunto(s)
Complejo I de Transporte de Electrón , Inflamación , Microglía , Enfermedades Neuroinflamatorias , Animales , Femenino , Humanos , Masculino , Ratones , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Multiómica , Células Mieloides/metabolismo , Células Mieloides/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542518

RESUMEN

Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica de las Plantas , Intrones/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Empalme del ARN
18.
J Biol Chem ; 300(4): 107159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479602

RESUMEN

In the present study, we examined the mitochondrial hydrogen peroxide (mH2O2) generating capacity of α-ketoglutarate dehydrogenase (KGDH) and compared it to components of the electron transport chain using liver mitochondria isolated from male and female C57BL6N mice. We show for the first time there are some sex dimorphisms in the production of mH2O2 by electron transport chain complexes I and III when mitochondria are fueled with different substrates. However, in our investigations into these sex effects, we made the unexpected and compelling discovery that 1) KGDH serves as a major mH2O2 supplier in male and female liver mitochondria and 2) KGDH can form mH2O2 when liver mitochondria are energized with fatty acids but only when malate is used to prime the Krebs cycle. Surprisingly, 2-keto-3-methylvaleric acid (KMV), a site-specific inhibitor for KGDH, nearly abolished mH2O2 generation in both male and female liver mitochondria oxidizing palmitoyl-carnitine. KMV inhibited mH2O2 production in liver mitochondria from male and female mice oxidizing myristoyl-, octanoyl-, or butyryl-carnitine as well. S1QEL 1.1 (S1) and S3QEL 2 (S3), compounds that inhibit reactive oxygen species generation by complexes I and III, respectively, without interfering with OxPhos and respiration, had a negligible effect on the rate of mH2O2 production when pyruvate or acyl-carnitines were used as fuels. However, inclusion of KMV in reaction mixtures containing S1 and/or S3 almost abolished mH2O2 generation. Together, our findings suggest KGDH is the main mH2O2 generator in liver mitochondria, even when fatty acids are used as fuel.


Asunto(s)
Ácidos Grasos , Peróxido de Hidrógeno , Complejo Cetoglutarato Deshidrogenasa , Mitocondrias Hepáticas , Animales , Femenino , Masculino , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Oxidación-Reducción
19.
Biochem Soc Trans ; 52(2): 529-538, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38526218

RESUMEN

Certain cancer cells within solid tumors experience hypoxia, rendering them incapable of oxidative phosphorylation (OXPHOS). Despite this oxygen deficiency, these cells exhibit biochemical pathway activity that relies on NAD+. This mini-review scrutinizes the persistent, residual Complex I activity that oxidizes NADH in the absence of oxygen as the electron acceptor. The resulting NAD+ assumes a pivotal role in fueling the α-ketoglutarate dehydrogenase complex, a critical component in the oxidative decarboxylation branch of glutaminolysis - a hallmark oncometabolic pathway. The proposition is that through glutamine catabolism, high-energy phosphate intermediates are produced via substrate-level phosphorylation in the mitochondrial matrix substantiated by succinyl-CoA ligase, partially compensating for an OXPHOS deficiency. These insights provide a rationale for exploring Complex I inhibitors in cancer treatment, even when OXPHOS functionality is already compromised.


Asunto(s)
Complejo I de Transporte de Electrón , Neoplasias , Animales , Humanos , Complejo I de Transporte de Electrón/metabolismo , Glutamina/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Fosforilación Oxidativa
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521420

RESUMEN

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Fosforilación Oxidativa , Prohibitinas , Humanos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/genética , Femenino , Adulto , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Transducción de Señal , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...