Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Death Dis ; 6: e1749, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25950479

RESUMEN

Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.


Asunto(s)
Complejo II de Transporte de Electrones/fisiología , Ubiquinona/genética , Ubiquinona/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Muerte Celular/fisiología , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ubiquinona/química
2.
Annu Rev Physiol ; 76: 129-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24079414

RESUMEN

RIP1 kinase, a multifunctional protein that contains an N-terminal Ser/Thr kinase and a C-terminal death domain, has emerged as a key regulatory molecule involved in regulating both cell death and cell survival. When the proinflammatory cytokine TNFα stimulates its receptor, TNFR1, RIP1 regulates whether the cell lives by activating NF-κB or dies by apoptosis or necroptosis, two distinct pathways of programmed cell death that may be activated to eliminate unwanted cells. The kinase domain of RIP1 is involved in regulating necroptosis, and the death domain regulates RIP1 recruitment to the intracellular domain of TNFR1. The intermediate domain of RIP1 activates NF-κB and also interacts with RIP3 kinase, a downstream mediator of RIP1 in the execution of necroptosis. This review focuses on the functional roles of RIP1 in regulating multiple cellular mechanisms, the dynamic regulation of RIP1, and the physiological and pathological roles of RIP1 kinase in human health and disease.


Asunto(s)
Apoptosis/fisiología , Muerte Celular/fisiología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/fisiología , Animales , Apoptosis/genética , Caspasa 8/fisiología , Muerte Celular/genética , Supervivencia Celular , Complejo II de Transporte de Electrones/fisiología , Humanos , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/fisiología , FN-kappa B/fisiología , Necrosis , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores del Factor de Necrosis Tumoral/fisiología , Transducción de Señal/fisiología , Receptores Toll-Like/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/fisiología , Ubiquitinación
3.
Physiol Res ; 63(1): 1-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24182344

RESUMEN

In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.


Asunto(s)
Biguanidas/farmacología , Complejo II de Transporte de Electrones/fisiología , Complejo IV de Transporte de Electrones/fisiología , Complejo I de Transporte de Electrón/fisiología , Mitocondrias Hepáticas/enzimología , Animales , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Masculino , Metformina/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Fenformina/farmacología , Ratas , Ratas Wistar
4.
Mitochondrion ; 13(6): 602-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24008124

RESUMEN

The flavoprotein (Fp) subunit of human mitochondrial succinate-ubiquinone reductase (SQR, complex II) has isoforms (type I, type II). Type II Fp is predominantly expressed in some cancer and fetal tissues and those tissues are often exposed to ischemia. The present study shows that complex II with type II Fp has lower optimal pH than complex II with type I Fp, and type II Fp mRNA expression was induced by ischemia. The result suggests complex II with type II Fp may function in cells with low mitochondrial matrix pH caused by ischemia and its function is related to cellular adaptation to ischemia.


Asunto(s)
Adaptación Fisiológica , Complejo II de Transporte de Electrones/fisiología , Hipoxia/fisiopatología , Desnutrición/fisiopatología , Mitocondrias/metabolismo , Secuencia de Bases , Cartilla de ADN , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Mensajero/genética
5.
Am J Physiol Heart Circ Physiol ; 305(8): H1131-40, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23955717

RESUMEN

Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/fisiología , Glicoproteínas de Membrana/fisiología , NADPH Oxidasas/fisiología , Estrés Oxidativo/fisiología , Superóxidos , Animales , Aorta/citología , Presión Sanguínea/efectos de los fármacos , Respiración de la Célula/fisiología , Células Cultivadas , Diazóxido/farmacología , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/fisiología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NADPH Oxidasa 2 , Canales de Potasio/metabolismo , Vasodilatadores/farmacología
6.
PLoS One ; 8(7): e68865, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874794

RESUMEN

Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen squamifrons, which share a similar ecology, but different habitat temperatures. After acclimation of L. squamifrons to 9°C and N. rossii to 7°C (normocapnic/hypercapnic, 0.2 kPa CO2/2000 ppm CO2) for 4-6 weeks, we compared the capacities of their mitochondrial respiratory complexes I (CI) and II (CII), their P/O ratios (phosphorylation efficiency), proton leak capacities and mitochondrial membrane fatty acid compositions. Our results reveal reduced CII respiration rates in warm-acclimated L. squamifrons and cold hypercapnia-acclimated N. rossii. Generally, L. squamifrons displayed a greater ability to increase CI contribution during acute warming and after warm-acclimation than N. rossii. Membrane unsaturation was not altered by warm or hypercapnia-acclimation in both species, but membrane fatty acids of warm-acclimated L. squamifrons were less saturated than in warm normocapnia-/hypercapnia-acclimated N. rossii. Proton leak capacities were not affected by warm or hypercapnia-acclimation of N. rossii. We conclude that an acclimatory response of mitochondrial capacities may include higher thermal plasticity of CI supported by enhanced utilization of anaplerotic substrates (via oxidative decarboxylation reactions) feeding into the citrate cycle. L. squamifrons possesses higher relative CI plasticities than N. rossii, which may facilitate the usage of energy efficient NADH-related substrates under conditions of elevated energy demand, possibly induced by ocean warming and acidification. The observed adjustments of electron transport system complexes with a higher flux through CI under warming and acidification suggest a metabolic acclimation potential of the sub-Antarctic L. squamifrons, but only limited acclimation capacities for N. rossii.


Asunto(s)
Aclimatación/fisiología , Ácidos/efectos adversos , Mitocondrias/fisiología , Océanos y Mares , Perciformes/fisiología , Temperatura , Animales , Regiones Antárticas , Dióxido de Carbono/efectos adversos , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/fisiología , Calentamiento Global , Membranas Mitocondriales/química , Consumo de Oxígeno/fisiología
7.
Free Radic Biol Med ; 61: 298-309, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23583329

RESUMEN

H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ∼40pmol H2O2·min(-1)·mg protein(-1), was not from complex I, II, or III and was attributed to the proteins of ß-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ∼200pmol H2O2·min(-1)·mg protein(-1) under conditions of compromised antioxidant defense and reduced ubiquinone pool. Thus complex II and the ETF system both contribute to H2O2 productionduring fatty acid oxidation under appropriate conditions.


Asunto(s)
Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Superóxidos/metabolismo , Animales , Complejo II de Transporte de Electrones/fisiología , Femenino , Oxidación-Reducción , Consumo de Oxígeno , Palmitoilcarnitina/metabolismo , Ratas , Ratas Wistar
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 14(10): 723-7, 2012 Oct.
Artículo en Chino | MEDLINE | ID: mdl-23092560

RESUMEN

This article reviews the structure and function of mitochondrial respiratory chain complex Ⅱ, and the clinical features, diagnosis, treatment and genetic analysis of mitochondrial respiratory chain complex Ⅱ deficiency. Mitochondrial complex Ⅱ, known as succinate dehydrogenase, is a part of the mitochondrial respiratory chain. It plays an important role in cellular oxidative phosphorylation. It is associated with oxidative stress and is a sensitive target for toxic substances and abnormal metabolin in cells. Clinical manifestations of respiratory chain complex Ⅱ deficiency are characterized by a wide variety of abnormalities. Progressive neuromuscular dysfunction is the most common syndrome. Cardiomyopathy, episodic vomit and hemolytic uremic syndrome are also encountered in a few cases. A precise diagnosis is dependent on enzyme activities assay of respiratory chain complexes and genetic analysis. Complex Ⅱ activities decreased in affected tissues. Pathogenic mutations in SDHA gene and SDHAF1 gene encoding assembly factor have been found so far. Clinical treatment aims at improving the mitochondrial function.


Asunto(s)
Complejo II de Transporte de Electrones/deficiencia , Enfermedades Mitocondriales/diagnóstico , Animales , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/fisiología , Femenino , Humanos , Masculino , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia
9.
J Biol Chem ; 287(42): 35430-35438, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22904323

RESUMEN

Complex II couples oxidoreduction of succinate and fumarate at one active site with that of quinol/quinone at a second distinct active site over 40 Å away. This process links the Krebs cycle to oxidative phosphorylation and ATP synthesis. The pathogenic mutation or inhibition of human complex II or its assembly factors is often associated with neurodegeneration or tumor formation in tissues derived from the neural crest. This brief overview of complex II correlates the clinical presentations of a large number of symptom-associated alterations in human complex II activity and assembly with the biochemical manifestations of similar alterations in the complex II homologs from Escherichia coli. These analyses provide clues to the molecular basis for diseases associated with aberrant complex II function.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Ciclo del Ácido Cítrico/fisiología , Complejo II de Transporte de Electrones/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Animales , Humanos , Fosforilación/fisiología , Relación Estructura-Actividad
10.
Parasitol Int ; 61(4): 726-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22698672

RESUMEN

Malaria parasites in human hosts depend on glycolysis for most of their energy production, and the mitochondrion of the intraerythrocytic form is acristate. Although the genes for all tricarboxylic acid (TCA) cycle members are found in the parasite genome, the presence of a functional TCA cycle in the intraerythrocytic stage is still controversial. To elucidate the physiological role of Plasmodium falciparum mitochondrial complex II (succinate-ubiquinone reductase (SQR) or succinate dehydrogenase (SDH)) in the TCA cycle, the gene for the flavoprotein subunit (Fp) of the enzyme, pfsdha (P.falciparum gene for SDH subunit A, PlasmoDB ID: PF3D7_1034400) was disrupted. SDH is a well-known marker enzyme for mitochondria. In the pfsdha disruptants, Fp mRNA and polypeptides were decreased, and neither SQR nor SDH activity of complex II was detected. The suppression of complex II caused growth retardation of the intraerythrocytic forms, suggesting that complex II contributes to intraerythrocytic parasite growth, although it is not essential for survival. The growth retardation in the pfsdha disruptant was rescued by the addition of succinate, but not by fumarate. This indicates that complex II functions as a quinol-fumarate reductase (QFR) to form succinate from fumarate in the intraerythrocytic parasite.


Asunto(s)
Complejo II de Transporte de Electrones/fisiología , Regulación de la Expresión Génica/fisiología , Plasmodium falciparum/metabolismo , Animales , Biomarcadores , Fumaratos , Marcación de Gen , Mutación , Plasmodium falciparum/citología , Subunidades de Proteína , Especificidad por Sustrato , Ácido Succínico
11.
Mol Cell Biol ; 32(16): 3347-57, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22711987

RESUMEN

The SDHD gene (subunit D of succinate dehydrogenase) has been shown to be involved in the generation of paragangliomas and pheochromocytomas. Loss of heterozygosity of the normal allele is necessary for tumor transformation of the affected cells. As complete SdhD deletion is lethal, we have generated mouse models carrying a "floxed" SdhD allele and either an inducible (SDHD-ESR strain) or a catecholaminergic tissue-specific (TH-SDHD strain) CRE recombinase. Ablation of both SdhD alleles in adult SDHD-ESR mice did not result in generation of paragangliomas or pheochromocytomas. In contrast, carotid bodies from these animals showed smaller volume than controls. In accord with these observations, the TH-SDHD mice had decreased cell numbers in the adrenal medulla, carotid body, and superior cervical ganglion. They also manifested inhibited postnatal maturation of mesencephalic dopaminergic neurons and progressive cell loss during the first year of life. These alterations were particularly intense in the substantia nigra, the most affected neuronal population in Parkinson's disease. Unexpectedly, TH(+) neurons in the locus coeruleus and group A13, also lacking the SdhD gene, were unaltered. These data indicate that complete loss of SdhD is not sufficient to induce tumorigenesis in mice. They suggest that substantia nigra neurons are more susceptible to mitochondrial damage than other catecholaminergic cells, particularly during a critical postnatal maturation period.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Adenosina Trifosfato/metabolismo , Alelos , Animales , Catecolaminas/metabolismo , Muerte Celular , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/fisiología , Genotipo , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos , Mitocondrias/metabolismo , Modelos Genéticos , Neuronas/metabolismo , Oxígeno/química , ARN Mensajero/metabolismo , Succinato Deshidrogenasa
12.
Biochim Biophys Acta ; 1817(11): 2027-37, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22709906

RESUMEN

The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.


Asunto(s)
Acanthamoeba castellanii/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/análisis , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Mitocondrias/metabolismo , Acanthamoeba castellanii/genética , Secuencia de Aminoácidos , Biología Computacional , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Complejo I de Transporte de Electrón/análisis , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/análisis , Complejo II de Transporte de Electrones/fisiología , Complejo III de Transporte de Electrones/análisis , Complejo III de Transporte de Electrones/fisiología , Complejo IV de Transporte de Electrones/análisis , Complejo IV de Transporte de Electrones/fisiología , Evolución Molecular , Datos de Secuencia Molecular , Proteoma
13.
Adv Exp Med Biol ; 748: 65-106, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22729855

RESUMEN

Mitochondrial disorders are clinical syndromes associated with -abnormalities of the oxidative phosphorylation (OXPHOS) system, the main responsible for the production of energy in the cell. OXPHOS is carried out in the inner mitochondrial membrane by the five enzymatic complexes of the mitochondrial respiratory chain (MRC). The subunits constituting these multimeric complexes have a dual genetic origin, mitochondrial or nuclear. Hence, mitochondrial syndromes can be due to mutations of mitochondrial DNA or to abnormalities in nuclear genes. The biogenesis of the MRC complexes is an intricate and finely tuned process. The recent discovery of several OXPHOS-related human genes, mutated in different clinical syndromes, indicates that the majority of the inherited mitochondrial disorders are due to nuclear genes, and many of them encode proteins necessary for the proper assembly/stability of the MRC complexes. The detailed mechanisms of these processes are not fully understood and the exact function of many such factors remains obscure.We present an overview on the hypothesized assembly processes of the different MRC complexes, focusing on known assembly factors and their clinical importance.


Asunto(s)
Transporte de Electrón , Complejos Multienzimáticos/fisiología , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/fisiología , Complejo III de Transporte de Electrones/fisiología , Complejo IV de Transporte de Electrones/fisiología , Humanos , Fosforilación Oxidativa
14.
Cardiovasc Res ; 93(4): 702-10, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22215723

RESUMEN

AIMS: Alveolar hypoxia acutely elicits contraction of pulmonary arteries, leading to a rise in pulmonary arterial pressure (PAP) and shifting blood to better ventilated areas of the lung. The molecular mechanisms underlying this hypoxic pulmonary vasoconstriction (HPV) are still incompletely understood. Here, we investigated the role of succinate dehydrogenase (SDH; synonymous to mitochondrial complex II) in HPV, with particular emphasis on regional differences along the vascular bed and consequences for PAP and perfusion-to-ventilation matching, using mutant mice heterozygous for the SDHD subunit of complex II (SDHD(+/-)). METHODS AND RESULTS: Western blots revealed reduced protein content of complex II subunits SDHA, SDHB, and SDHC in lungs of SDHD(+/-) mice, despite unaffected mRNA content as determined by real-time PCR. Hypoxic pulmonary vasoconstriction of small (20-50 µm) intra-acinar and larger (51-100 µm) pre-acinar arteries was evaluated by videomorphometric analysis of precision-cut lung slices. The hypoxic response was detectable in pre-acinar arteries but absent from intra-acinar arteries of SDHD(+/-) mice. In isolated perfused lungs, basal PAP and its hypoxia-induced increase were indistinguishable between both mouse strains. Arterial oxygenation was measured after provocation of regional ventilatory failure by tracheal fluid instillation in anaesthetized mice, and it declined more in SDHD(+/-) than in wild-type mice. CONCLUSION: SDHD is required for the formation of a stable mitochondrial complex II and it is selectively important for HPV of intra-acinar vessels. This specialized vascular segment participates in perfusion-to-ventilation matching but does not significantly contribute to the acute hypoxic rise in PAP that results from more proximal vasoconstriction.


Asunto(s)
Hipoxia/fisiopatología , Pulmón/irrigación sanguínea , Arteria Pulmonar/fisiopatología , Succinato Deshidrogenasa/fisiología , Vasoconstricción/fisiología , Animales , Presión Sanguínea/fisiología , Complejo II de Transporte de Electrones/genética , Complejo II de Transporte de Electrones/fisiología , Heterocigoto , Pulmón/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ratones Mutantes , Modelos Animales , ARN Mensajero/metabolismo , Succinato Deshidrogenasa/genética
15.
Oncogene ; 30(38): 3985-4003, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21625217

RESUMEN

Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.


Asunto(s)
Apoptosis , ADN Mitocondrial/genética , Complejo II de Transporte de Electrones/fisiología , Complejo I de Transporte de Electrón/fisiología , Mitocondrias/metabolismo , Mutación , Neoplasias/genética , Animales , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo
16.
ASN Neuro ; 3(3): e00060, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21542802

RESUMEN

HD (Huntington's disease) is characterized by dysfunction and death of striatal MSNs (medium-sized spiny neurons). Excitotoxicity, transcriptional dysregulation and mitochondrial abnormalities are among the mechanisms that are proposed to play roles in HD pathogenesis. To determine the extent of cell-autonomous effects of mhtt (mutant huntingtin) protein on vulnerability to excitotoxic insult in MSNs in vivo, we measured the number of degenerating neurons in response to intrastriatal injection of QA (quinolinic acid) in presymptomatic and symptomatic transgenic (D9-N171-98Q, also known as DE5) mice that express mhtt in MSNs but not in cortex. After QA, the number of degenerating neurons in presymptomatic DE5 mice was not significantly different from the number in WT (wild-type) controls, suggesting the early, increased vulnerability to excitotoxicity demonstrated in other HD mouse models has a largely non-cell-autonomous component. Conversely, symptomatic DE5 mice showed significantly fewer degenerating neurons relative to WT, implying the resistance to excitotoxicity observed at later ages has a primarily cell-autonomous origin. Interestingly, mitochondrial complex II respiration was enhanced in striatum of symptomatic mice, whereas it was reduced in presymptomatic mice, both relative to their age-matched controls. Consistent with the QA data, MSNs from symptomatic mice showed decreased NMDA (N-methyl-d-aspartate) currents compared with age-matched controls, suggesting that in addition to aging, cell-autonomous mechanisms mitigate susceptibility to excitotoxicity in the symptomatic stage. Also, symptomatic DE5 mice did not display some of the electrophysiological alterations present in other HD models, suggesting that blocking the expression of mhtt in cortical neurons may restore corticostriatal function in HD.


Asunto(s)
Envejecimiento/fisiología , Cuerpo Estriado/fisiología , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Prosencéfalo/fisiología , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/fisiología , Electrofisiología , Proteína Huntingtina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , N-Metilaspartato/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/genética , Prosencéfalo/anatomía & histología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Ácido Quinolínico/farmacología
17.
Int J Exp Pathol ; 92(4): 281-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21410800

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic condition of the liver in the western world. There is only little evidence about altered sensitivity of steatotic liver to acute toxic injury. The aim of this project was to test whether hepatic steatosis sensitizes rat liver to acute toxic injury induced by thioacetamide (TAA). Male Sprague-Dawley rats were fed ad libitum a standard pelleted diet (ST-1, 10% energy fat) and high-fat gelled diet (HFGD, 71% energy fat) for 6 weeks and then TAA was applied intraperitoneally in one dose of 100 mg/kg. Animals were sacrificed in 24-, 48- and 72-h interval after TAA administration. We assessed the serum biochemistry, the hepatic reduced glutathione, thiobarbituric acid reactive substances, cytokine concentration, the respiration of isolated liver mitochondria and histopathological samples (H+E, Sudan III, bromodeoxyuridine [BrdU] incorporation). Activities of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase and concentration of serum bilirubin were significantly higher in HFGD groups after application of TAA, compared to ST-1. There were no differences in activities of respiratory complexes I and II. Serum tumour necrosis factor alpha at 24 and 48 h, liver tissue interleukin-6 at 72 h and transforming growth factor ß1 at 24 and 48 h were elevated in TAA-administrated rats fed with HFGD, but not ST-1. TAA-induced centrilobular necrosis and subsequent regenerative response of the liver were higher in HFGD-fed rats in comparison with ST-1. Liver affected by NAFLD, compared to non-steatotic liver, is more sensitive to toxic effect of TAA.


Asunto(s)
Carcinógenos/toxicidad , Hígado Graso/patología , Hígado/efectos de los fármacos , Hígado/patología , Tioacetamida/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Colesterol/metabolismo , Citocinas/sangre , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/efectos de los fármacos , Complejo II de Transporte de Electrones/fisiología , Hígado Graso/sangre , Hígado Graso/inducido químicamente , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico , Ratas , Ratas Sprague-Dawley , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Triglicéridos/metabolismo
18.
J Surg Res ; 167(2): e333-8, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21316710

RESUMEN

BACKGROUND: The derangement in oxygen utilization occurring during sepsis is likely to be linked to impaired mitochondrial functioning. Skeletal muscle comprises 50%-60% of body cell mass and represents the largest organ potentially affected by systemic inflammation. Thus, we investigated whether sepsis induced by cecal ligation and puncture (CLP) modifies mitochondrial activity in respiratory and nonrespiratory skeletal muscle. MATERIALS AND METHODS: Wistar rats were subjected to CLP and at different times, diaphragm and quadriceps were removed for the determination of electron transfer chain activities and mitochondrial oxidative stress. In addition, we determined diaphragm contractile strength. RESULTS: In the quadriceps, 12 h after CLP we demonstrated a significant diminution on complex II-III activity. At late times (48 h after CLP), we demonstrated a decrease in the activity of all electron transfer chain complexes, which seemed to be secondary to early oxidative stress and correlates with diaphragm contractile strength. Differently from diaphragm, electron transfer chain was not decreased after sepsis and even oxidative stress was not increased at all times tested. CONCLUSION: Our results suggest that quadriceps mitochondria are more resistant to sepsis-induced dysfunction.


Asunto(s)
Complejo III de Transporte de Electrones/fisiología , Complejo II de Transporte de Electrones/fisiología , Músculo Esquelético/fisiopatología , Sepsis/fisiopatología , Animales , Ciego/cirugía , Modelos Animales de Enfermedad , Ligadura/efectos adversos , Masculino , Mitocondrias Musculares/fisiología , Contracción Muscular/fisiología , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Sepsis/etiología
19.
J Biol Chem ; 285(34): 26494-505, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20566649

RESUMEN

Mitochondrial membrane potential loss has severe bioenergetic consequences and contributes to many human diseases including myocardial infarction, stroke, cancer, and neurodegeneration. However, despite its prominence and importance in cellular energy production, the basic mechanism whereby the mitochondrial membrane potential is established remains unclear. Our studies elucidate that complex II-driven electron flow is the primary means by which the mitochondrial membrane is polarized under hypoxic conditions and that lack of the complex II substrate succinate resulted in reversible membrane potential loss that could be restored rapidly by succinate supplementation. Inhibition of mitochondrial complex I and F(0)F(1)-ATP synthase induced mitochondrial depolarization that was independent of the mitochondrial permeability transition pore, Bcl-2 (B-cell lymphoma 2) family proteins, or high amplitude swelling and could not be reversed by succinate. Importantly, succinate metabolism under hypoxic conditions restores membrane potential and ATP levels. Furthermore, a reliance on complex II-mediated electron flow allows cells from mitochondrial disease patients devoid of a functional complex I to maintain a mitochondrial membrane potential that conveys both a mitochondrial structure and the ability to sequester agonist-induced calcium similar to that of normal cells. This finding is important as it sets the stage for complex II functional preservation as an attractive therapy to maintain mitochondrial function during hypoxia.


Asunto(s)
Calcio/fisiología , Complejo II de Transporte de Electrones/fisiología , Hipoxia , Potencial de la Membrana Mitocondrial , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Adenosina Trifosfato , Animales , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón/fisiología , Ratas , Ácido Succínico/farmacología
20.
Biochim Biophys Acta ; 1797(6-7): 633-40, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20116362

RESUMEN

Recent investigations by native gel electrophoresis showed the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis demonstrated that Complex I and Complex III in mammalian mitochondria kinetically behave as a single unit with control coefficients approaching unity for each component, suggesting the existence of substrate channeling within the super-complex. The formation of this supramolecular unit largely depends on the lipid content and composition of the inner mitochondrial membrane. The function of the super-complexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes, particularly Complex I, and in preventing excess oxygen radical formation. There is increasing evidence that disruption of the super-complex organization leads to functional derangements responsible for pathological changes, as we have found in K-ras-transformed fibroblasts.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Mitocondrias/patología , Mitocondrias/fisiología , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/fisiología , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/fisiología , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/fisiología , Humanos , Cinética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Modelos Biológicos , Multimerización de Proteína , Estabilidad Proteica , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...