Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.978
Filtrar
1.
Commun Biol ; 7(1): 560, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734819

RESUMEN

Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.


Asunto(s)
Criptófitas , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Criptófitas/metabolismo , Criptófitas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Clorofila/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Proteínas de Unión a Clorofila/genética , Fotosíntesis , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732034

RESUMEN

Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.


Asunto(s)
Clorofila , Enlace de Hidrógeno , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/genética , Clorofila/metabolismo , Clorofila/química , Transporte de Electrón , Electrones , Modelos Moleculares , Mutación
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732056

RESUMEN

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Asunto(s)
Mutación , Complejo de Proteína del Fotosistema I , Synechocystis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/genética , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/metabolismo , Transporte de Electrón/genética , Clorofila A/metabolismo
4.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591346

RESUMEN

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Asunto(s)
Ascorbato Peroxidasas , Chlamydomonas reinhardtii , Mutación , Plastocianina , Plastocianina/metabolismo , Plastocianina/genética , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Cobre/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos c6/metabolismo , Citocromos c6/genética , Proteómica/métodos , Luz
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612659

RESUMEN

Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/genética , Dicroismo Circular , Transferencia de Energía , Frío
7.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612934

RESUMEN

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Asunto(s)
Chlamydomonas reinhardtii , Complejo de Proteína del Fotosistema I , Clorofila A , Transferencia de Energía , Cinética
8.
Nat Commun ; 15(1): 2392, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493166

RESUMEN

Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.


Asunto(s)
Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Ecosistema , Microscopía por Crioelectrón , Fotosíntesis
10.
Nature ; 627(8005): 915-922, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480893

RESUMEN

Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.


Asunto(s)
Bacterias , Complejo de Proteína del Fotosistema I , Procesos Fototróficos , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterioclorofilas/metabolismo , Lagos/microbiología , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Anaerobiosis , Complejo de Proteína del Fotosistema II/metabolismo , Perfilación de la Expresión Génica
11.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482712

RESUMEN

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Luz , Proteínas de la Membrana , Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Transporte de Electrón , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ferredoxinas/metabolismo , Mutación , Oxidación-Reducción , Plastocianina/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética
12.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442179

RESUMEN

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Asunto(s)
Complejo de Proteína del Fotosistema I , Rhodophyta , Filogenia , Complejo de Proteína del Fotosistema I/genética , Evolución Biológica , Microscopía por Crioelectrón , Rhodophyta/genética
13.
J Phys Chem B ; 128(11): 2664-2674, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38456814

RESUMEN

In the development of single-molecule spectroscopy, the simultaneous detection of the excitation and emission spectra has been limited. The fluorescence excitation spectrum based on background-free signals is compatible with the fluorescence-emission-based detection of single molecules and can provide insight into the variations in the input energy of the different terminal emitters. Here, we implement single-molecule excitation-emission spectroscopy (SMEES) for photosystem I (PSI) via a cryogenic optical microscope. To this end, we extended our line-focus-based excitation-spectral microscope system to the cryogenic temperature-compatible version. PSI is one of the two photosystems embedded in the thylakoid membrane in oxygen-free photosynthetic organisms. PSI plays an essential role in electron transfer in the photosynthesis reaction. PSIs of many organisms contain a few red-shifted chlorophylls (Chls) with much lower excitation energies than ordinary antenna Chls. The fluorescence emission spectrum originates primarily from the red-shifted Chls, whereas the excitation spectrum is sensitive to the antenna Chls that are upstream of red-shifted Chls. Using SMEES, we obtained the inclining two-dimensional excitation-emission matrix (2D-EEM) of PSI particles isolated from a cyanobacterium, Thermosynechococcus vestitus (equivalent to elongatus), at about 80 K. Interestingly, by decomposing the inclining 2D-EEMs within time course observation, we found prominent variations in the excitation spectra of the red-shifted Chl pools with different emission wavelengths, strongly indicating the variable excitation energy transfer (EET) pathway from the antenna to the terminal emitting pools. SMEES helps us to directly gain information about the antenna system, which is fundamental to depicting the EET within pigment-protein complexes.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/química , Imagen Individual de Molécula , Espectrometría de Fluorescencia , Cianobacterias/química , Temperatura , Clorofila/química
14.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473924

RESUMEN

The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejo de Proteína del Fotosistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Electrón , Electrones , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Oxidación-Reducción , Proteínas de Arabidopsis/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo
15.
Plant Physiol ; 195(1): 306-325, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330164

RESUMEN

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.


Asunto(s)
Cloroplastos , Dinoflagelados , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Proteínas Protozoarias , Cloroplastos/ultraestructura , Dinoflagelados/genética , Dinoflagelados/metabolismo , Dinoflagelados/ultraestructura , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Microscopía Electrónica de Rastreo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Genoma de Protozoos/genética , Variación Genética
16.
Nat Plants ; 10(3): 512-524, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38396112

RESUMEN

The balance between linear electron transport (LET) and cyclic electron transport (CET) plays an essential role in plant adaptation and protection against photo-induced damage. This balance is largely maintained by phosphorylation-driven alterations in the PSII-LHCII assembly and thylakoid membrane stacking. During the dark-to-light transition, plants shift this balance from CET, which prevails to prevent overreduction of the electron transport chain and consequent photo-induced damage, towards LET, which enables efficient CO2 assimilation and biomass production. Using freeze-fracture cryo-scanning electron microscopy and transmission electron microscopy of Arabidopsis leaves, we reveal unique membrane regions possessing characteristics of both stacked and unstacked regions of the thylakoid network that form during this transition. A notable consequence of the morphological attributes of these regions, which we refer to as 'stacked thylakoid doublets', is an overall increase in the proximity and connectivity of the two photosystems (PSI and PSII) that drive LET. This, in turn, reduces diffusion distances and barriers for the mobile carriers that transfer electrons between the two PSs, thereby maximizing LET and optimizing the plant's ability to utilize light energy. The mechanics described here for the shift between CET and LET during the dark-to-light transition are probably also used during chromatic adaptation mediated by state transitions.


Asunto(s)
Arabidopsis , Tilacoides , Tilacoides/metabolismo , Transporte de Electrón , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Electrones , Complejos de Proteína Captadores de Luz/metabolismo , Arabidopsis/metabolismo , Luz , Fotosíntesis
17.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319970

RESUMEN

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Dinoflagelados/metabolismo , Floraciones de Algas Nocivas , Simbiosis , Microscopía por Crioelectrón , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
18.
New Phytol ; 242(2): 544-557, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379464

RESUMEN

The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.


Asunto(s)
Chlorella , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Fosforilación , Complejos de Proteína Captadores de Luz/metabolismo , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
19.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324953

RESUMEN

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Asunto(s)
Oryza , Tolerancia a la Sal , Transporte de Electrón , Tolerancia a la Sal/genética , Clorofila A/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Oryza/genética , Oryza/metabolismo
20.
Plant Physiol Biochem ; 207: 108426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38340689

RESUMEN

In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.


Asunto(s)
Complejo de Proteína del Fotosistema I , Zea mays , Complejo de Proteína del Fotosistema I/metabolismo , Zea mays/metabolismo , ATPasas de Translocación de Protón de Cloroplastos , Fotosíntesis/fisiología , Luz , Transporte de Electrón , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...