Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.268
Filtrar
1.
Nat Commun ; 15(1): 3992, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734767

RESUMEN

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Complejo de la Endopetidasa Proteasomal , Proteómica , Ribosomas , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Ribosomas/ultraestructura , Ribosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Humanos , Proteómica/métodos , Poro Nuclear/ultraestructura , Poro Nuclear/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Ácido Graso Sintasas/metabolismo , Aprendizaje Automático , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Proc Natl Acad Sci U S A ; 121(10): e2310756121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408252

RESUMEN

Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Animales , Ubiquitina/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Saccharomyces cerevisiae/genética , Ubiquitinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Mamíferos
3.
Proc Natl Acad Sci U S A ; 120(51): e2308417120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091293

RESUMEN

Proteasome inhibitors are widely used anticancer drugs. The three clinically approved agents are modified small peptides that preferentially target one of the proteasome's three active sites (ß5) at physiologic concentrations. In addition to these drugs, there is also an endogenous proteasome inhibitor, PI31/Fub1, that enters the proteasome's interior to simultaneously yet specifically inhibit all three active sites. Here, we have used PI31's evolutionarily optimized inhibitory mechanisms to develop a suite of potent and specific ß2 inhibitors. The lead compound strongly inhibited growth of multiple myeloma cells as a standalone agent, indicating the compound's cell permeability and establishing ß2 as a potential therapeutic target in multiple myeloma. The lead compound also showed strong synergy with the existing ß5 inhibitor bortezomib; such combination therapies might help with existing challenges of resistance and severe side effects. These results represent an effective method for rational structure-guided development of proteasome inhibitors.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Bortezomib/farmacología , Bortezomib/uso terapéutico
4.
STAR Protoc ; 4(4): 102748, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999974

RESUMEN

Proteasomes are heterogeneous in forms and functions, but how the equilibrium among the 20S, 26S, and 30S proteasomes is achieved and altered is elusive. Here, we present a protocol for purifying and characterizing proteasome species. We describe steps for generating stable cell lines; affinity purifying the proteasome species; and characterizing them through native PAGE, activity assay, size-exclusion chromatography, and mass spectrometry. These standardized methods may contribute to biochemical studies of cellular proteasomes under both physiological and pathological conditions. For complete details on the use and execution of this protocol, please refer to Choi et al. (2023).1.


Asunto(s)
Mamíferos , Complejo de la Endopetidasa Proteasomal , Animales , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Citoplasma/metabolismo , Espectrometría de Masas , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida Nativa , Mamíferos/metabolismo
5.
Biomolecules ; 13(8)2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37627288

RESUMEN

The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/biosíntesis , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Conformación Proteica , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Humanos , Microscopía por Crioelectrón , Proteolisis , Ubiquitina/metabolismo
6.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552619

RESUMEN

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Asunto(s)
Espectrometría de Masas , Complejo de la Endopetidasa Proteasomal/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química
7.
J Biol Chem ; 299(9): 105145, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562568

RESUMEN

The inhibitory mechanism of an intrinsically disordered proteasome inhibitor identified over 30 years ago has finally been revealed by cryo-electron microscopy by Hsu et al. in a recent report in the Journal of Biological Chemistry. The structure, coupled with biochemical and cell-based experiments, resolves lingering questions about how the inhibitor achieves multisite inhibition of proteasomal protease activity, while raising several exciting new questions on the nature of proteasome subpopulations in the process.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Inhibidores de Proteasoma/farmacología , Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal/química
8.
Nat Struct Mol Biol ; 30(10): 1516-1524, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653242

RESUMEN

Assembly of the proteasome's core particle (CP), a barrel-shaped chamber of four stacked rings, requires five chaperones and five subunit propeptides. Fusion of two half-CP precursors yields a complete structure but remains immature until active site maturation. Here, using Saccharomyces cerevisiae, we report a high-resolution cryogenic electron microscopy structure of preholoproteasome, a post-fusion assembly intermediate. Our data reveal how CP midline-spanning interactions induce local changes in structure, facilitating maturation. Unexpectedly, we find that cleavage may not be sufficient for propeptide release, as residual interactions with chaperones such as Ump1 hold them in place. We evaluated previous models proposing that dynamic conformational changes in chaperones drive CP fusion and autocatalytic activation by comparing preholoproteasome to pre-fusion intermediates. Instead, the data suggest a scaffolding role for the chaperones Ump1 and Pba1/Pba2. Our data clarify key aspects of CP assembly, suggest that undiscovered mechanisms exist to explain CP fusion/activation, and have relevance for diseases of defective CP biogenesis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Chaperonas Moleculares
10.
J Mol Biol ; 435(11): 167997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330287

RESUMEN

AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.


Asunto(s)
Endopeptidasa Clp , Methanocaldococcus , Complejo de la Endopetidasa Proteasomal , Proteolisis , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Endopeptidasa Clp/química , Dominios Proteicos , Resonancia Magnética Nuclear Biomolecular , Methanocaldococcus/enzimología , Saccharomyces cerevisiae/enzimología
11.
PLoS Negl Trop Dis ; 17(6): e0011380, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267415

RESUMEN

The high reproductive rates of insects contribute significantly to their ability to act as vectors of a variety of vector-borne diseases. Therefore, it is strategically critical to find molecular targets with biotechnological potential through the functional study of genes essential for insect reproduction. The ubiquitin-proteasome system is a vital degradative pathway that contributes to the maintenance of regular eukaryotic cell proteostasis. This mechanism involves the action of enzymes to covalently link ubiquitin to proteins that are meant to be delivered to the 26S proteasome and broken down. The 26S proteasome is a large protease complex (including the 20S and 19S subcomplexes) that binds, deubiquitylates, unfolds, and degrades its substrates. Here, we used bioinformatics to identify the genes that encode the seven α and ß subunits of the 20S proteasome in the genome of R. prolixus and learned that those transcripts are accumulated into mature oocytes. To access proteasome function during oogenesis, we conducted RNAi functional tests employing one of the 20S proteasome subunits (Prosα6) as a tool to suppress 20S proteasomal activity. We found that Prosα6 silencing resulted in no changes in TAG buildup in the fat body and unaffected availability of yolk proteins in the hemolymph of vitellogenic females. Despite this, the silencing of Prosα6 culminated in the impairment of oocyte maturation at the early stages of oogenesis. Overall, we discovered that proteasome activity is especially important for the signals that initiate oogenesis in R. prolixus and discuss in what manner further investigations on the regulation of proteasome assembly and activity might contribute to the unraveling of oogenesis molecular mechanisms and oocyte maturation in this vector.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Rhodnius , Animales , Femenino , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ovario/metabolismo , Proteína Sequestosoma-1/metabolismo , Rhodnius/fisiología , Oogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Ubiquitinas/metabolismo
12.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224454

RESUMEN

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteolisis
13.
Biomolecules ; 13(4)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37189451

RESUMEN

Many chronic diseases, including cancer and neurodegeneration, are linked to proteasome dysregulation. Proteasome activity, essential for maintaining proteostasis in a cell, is controlled by the gating mechanism and its underlying conformational transitions. Thus, developing effective methods to detect gate-related specific proteasome conformations could be a significant contribution to rational drug design. Since the structural analysis suggests that gate opening is associated with a decrease in the content of α-helices and ß-sheets and an increase in random coil structures, we decided to explore the application of electronic circular dichroism (ECD) in the UV region to monitor the proteasome gating. A comparison of ECD spectra of wild type yeast 20S proteasome (predominantly closed) and an open-gate mutant (α3ΔN) revealed an increased intensity in the ECD band at 220 nm, which suggests increased contents of random coil and ß-turn structures. This observation was further supported by evaluating ECD spectra of human 20S treated with low concentration of SDS, known as a gate-opening reagent. Next, to evaluate the power of ECD to probe a ligand-induced gate status, we treated the proteasome with H2T4, a tetracationic porphyrin that we showed previously to induce large-scale protein conformational changes upon binding to h20S. H2T4 caused a significant increase in the ECD band at 220 nm, interpreted as an induced opening of the 20S gate. In parallel, we imaged the gate-harboring alpha ring of the 20S with AFM, a technique that we used previously to visualize the predominantly closed gate in latent human or yeast 20S and the open gate in α3ΔN mutant. The results were convergent with the ECD data and showed a marked decrease in the content of closed-gate conformation in the H2T4-treated h20S. Our findings provide compelling support for the use of ECD measurements to conveniently monitor proteasome conformational changes related to gating phenomena. We predict that the observed association of spectroscopic and structural results will help with efficient design and characterization of exogenous proteasome regulators.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Humanos , Dicroismo Circular , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopía de Fuerza Atómica
14.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36617500

RESUMEN

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Asunto(s)
Antimaláricos , Plasmodium , Ratones , Animales , Humanos , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/química , Plasmodium falciparum , Antimaláricos/farmacología
15.
mSphere ; 7(5): e0027422, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993699

RESUMEN

Mycobacterium tuberculosis possesses a Pup-proteasome system analogous to the eukaryotic ubiquitin-proteasome pathway. We have previously shown that the hexameric mycobacterial proteasome ATPase (Mpa) recruits pupylated protein substrates via interactions between amino-terminal coiled-coils in Mpa monomers and the degradation tag Pup. However, it is unclear how Mpa rings interact with a proteasome due to the presence of a carboxyl-terminal ß-grasp domain unique to Mpa homologues that makes the interaction highly unstable. Here, we describe newly identified critical interactions between Mpa and 20S core proteasomes. Interestingly, the Mpa C-terminal GQYL motif binds the 20S core particle activation pocket differently than the same motif of the ATP-independent proteasome accessory factor PafE. We further found that the ß-hairpin of the Mpa ß-grasp domain interacts variably with the H0 helix on top of the 20S core particle via a series of ionic and hydrogen-bond interactions. Individually mutating several involved residues reduced Mpa-mediated protein degradation both in vitro and in vivo. IMPORTANCE The Pup-proteasome system in Mycobacterium tuberculosis is critical for this species to cause lethal infections in mice. Investigating the molecular mechanism of how the Mpa ATPase recruits and unfolds pupylated substrates to the 20S proteasomal core particle for degradation will be essential to fully understand how degradation is regulated, and the structural information we report may be useful for the development of new tuberculosis chemotherapies.


Asunto(s)
Mycobacterium tuberculosis , Animales , Ratones , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinas/genética , Ubiquitinas/química , Ubiquitinas/metabolismo
16.
Biophys J ; 121(20): 3975-3986, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36016496

RESUMEN

The 20S proteasome core particle (CP) is a molecular machine that is a key component of cellular protein degradation pathways. Like other molecular machines, it is not synthesized in an active form but rather as a set of subunits that assemble into a functional complex. The CP is conserved across all domains of life and is composed of 28 subunits, 14 α and 14 ß, arranged in four stacked seven-member rings (α7ß7ß7α7). While details of CP assembly vary across species, the final step in the assembly process is universally conserved: two half proteasomes (HPs; α7ß7) dimerize to form the CP. In the bacterium Rhodococcus erythropolis, experiments have shown that the formation of the HP is completed within minutes, while the dimerization process takes hours. The N-terminal propeptide of the ß subunit, which is autocatalytically cleaved off after CP formation, plays a key role in regulating this separation of timescales. However, the detailed molecular mechanism of how the propeptide achieves this regulation is unclear. In this work, we used molecular dynamics simulations to characterize HP conformations and found that the HP exists in two states: one where the propeptide interacts with key residues in the HP dimerization interface and likely blocks dimerization, and one where this interface is free. Furthermore, we found that a propeptide mutant that dimerizes extremely slowly is essentially always in the nondimerizable state, while the wild-type rapidly transitions between the two. Based on these simulations, we designed a propeptide mutant that favored the dimerizable state in molecular dynamics simulations. In vitro assembly experiments confirmed that this mutant dimerizes significantly faster than wild-type. Our work thus provides unprecedented insight into how this critical step in CP assembly is regulated, with implications both for efforts to inhibit proteasome assembly and for the evolution of hierarchical assembly pathways.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Conformación Molecular , Dimerización
17.
J Virol ; 96(15): e0078622, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35861516

RESUMEN

The M1 of influenza A virus (IAV) is important for the virus life cycle, especially for the assembly and budding of viruses, which is a multistep process that requires host factors. Identifying novel host proteins that interact with M1 and understanding their functions in IAV replication are of great interest in antiviral drug development. In this study, we identified 19 host proteins in DF1 cells suspected to interact with the M1 protein of an H5N6 virus through immunoprecipitation (IP)/mass spectrometry. Among them, PSMD12, a 26S proteasome regulatory subunit, was shown to interact with influenza M1, acting as a positive host factor in IAV replication in avian and human cells. The data showed that PSMD12 promoted K63-linked ubiquitination of M1 at the K102 site. H5N6 and PR8 with an M1-K102 site mutant displayed a significantly weaker replication ability than the wild-type viruses. Mechanistically, PSMD12 promoted M1-M2 virus-like particle (VLP) release, and an M1-K102 mutation disrupted the formation of supernatant M1-M2 VLPs. An H5N6 M1-K102 site mutation or knockdown PSMD12 disrupted the budding release of the virus in chicken embryo fibroblast (CEF) cells, which was confirmed by transmission electron microscopy. Further study confirmed that M1-K102 site mutation significantly affected the virulence of H5N6 and PR8 viruses in mice. In conclusion, we report the novel host factor PSMD12 which affects the replication of influenza virus by mediating K63-linked ubiquitination of M1 at K102. These findings provide novel insight into the interactions between IAV and host cells, while suggesting an important target for anti-influenza virus drug research. IMPORTANCE M1 is proposed to play multiple biologically important roles in the life cycle of IAV, which relies largely on host factors. This study is the first one to identify that PSMD12 interacts with M1, mediates K63-linked ubiquitination of M1 at the K102 site, and thus positively regulates influenza virus proliferation. PSMD12 promoted M1-M2 VLP egress, and an M1-K102 mutation affected the M1-M2 VLP formation. Furthermore, we demonstrate the importance of this site to the morphology and budding of influenza viruses by obtaining mutant viruses, and the M1 ubiquitination regulator PSMD12 has a similar function to the M1 K102 mutation in regulating virus release and virus morphology. Additionally, we confirm the reduced virulence of H5N6 and PR8 (H1N1) viruses carrying the M1-K102 site mutation in mice. These findings provide novel insights into IAV interactions with host cells and suggest a valid and highly conserved candidate target for antiviral drug development.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A , Complejo de la Endopetidasa Proteasomal , Ubiquitinación , Proteínas de la Matriz Viral , Replicación Viral , Animales , Antivirales , Línea Celular , Embrión de Pollo , Fibroblastos , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Ratones , Mutación , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Virulencia/genética
18.
Proc Natl Acad Sci U S A ; 119(33): e2207200119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35858375

RESUMEN

The ability to produce folded and functional proteins is a necessity for structural biology and many other biological sciences. This task is particularly challenging for numerous biomedically important targets in human cells, including membrane proteins and large macromolecular assemblies, hampering mechanistic studies and drug development efforts. Here we describe a method combining CRISPR-Cas gene editing and fluorescence-activated cell sorting to rapidly tag and purify endogenous proteins in HEK cells for structural characterization. We applied this approach to study the human proteasome from HEK cells and rapidly determined cryogenic electron microscopy structures of major proteasomal complexes, including a high-resolution structure of intact human PA28αß-20S. Our structures reveal that PA28 with a subunit stoichiometry of 3α/4ß engages tightly with the 20S proteasome. Addition of a hydrophilic peptide shows that polypeptides entering through PA28 are held in the antechamber of 20S prior to degradation in the proteolytic chamber. This study provides critical insights into an important proteasome complex and demonstrates key methodologies for the tagging of proteins from endogenous sources.


Asunto(s)
Citometría de Flujo , Edición Génica , Proteínas Musculares , Complejo de la Endopetidasa Proteasomal , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Citometría de Flujo/métodos , Edición Génica/métodos , Células HEK293 , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/aislamiento & purificación , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Proteolisis
19.
Plant Commun ; 3(3): 100310, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35576154

RESUMEN

Targeted proteolysis is a hallmark of life. It is especially important in long-lived cells that can be found in higher eukaryotes, like plants. This task is mainly fulfilled by the ubiquitin-proteasome system. Thus, proteolysis by the 26S proteasome is vital to development, immunity, and cell division. Although the yeast and animal proteasomes are well characterized, there is only limited information on the plant proteasome. We determined the first plant 26S proteasome structure from Spinacia oleracea by single-particle electron cryogenic microscopy at an overall resolution of 3.3 Å. We found an almost identical overall architecture of the spinach proteasome compared with the known structures from mammals and yeast. Nevertheless, we noticed a structural difference in the proteolytic active ß1 subunit. Furthermore, we uncovered an unseen compression state by characterizing the proteasome's conformational landscape. We suspect that this new conformation of the 20S core protease, in correlation with a partial opening of the unoccupied gate, may contribute to peptide release after proteolysis. Our data provide a structural basis for the plant proteasome, which is crucial for further studies.


Asunto(s)
Microscopía por Crioelectrón , Complejo de la Endopetidasa Proteasomal , Microscopía por Crioelectrón/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestructura , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/ultraestructura , Ubiquitina
20.
Proc Natl Acad Sci U S A ; 119(15): e2116826119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377789

RESUMEN

During spermatogenesis, spermatogonia undergo a series of mitotic and meiotic divisions on their path to spermatozoa. To achieve this, a succession of processes requiring high proteolytic activity are in part orchestrated by the proteasome. The spermatoproteasome (s20S) is specific to the developing gametes, in which the gamete-specific α4s subunit replaces the α4 isoform found in the constitutive proteasome (c20S). Although the s20S is conserved across species and was shown to be crucial for germ cell development, its mechanism, function, and structure remain incompletely characterized. Here, we used advanced mass spectrometry (MS) methods to map the composition of proteasome complexes and their interactomes throughout spermatogenesis. We observed that the s20S becomes highly activated as germ cells enter meiosis, mainly through a particularly extensive 19S activation and, to a lesser extent, PA200 binding. Additionally, the proteasome population shifts from c20S (98%) to s20S (>82 to 92%) during differentiation, presumably due to the shift from α4 to α4s expression. We demonstrated that s20S, but not c20S, interacts with components of the meiotic synaptonemal complex, where it may localize via association with the PI31 adaptor protein. In vitro, s20S preferentially binds to 19S and displays higher trypsin- and chymotrypsin-like activities, both with and without PA200 activation. Moreover, using MS methods to monitor protein dynamics, we identified significant differences in domain flexibility between α4 and α4s. We propose that these differences induced by α4s incorporation result in significant changes in the way the s20S interacts with its partners and dictate its role in germ cell differentiation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Espermatogénesis , Espermatogonias , Humanos , Masculino , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Espermatogonias/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...