Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3669, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135327

RESUMEN

Human rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function. We observe that early HRV-C15 infection induces a transitory barrier-protective metabolic state characterized by glycolysis that ultimately becomes exhausted as the infection progresses and leads to cellular damage. Pharmacological promotion of glycolysis induces ROS-dependent upregulation of the mitochondrial metabolic regulator, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), thereby restoring epithelial barrier function, improving viral defense, and attenuating disease pathology. Therefore, PGC-1α regulates a metabolic pathway essential to host defense that can be therapeutically targeted to rescue airway epithelial barrier dysfunction and potentially prevent severe respiratory complications or secondary bacterial infections.


Asunto(s)
Antivirales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mucosa Respiratoria/metabolismo , Rhinovirus/fisiología , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Antivirales/farmacología , Técnicas de Cultivo de Célula , Citoesqueleto/metabolismo , Células Epiteliales , Ácidos Grasos/biosíntesis , Glucólisis , Humanos , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Oligomicinas/farmacología , Consumo de Oxígeno/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Infecciones por Picornaviridae/virología , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Replicación Viral/efectos de los fármacos
2.
Curr Drug Targets ; 22(11): 1207-1221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33480344

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the leading causes of mortality worldwide, with an estimated 1.5 million deaths annually. The majority of infection cases are reported from the Southeast Asian region, including India. After the discovery of Streptomycin in 1943 and its anti-tubercular activity in 1945, drug discovery efforts identified Isoniazid, Ethambutol, and Rifampin as TB-actives. However, over the years, these drugs have been rendered ineffective due to genetic mutations in mycobacterial strains. This has shifted drug discovery efforts towards identifying new targets and drugs for drug-resistant forms of bacteria. ATP synthase was identified as one of the key targets of MDR-TB. This review provides key insights into the ATP synthase target, structure activity relationship studies (SAR) of diarylquinoline class of inhibitors and their clinical relevance for treating MDR-TB.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos , Diarilquinolinas/farmacología , Descubrimiento de Drogas , Tuberculosis , Adenosina Trifosfato , Antituberculosos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
3.
Nature ; 589(7840): 143-147, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299175

RESUMEN

Tuberculosis-the world's leading cause of death by infectious disease-is increasingly resistant to current first-line antibiotics1. The bacterium Mycobacterium tuberculosis (which causes tuberculosis) can survive low-energy conditions, allowing infections to remain dormant and decreasing their susceptibility to many antibiotics2. Bedaquiline was developed in 2005 from a lead compound identified in a phenotypic screen against Mycobacterium smegmatis3. This drug can sterilize even latent M. tuberculosis infections4 and has become a cornerstone of treatment for multidrug-resistant and extensively drug-resistant tuberculosis1,5,6. Bedaquiline targets the mycobacterial ATP synthase3, which is an essential enzyme in the obligate aerobic Mycobacterium genus3,7, but how it binds the intact enzyme is unknown. Here we determined cryo-electron microscopy structures of M. smegmatis ATP synthase alone and in complex with bedaquiline. The drug-free structure suggests that hook-like extensions from the α-subunits prevent the enzyme from running in reverse, inhibiting ATP hydrolysis and preserving energy in hypoxic conditions. Bedaquiline binding induces large conformational changes in the ATP synthase, creating tight binding pockets at the interface of subunits a and c that explain the potency of this drug as an antibiotic for tuberculosis.


Asunto(s)
Complejos de ATP Sintetasa/química , Antituberculosos/química , Microscopía por Crioelectrón , Diarilquinolinas/química , Mycobacterium smegmatis/enzimología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacología , Diarilquinolinas/metabolismo , Diarilquinolinas/farmacología , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Mycobacterium smegmatis/efectos de los fármacos , Rotación
4.
Curr Top Med Chem ; 20(29): 2723-2734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885753

RESUMEN

BACKGROUND: Tuberculosis (TB) is a major infectious disease caused by Mycobacterium Tuberculosis. As per the World Health Organization (WHO) report of 2019, there were 1.5 million deaths in the year 2018, mainly because of multi- and extensively drug-resistant tuberculosis (MDR & XDR-TB). Among several antitubercular drugs in clinical trials, bedaquiline (TMC207) is a highly promising drug that was approved by the FDA in 2012 and marketed in 2016 for the treatment of multidrug resistant TB in combination with other drugs. Bedaquiline acts on mycobacterial ATP synthase and is highly effective in replicating as well as on dormant mycobacteria. Several series of substituted quinolines have been reported with their antitubercular and ATP synthase inhibitory activity. METHODS: To understand the role of physicochemical parameters like hydrophobicity, electronic and steric factors in eliciting the biological response, the Quantitative structure-activity relationship (QSAR) studies have been carried out using the computed parameters as independent variable and activity (-log IC50/MIC) as the dependent variable. RESULTS: The developed QSAR models in terms of positively contributing Molar Refractivity (MR) and negatively contributing Partition Coefficient (PC) and Connolly Molecular Area (CMA) parameters have high predictivity as also shown on external data set and the mean value of the computed 3D parameters of enantiomers may be used in QSAR analysis for racemic compounds. CONCLUSION: These results are also substantiated by pharmacophore modeling. The similar dependence of antitubercular activity against whole-cell M.Tb.H37Rv on MR and CMA suggests ATP synthase as the main target for antitubercular activity and the QSAR models may be useful in the identification of novel antitubercular agents.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Quinolinas/farmacología , Complejos de ATP Sintetasa/metabolismo , Antituberculosos/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Quinolinas/química , Tuberculosis/tratamiento farmacológico , Tuberculosis/metabolismo
5.
Mol Cell Proteomics ; 19(11): 1805-1825, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788343

RESUMEN

The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/metabolismo , ARN Largo no Codificante/metabolismo , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Membrana Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Gefitinib/farmacología , Ontología de Genes , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteómica , ARN Largo no Codificante/genética , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masas en Tándem , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Sci Rep ; 10(1): 8134, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424122

RESUMEN

Despite the remarkable advances due to the discovery and development of antimicrobials agents, infectious diseases remain the second leading cause of death worldwide. This fact underlines the importance of developing new therapeutic strategies to address the widespread antibiotic resistance, which is the major contributing factor for clinical failures of the current therapeutics. In a screen for antibiotic adjuvants, we identified a natural product from actinomycetes, venturicidin A (VentA), that potentiates the aminoglycoside antibiotic gentamicin against multidrug-resistant clinical isolates of Staphylococcus, Enterococcus, and Pseudomonas aeruginosa. Furthermore, the combination of gentamicin and VentA was bactericidal and rapidly eradicated methicillin-resistant S. aureus (MRSA). The molecular mechanism of gentamicin potentiation activity is attributed to uncoupling of ATP synthesis by VentA from electron transport presumably by blocking the proton flow through ATP synthase, which results in an elevated concentration of extracellular protons and subsequent anticipated raise in gentamicin uptake. The disruption of the proton flux was characterized by perturbed membrane potential in MRSA. These results demonstrate that inhibition of ATP synthase along with the subsequent membrane dysregulation, as shown here with VentA, complements aminoglycoside antibiotics against MDR bacteria, and that this approach may be employed to combat bacterial resistance.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Actinobacteria/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Venturicidinas/farmacología , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoglicósidos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
7.
Curr Top Med Chem ; 19(10): 847-860, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30977451

RESUMEN

BACKGROUND: Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon of drug resistance. OBJECTIVE: To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant Escherichia coli. METHODS: The MICs were determined following the CLSI guidelines for broth micro-dilution. In-vitro combination studies were performed by broth checkerboard method followed by Time-Kill studies, the efflux pump inhibition assay, ATPase inhibitory activity, mutation prevention concentration and in-silico studies. RESULTS: The results showed that both glycosides did not possess antibacterial activity of their own, but in combination, they reduced the MIC of tetracycline up to 16 folds. Both were found to inhibit efflux pumps, but niaziridin was the best. In real time expression pattern analysis, niaziridin was also found responsible for the down expression of the two important efflux pump acrB & yojI genes alone as well as in combination. Niaziridin was also able to over express the porin forming genes (ompA & ompX). These glycosides decreased the mutation prevention concentration of tetracycline. CONCLUSION: This is the first ever report on glycosides, niazirin and niaziridin acting as drug resistance reversal agent through efflux pump inhibition and modulation of expression pattern drug resistant genes. This study may be helpful in preparing an effective antibacterial combination against the drug-resistant GNB from a widely growing Moringa oleifera.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Acetonitrilos/farmacología , Antibacterianos/farmacología , Derivados del Benceno/farmacología , Productos Biológicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Complejos de ATP Sintetasa/metabolismo , Acetonitrilos/química , Acetonitrilos/aislamiento & purificación , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Derivados del Benceno/química , Derivados del Benceno/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Sinergismo Farmacológico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Moringa oleifera/química
8.
Biomol Concepts ; 10(1): 1-10, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30888962

RESUMEN

Oxidative phosphorylation is carried out by five complexes, which are the sites for electron transport and ATP synthesis. Among those, Complex V (also known as the F1F0 ATP Synthase or ATPase) is responsible for the generation of ATP through phosphorylation of ADP by using electrochemical energy generated by proton gradient across the inner membrane of mitochondria. A multi subunit structure that works like a pump functions along the proton gradient across the membranes which not only results in ATP synthesis and breakdown, but also facilitates electron transport. Since ATP is the major energy currency in all living cells, its synthesis and function have widely been studied over the last few decades uncovering several aspects of ATP synthase. This review intends to summarize the structure, function and inhibition of the ATP synthase.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/genética , Animales , Inhibidores Enzimáticos/farmacología , Humanos , Enfermedad de Leigh/genética
9.
Proc Natl Acad Sci U S A ; 116(10): 4206-4211, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30683723

RESUMEN

The crystal structure of the F1-catalytic domain of the adenosine triphosphate (ATP) synthase has been determined from Mycobacterium smegmatis which hydrolyzes ATP very poorly. The structure of the α3ß3-component of the catalytic domain is similar to those in active F1-ATPases in Escherichia coli and Geobacillus stearothermophilus However, its ε-subunit differs from those in these two active bacterial F1-ATPases as an ATP molecule is not bound to the two α-helices forming its C-terminal domain, probably because they are shorter than those in active enzymes and they lack an amino acid that contributes to the ATP binding site in active enzymes. In E. coli and G. stearothermophilus, the α-helices adopt an "up" state where the α-helices enter the α3ß3-domain and prevent the rotor from turning. The mycobacterial F1-ATPase is most similar to the F1-ATPase from Caldalkalibacillus thermarum, which also hydrolyzes ATP poorly. The ßE-subunits in both enzymes are in the usual "open" conformation but appear to be occupied uniquely by the combination of an adenosine 5'-diphosphate molecule with no magnesium ion plus phosphate. This occupation is consistent with the finding that their rotors have been arrested at the same point in their rotary catalytic cycles. These bound hydrolytic products are probably the basis of the inhibition of ATP hydrolysis. It can be envisaged that specific as yet unidentified small molecules might bind to the F1 domain in Mycobacterium tuberculosis, prevent ATP synthesis, and inhibit the growth of the pathogen.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos , Proteínas Bacterianas/antagonistas & inhibidores , Diarilquinolinas/química , Farmacorresistencia Bacteriana Múltiple , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Complejos de ATP Sintetasa/química , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
10.
Biochim Biophys Acta Bioenerg ; 1860(3): 181-188, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528692

RESUMEN

ATPase activity of proton-translocating FOF1-ATP synthase (F-type ATPase or F-ATPase) is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conservative of these mechanisms found in all enzymes studied so far is allosteric inhibition of ATP hydrolysis by MgADP (ADP-inhibition). When MgADP is bound without phosphate in the catalytic site, the enzyme lapses into an inactive state with MgADP trapped. In chloroplasts and mitochondria, as well as in most bacteria, phosphate prevents MgADP inhibition. However, in Escherichia coli ATP synthase ADP-inhibition is relatively weak and phosphate does not prevent it but seems to enhance it. We found that a single amino acid residue in subunit ß is responsible for these features of E. coli enzyme. Mutation ßL249Q significantly enhanced ADP-inhibition in E. coli ATP synthase, increased the extent of ATP hydrolysis stimulation by sulfite, and rendered the ADP-inhibition sensitive to phosphate in the same manner as observed in FOF1 from mitochondria, chloroplasts, and most aerobic\photosynthetic bacteria.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Sustitución de Aminoácidos , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Complejos de ATP Sintetasa/genética , Complejos de ATP Sintetasa/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Regulación Alostérica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Fosfatos/metabolismo , Fosfatos/farmacología , Unión Proteica
11.
Int J Antimicrob Agents ; 52(3): 390-396, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29906565

RESUMEN

Development of new antibiotics is costly and time-consuming, and therefore increasing the efficacy of conventional antibiotics is extremely attractive. For the human pathogen, Staphylococcus aureus, inactivation of the ATP synthase increases its susceptibility to gentamicin (an aminoglycoside) 16-fold. Aminoglycosides are rarely used as monotherapy against S. aureus due to the risk of development of resistance and toxic effects. This study explored the possibility of enhancing the efficacy of aminoglycosides against S. aureus and other Gram-positive pathogens by inhibiting the ATP synthase with resveratrol, a polyphenolic ATP synthase inhibitor that is commonly used as a dietary supplement. Co-administration of subinhibitory concentrations of resveratrol increased the activity of aminoglycosides, including gentamicin, kanamycin, neomycin, streptomycin and tobramycin, up to 32-fold against S. aureus, while the effect was lower (2-4-fold reduction in minimum inhibitory concentration) for other Gram-positive pathogens (i.e. Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis). The mechanism by which resveratrol increases the efficacy of aminoglycosides appears to be unrelated to membrane hyperpolarization and disruption of membrane integrity, which have been associated previously with increased aminoglycoside susceptibility. These results demonstrate that inhibition of the ATP synthase increases the efficacy of aminoglycosides against important Gram-positive pathogens, and the ATP synthase should be explored further as a target that may extend the clinical applicability of aminoglycosides.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Aminoglicósidos/farmacología , Resveratrol/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Quimioterapia Combinada , Humanos , Pruebas de Sensibilidad Microbiana
12.
Cell Commun Signal ; 16(1): 6, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402287

RESUMEN

BACKGROUND: Despite the implications for tumor growth and cancer drug resistance, the mechanisms underlying differences in energy metabolism among cells remain unclear. METHODS: To analyze differences between cell types, cell viability, ATP and α-ketoglutaric acid levels, the oxygen consumption rate and extracellular acidification rate, and the expression of key enzymes involved in α-KG metabolism and transfer were examined. Additionally, UPLC-MS/MS was used to determine the doxorubicin (DOX) content in SMMC-7721 and SMMC-7721/DOX cells. RESULTS: We found that energy metabolism in SMMC-7721 cells is mainly dependent on the glycolysis pathway, whereas SMMC-7721/DOX cells depend more heavily on the oxidative phosphorylation pathway. Cell viability and intracellular ATP levels in SMMC-7721/DOX cells were significantly reduced by rotenone and oligomycin, inhibitors of oxidative phosphorylation. However, SMMC-7721 cell properties were more strongly influenced by an inhibitor of glycolysis, 2-deoxy-D-glucose. Furthermore, the suppressive effect of α-KG on ATP synthase plays an important role in the low levels of oxidative phosphorylation in SMMC-7721 cells; this effect could be strengthened by the metabolic poison methotrexate and reversed by L-(-)-malic acid, an accelerator of the malate-aspartate cycle. CONCLUSIONS: The inhibitory effect of α-KG on ATP synthase was uncoupled with the tricarboxylic acid cycle and oxidative phosphorylation in SMMC-7721 cells; accordingly, energy metabolism was mainly determined by glycolysis. In drug-resistant cells, a remarkable reduction in the inhibitory effects of α-KG on ATP synthase resulted in better coordination among the TCA cycle, oxidative phosphorylation, and glycolysis, providing novel potential strategies for clinical treatment of liver cancer resistance.


Asunto(s)
Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Fosforilación Oxidativa/efectos de los fármacos , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Cetona Oxidorreductasas/antagonistas & inhibidores , Cetona Oxidorreductasas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Malatos/farmacología , Metotrexato/farmacología
13.
mBio ; 8(5)2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874470

RESUMEN

Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened the Nebraska Transposon Mutant Library established in S. aureus strain JE2 for increased susceptibility to polymyxin B. Nineteen mutants displayed at least 2-fold reductions in MIC, while the greatest reductions (8-fold) were observed for mutants with inactivation of either graS, graR, vraF, or vraG or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards polymyxins and that inhibition of the ATP synthase sensitizes S. aureus to this group of compounds. These findings show that by modulation of bacterial metabolism, new classes of antibiotics may show efficacy against pathogens towards which they were previously considered inapplicable. In light of the need for new treatment options for infections with serious pathogens like S. aureus, this approach may pave the way for novel applications of existing antibiotics.IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available antibiotics. Polymyxins constitute an important class of antibiotics for treatment of infections caused by Gram-negative pathogens, whereas Gram-positive bacteria remain largely insusceptible towards class of antibiotics. Here we performed a whole-genome screen among nonessential genes for polymyxin intrinsic resistance determinants in Staphylococcus aureus We found that the ATP synthase is important for polymyxin susceptibility and that inhibition of the ATP synthase sensitizes S. aureus towards polymyxins. Our study provides novel insights into the mechanisms that limit polymyxin activity against S. aureus and provides valuable targets for inhibitors to potentially enable the use of polymyxins against S. aureus and other Gram-positive pathogens.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antibacterianos/farmacología , Polimixinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Complejos de ATP Sintetasa/genética , Colistina/farmacología , Daptomicina/farmacología , Farmacorresistencia Bacteriana , Biblioteca de Genes , Pruebas de Sensibilidad Microbiana , Mutación , Nisina/farmacología , Staphylococcus aureus/genética , Vancomicina/farmacología
14.
Bioorg Med Chem Lett ; 27(15): 3454-3459, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587823

RESUMEN

A non-diaryl quinoline scaffold 6,7-dihydropyrazolo[1,5-a]pyrazin-4-one was identified by screening of diverse set of compounds against M. smegmatis ATP synthase. Herein, we disclose our efforts to develop the structure activity relationship against Mycobacterium tuberculosis (Mtb.H37Rv strain) around the identified hit 1. A scaffold hopping approach was used to identify compounds 14a, 14b and 24a with improved activity against MTb.H37Rv.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium tuberculosis/enzimología , Quinolinas/química , Quinolinas/farmacología , Complejos de ATP Sintetasa/metabolismo , Antituberculosos/síntesis química , Diseño de Fármacos , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/síntesis química , Pirazinas/química , Pirazinas/farmacología , Quinolinas/síntesis química , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
15.
SLAS Discov ; 22(7): 915-922, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28346107

RESUMEN

Analysis of drug-target residence times during drug development can result in improved efficacy, increased therapeutic window, and reduced side effects. Residence time can be estimated as the reciprocal of the dissociation rate ( koff) of an inhibitor from its target. The traditional methods for measuring koff require synthesis of labeled ligands or low-throughput label-free methods. To provide an alternative that is better suited to an automated high-throughput screening (HTS) environment, we adapted a classic "jump dilution" catalytic assay method for determination of koff values for kinase inhibitor drugs. We used the Transcreener ADP2 Kinase assay as a universal, homogenous method to monitor the recovery of kinase activity as the drugs dissociated from preformed inhibitor-kinase complexes. We measured residence times for several drugs that bind the epidermal growth factor receptor (EGFR), ABL1, and Aurora kinases and found that the rank ordering of inhibitor koff values correlated with literature values determined using ligand binding assays. Moreover, very similar results were obtained using the Transcreener assay with fluorescence polarization (FP), fluorescence intensity (FI), and time-resolved Förster resonance energy transfer (TR-FRET) detection modes. This HTS-compatible, generic assay method should facilitate the use of residence time as a parameter for compound prioritization and optimization early in kinase drug discovery programs.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Complejos de ATP Sintetasa/antagonistas & inhibidores , Adenosina Difosfato/metabolismo , Bioensayo , Receptores ErbB/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , Inhibidores de Proteínas Quinasas/farmacología
16.
Int J Biol Macromol ; 87: 246-51, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26930579

RESUMEN

Venom peptides are known to have strong antimicrobial activity and anticancer properties. King cobra cathelicidin or OH-CATH (KF-34), banded krait cathelicidin (BF-30), wolf spider lycotoxin I (IL-25), and wolf spider lycotoxin II (KE-27) venom peptides were found to strongly inhibit Escherichia coli membrane bound F1Fo ATP synthase. The potent inhibition of wild-type E. coli in comparison to the partial inhibition of null E. coli by KF-34, BF-30, Il-25, or KE-27 clearly links the bactericidal properties of these venom peptides to the binding and inhibition of ATP synthase along with the possibility of other inhibitory targets. The four venom peptides KF-34, BF-30, IL-25, and KE-27, caused ≥85% inhibition of wild-type membrane bound E.coli ATP synthase. Venom peptide induced inhibition of ATP synthase and the strong abrogation of wild-type E. coli cell growth in the presence of venom peptides demonstrates that ATP synthase is a potent membrane bound molecular target for venom peptides. Furthermore, the process of inhibition was found to be fully reversible.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Péptidos Catiónicos Antimicrobianos/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Venenos de Araña/farmacología , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Escherichia coli/citología , Venenos de Araña/química , Catelicidinas
17.
Sci Rep ; 5: 10333, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26015371

RESUMEN

Targeting respiration and ATP synthesis has received strong interest as a new strategy for combatting drug-resistant Mycobacterium tuberculosis. Mycobacteria employ a respiratory chain terminating with two branches. One of the branches includes a cytochrome bc1 complex and an aa3-type cytochrome c oxidase while the other branch terminates with a cytochrome bd-type quinol oxidase. In this communication we show that genetic inactivation of cytochrome bd, but not of cytochrome bc1, enhances the susceptibility of Mycobacterium smegmatis to hydrogen peroxide and antibiotic-induced stress. The type-II NADH dehydrogenase effector clofazimine and the ATP synthase inhibitor bedaquiline were bacteriostatic against wild-type M. smegmatis, but strongly bactericidal against a cytochrome bd mutant. We also demonstrated that the quinone-analog aurachin D inhibited mycobacterial cytochrome bd at sub-micromolar concentrations. Our results identify cytochrome bd as a key survival factor in M. smegmatis during antibiotic stress. Targeting the cytochrome bd respiratory branch therefore appears to be a promising strategy that may enhance the bactericidal activity of existing tuberculosis drugs.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Peróxido de Hidrógeno/toxicidad , Mycobacterium smegmatis/efectos de los fármacos , Complejos de ATP Sintetasa/antagonistas & inhibidores , Complejos de ATP Sintetasa/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Clofazimina/farmacología , Diarilquinolinas/farmacología , Complejo IV de Transporte de Electrones/genética , Técnicas de Inactivación de Genes , Mutación , Mycobacterium smegmatis/enzimología , NADH Deshidrogenasa/química , NADH Deshidrogenasa/metabolismo , Quinolonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
18.
PLoS One ; 10(5): e0127802, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996607

RESUMEN

We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.


Asunto(s)
Complejos de ATP Sintetasa/antagonistas & inhibidores , Benzoquinonas/farmacología , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Medios de Cultivo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos
20.
Int J Biol Macromol ; 75: 37-43, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25603139

RESUMEN

This study demonstrates the requirement of Asp-380 and Asp-386 in the ßDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants ßD380A/ßD386A, ßD380Q/ßD386Q, or ßD380R/ßD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of ßD380 and ßD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of ßDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, ßD380 and ßD386, are essential for proper peptide binding and inhibition of ATP synthase.


Asunto(s)
Complejos de ATP Sintetasa/metabolismo , Ácido Aspártico/metabolismo , Escherichia coli/enzimología , Péptidos/química , Complejos de ATP Sintetasa/antagonistas & inhibidores , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Membrana Celular/enzimología , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Glucosa/farmacología , Meliteno/química , Meliteno/farmacología , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Ácido Succínico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...