Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1793(1): 117-24, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18573282

RESUMEN

The liquid state model that envisions respiratory chain complexes diffusing freely in the membrane is increasingly challenged by reports of supramolecular organization of the complexes in the mitochondrial inner membrane. Supercomplexes of complex III with complex I and/or IV can be isolated after solubilisation with mild detergents like digitonin. Electron microscopic studies have shown that these have a distinct architecture and are not random aggregates. A 3D reconstruction of a I1III2IV1 supercomplex shows that the ubiquinone and cytochrome c binding sites of the individual complexes are facing each other, suggesting a role in substrate channelling. Formation of supercomplexes plays a role in the assembly and stability of the complexes, suggesting that the supercomplexes are the functional state of the respiratory chain. Furthermore, a supramolecular organisation of ATP synthases has been observed in mitochondria, where ATP synthase is organised in dimer rows. Dimers can be isolated by mild detergent extraction and recent electron microscopic studies have shown that the membrane domains of the two partners in the dimer are at an angle to each other, indicating that in vivo the dimers would cause the membrane to bend. The suggested role in crista formation is supported by the observation of rows of ATP synthase dimers in the most curved parts of the cristae. Together these observations show that the mitochondrial inner membrane is highly organised and that the molecular events leading to ATP synthesis are carefully coordinated.


Asunto(s)
Complejos de ATP Sintetasa/química , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Membranas Mitocondriales/enzimología , Complejos de ATP Sintetasa/metabolismo , Complejos de ATP Sintetasa/ultraestructura , Animales , Dimerización , Transporte de Electrón/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Modelos Biológicos , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
2.
J Mol Biol ; 382(5): 1256-64, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18722382

RESUMEN

We have used electron cryomicroscopy of single particles to determine the structure of the ATP synthase from Saccharomyces cerevisiae. The resulting map at 24 A resolution can accommodate atomic models of the F(1)-c(10) subcomplex, the peripheral stalk subcomplex, and the N-terminal domain of the oligomycin sensitivity conferral protein. The map is similar to an earlier electron cryomicroscopy structure of bovine mitochondrial ATP synthase but with important differences. It resolves the internal structure of the membrane region of the complex, especially the membrane embedded subunits b, c, and a. Comparison of the yeast ATP synthase map, which lacks density from the dimer-specific subunits e and g, with a map of the bovine enzyme that included e and g indicates where these subunits are located in the intact complex. This new map has allowed construction of a model of subunit arrangement in the F(O) motor of ATP synthase that dictates how dimerization of the complex via subunits e and g might occur.


Asunto(s)
Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/ultraestructura , Saccharomyces cerevisiae/enzimología , Animales , Bovinos , Microscopía por Crioelectrón , ATPasas de Translocación de Protón Mitocondriales/química , Modelos Moleculares , Complejos Multiproteicos , Subunidades de Proteína , Especificidad de la Especie
3.
J Bioenerg Biomembr ; 40(6): 551-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19142720

RESUMEN

Conformational changes within the subunit b-dimer of the E. coli ATP synthase occur upon binding to the F(1) sector. ESR spectra of spin-labeled b at room temperature indicated a pivotal point in the b-structure at residue 62. Spectra of frozen b +/- F(1) and calculated interspin distances suggested that where contact between b (2) and F(1) occurs (above about residue 80), the structure of the dimer changes minimally. Between b-residues 33 and 64 inter-subunit distances in the F(1)-bound b-dimer were found to be too large to accommodate tightly coiled coil packing and therefore suggest a dissociation and disengagement of the dimer upon F(1)-binding. Mechanistic implications of this "bubble" formation in the tether domain of ATP synthase b ( 2 ) are discussed.


Asunto(s)
Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/ultraestructura , Escherichia coli/enzimología , Modelos Químicos , Modelos Moleculares , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Sitios de Unión , Simulación por Computador , Dimerización , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ATPasas de Translocación de Protón/ultraestructura
4.
J R Soc Interface ; 5(20): 311-8, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-17848362

RESUMEN

We consider an ancient protein, and water as a smooth surface, and show that the interaction of the two allows the protein to change its hydrogen bonding to encapsulate the water. This property could have made a three-dimensional microenvironment, 3-4 Gyr ago, for the evolution of subsequent complex water-based chemistry. Proteolipid, subunit c of ATP synthase, when presented with a water surface, changes its hydrogen bonding from an alpha-helix to beta-sheet-like configuration and moves away from its previous association with lipid to interact with water surface molecules. Protein sheets with an intra-sheet backbone spacing of 3.7A and inter-sheet spacing of 6.0 A hydrogen bond into long ribbons or continuous surfaces to completely encapsulate a water droplet. The resulting morphology is a spherical vesicle or a hexagonal crystal of water ice, encased by a skin of subunit c. Electron diffraction shows the crystals to be highly ordered and compressed and the protein skin to resemble beta-sheets. The protein skin can retain the entrapped water over a temperature rise from 123 to 223 K at 1 x 10(-4) Pa, whereas free water starts to sublime significantly at 153 K.


Asunto(s)
Complejos de ATP Sintetasa/química , Complejos de ATP Sintetasa/ultraestructura , Subunidades de Proteína/química , Agua/química , Cristalografía , Enlace de Hidrógeno , Microscopía Electrónica , Conformación Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...