Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34994556

RESUMEN

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Asunto(s)
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Azepinas/química , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Cisteína/química , Dasatinib/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética
2.
Front Immunol ; 12: 635475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815386

RESUMEN

Nuclear dot protein 52 kDa (NDP52, also known as CALCOCO2) functions as a selective autophagy receptor. The linear ubiquitin chain assembly complex (LUBAC) specifically generates the N-terminal Met1-linked linear ubiquitin chain, and regulates innate immune responses, such as nuclear factor-κB (NF-κB), interferon (IFN) antiviral, and apoptotic pathways. Although NDP52 and LUBAC cooperatively regulate bacterial invasion-induced xenophagy, their functional crosstalk remains enigmatic. Here we show that NDP52 suppresses canonical NF-κB signaling through the broad specificity of ubiquitin-binding at the C-terminal UBZ domain. Upon TNF-α-stimulation, NDP52 associates with LUBAC through the HOIP subunit, but does not disturb its ubiquitin ligase activity, and has a modest suppressive effect on NF-κB activation by functioning as a component of TNF-α receptor signaling complex I. NDP52 also regulates the TNF-α-induced apoptotic pathway, but not doxorubicin-induced intrinsic apoptosis. A chemical inhibitor of LUBAC (HOIPIN-8) cancelled the increased activation of the NF-κB and IFN antiviral pathways, and enhanced apoptosis in NDP52-knockout and -knockdown HeLa cells. Upon Salmonella-infection, colocalization of Salmonella, LC3, and linear ubiquitin was detected in parental HeLa cells to induce xenophagy. Treatment with HOIPIN-8 disturbed the colocalization and facilitated Salmonella expansion. In contrast, HOIPIN-8 showed little effect on the colocalization of LC3 and Salmonella in NDP52-knockout cells, suggesting that NDP52 is a weak regulator in LUBAC-mediated xenophagy. These results indicate that the crosstalk between NDP52 and LUBAC regulates innate immune responses, apoptosis, and xenophagy.


Asunto(s)
Apoptosis , Inmunidad Innata , Macroautofagia , Proteínas Nucleares/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Hidrocarburos Aromáticos/farmacología , Inmunidad Innata/efectos de los fármacos , Macroautofagia/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Salmonella enterica , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
3.
Curr Pharm Des ; 25(30): 3248-3256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31419930

RESUMEN

Repurposing already approved drugs as new anticancer agents is a promising strategy considering the advantages such as low costs, low risks and less time-consumption. Disulfiram (DSF), as the first drug for antialcoholism, was approved by the U.S. Food and Drug Administration (FDA) over 60 years ago. Increasing evidence indicates that DSF has great potential for the treatment of various human cancers. Several mechanisms and targets of DSF related to cancer therapy have been proposed, including the inhibition of ubiquitin-proteasome system (UPS), cancer cell stemness and cancer metastasis, and alteration of the intracellular reactive oxygen species (ROS). This article provides a brief review about the history of the use of DSF in humans and its molecular mechanisms and targets of anticancer therapy, describes DSF delivery strategies for cancer treatment, summarizes completed and ongoing cancer clinical trials involving DSF, and offers strategies to better use DSF in cancer therapies.


Asunto(s)
Disulfiram/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Proteasoma/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal , Especies Reactivas de Oxígeno/metabolismo
4.
Sci Rep ; 8(1): 2459, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410497

RESUMEN

Thalidomide was originally used as a sedative and found to be a teratogen, but now thalidomide and its derivatives are widely used to treat haematologic malignancies. Accumulated evidence suggests that thalidomide suppresses nerve cell death in neurologic model mice. However, detailed molecular mechanisms are unknown. Here we examined the molecular mechanism of thalidomide's neuroprotective effects, focusing on its target protein, cereblon (CRBN), and its binding protein, AMP-activated protein kinase (AMPK), which plays an important role in maintaining intracellular energy homeostasis in the brain. We used a cerebral ischemia rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). Thalidomide treatment significantly decreased the infarct volume and neurological deficits of MCAO/R rats. AMPK was the key signalling protein in this mechanism. Furthermore, we considered that the AMPK-CRBN interaction was altered when neuroprotective action by thalidomide occurred in cells under ischemic conditions. Binding was strong between AMPK and CRBN in normal SH-SY5Y cells, but was weakened by the addition of H2O2. However, when thalidomide was administered at the same time as H2O2, the binding of AMPK and CRBN was partly restored. These results suggest that thalidomide inhibits the activity of AMPK via CRBN under oxidative stress and suppresses nerve cell death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteasas ATP-Dependientes/genética , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Talidomida/farmacología , Complejos de Ubiquitina-Proteína Ligasa/genética , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Proteasas ATP-Dependientes/antagonistas & inhibidores , Proteasas ATP-Dependientes/metabolismo , Animales , Isquemia Encefálica/enzimología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Inmunosupresores/farmacología , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/enzimología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
5.
Mol Cell ; 68(2): 456-470.e10, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053960

RESUMEN

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.


Asunto(s)
Descubrimiento de Drogas/métodos , Activadores de Enzimas , Inhibidores Enzimáticos , Multimerización de Proteína/efectos de los fármacos , Proteínas Supresoras de Tumor , Complejos de Ubiquitina-Proteína Ligasa , Proteína Inhibidora de la Apoptosis Ligada a X , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas , Proteína Inhibidora de la Apoptosis Ligada a X/agonistas , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
6.
FEBS Lett ; 590(7): 908-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26832397

RESUMEN

The recruitment of transcription factors to promoters and enhancers is a critical step in gene regulation. Many of these proteins are quickly removed from DNA after they completed their function. Metabolic genes in particular are dynamically regulated and continuously adjusted to cellular requirements. Transcription factors controlling metabolism are therefore under constant surveillance by the ubiquitin-proteasome system, which can degrade DNA-bound proteins in a site-specific manner. Several of these metabolic transcription factors are critical to cancer cells, as they promote uncontrolled growth and proliferation. This review highlights recent findings in the emerging field of nuclear proteolysis and outlines novel paradigms for cancer treatment, with an emphasis on multiple myeloma.


Asunto(s)
Núcleo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos/uso terapéutico , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/enzimología , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
7.
Cancer Res ; 75(23): 5130-5142, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542215

RESUMEN

The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.


Asunto(s)
Isotiocianatos/farmacología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Animales , Células COS , Chlorocebus aethiops , Endopeptidasas/metabolismo , Células HeLa , Humanos , Células K562 , Células MCF-7 , Melanoma Experimental , Ratones , Células 3T3 NIH , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos
8.
PLoS Pathog ; 11(5): e1004890, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25996949

RESUMEN

The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders.


Asunto(s)
Linfocitos B/metabolismo , Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/metabolismo , Factor 1 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , Proteínas de la Matriz Viral/metabolismo , Linfocitos B/inmunología , Linfocitos B/virología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , Lisina/metabolismo , Mutación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factor 1 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
9.
Front Biosci (Landmark Ed) ; 19(6): 886-95, 2014 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-24896323

RESUMEN

Ubiquitination is a post-translational modification that plays a role in several cellular processes including cell cycle progression, cell proliferation, DNA replication and apoptosis. Ubiquitin-mediated signaling is frequently altered in cancer cells. Several tumor suppressors and oncogenes interact with enzymes of the ubiquitin-proteasome pathway that function in ubiquitin conjugation and deconjugation. Increasing evidence indicates that the ubiquitin-proteasome system (UPS) plays an important role in cancer development. Several small molecule inhibitors of the UPS have been applied to the treatment of cancer. The current review focuses on the role of the UPS in cancer development and the development of UPS inhibitors for cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteasoma/uso terapéutico , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos
10.
Angew Chem Int Ed Engl ; 53(9): 2312-30, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24459094

RESUMEN

Traditionally, biological probes and drugs have targeted the activities of proteins (such as enzymes and receptors) that can be readily controlled by small molecules. The remaining majority of the proteome has been deemed "undruggable". By using small-molecule modulators of the ubiquitin proteasome, protein levels, rather than protein activity, can be targeted instead, thus increasing the number of druggable targets. Whereas targeting of the proteasome itself can lead to a global increase in protein levels, the targeting of other components of the UPS (e.g., the E3 ubiquitin ligases) can lead to an increase in protein levels in a more targeted fashion. Alternatively, multiple strategies for inducing protein degradation with small-molecule probes are emerging. With the ability to induce and inhibit the degradation of targeted proteins, small-molecule modulators of the UPS have the potential to significantly expand the druggable portion of the proteome beyond traditional targets, such as enzymes and receptors.


Asunto(s)
Diseño de Fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina/metabolismo , Animales , Humanos , Inhibidores de Proteasoma/química , Proteínas/análisis , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
11.
J Virol ; 87(16): 8818-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760246

RESUMEN

Viruses commonly manipulate cell cycle progression to create cellular conditions that are most beneficial to their replication. To accomplish this feat, viruses often target critical cell cycle regulators in order to have maximal effect with minimal input. One such master regulator is the large, multisubunit E3 ubiquitin ligase anaphase-promoting complex (APC) that targets effector proteins for ubiquitination and proteasome degradation. The APC is essential for cells to progress through anaphase, exit from mitosis, and prevent a premature entry into S phase. These far-reaching effects of the APC on the cell cycle are through its ability to target a number of substrates, including securin, cyclin A, cyclin B, thymidine kinase, geminin, and many others. Recent studies have identified several proteins from a number of viruses that can modulate APC activity by different mechanisms, highlighting the potential of the APC in driving viral replication or pathogenesis. Most notably, human cytomegalovirus (HCMV) protein pUL21a was recently identified to disable the APC via a novel mechanism by targeting APC subunits for degradation, both during virus infection and in isolation. Importantly, HCMV lacking both viral APC regulators is significantly attenuated, demonstrating the impact of the APC on a virus infection. Work in this field will likely lead to novel insights into viral replication and pathogenesis and APC function and identify novel antiviral and anticancer targets. Here we review viral mechanisms to regulate the APC, speculate on their roles during infection, and identify questions to be addressed in future studies.


Asunto(s)
Puntos de Control del Ciclo Celular , Interacciones Huésped-Patógeno , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral , Virus/patogenicidad , Ciclosoma-Complejo Promotor de la Anafase , Humanos
12.
Nat Struct Mol Biol ; 20(7): 827-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708605

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a ~1.5-MDa multiprotein E3 ligase enzyme that regulates cell division by promoting timely ubiquitin-mediated proteolysis of key cell-cycle regulatory proteins. Inhibition of human APC/C(CDH1) during interphase by early mitotic inhibitor 1 (EMI1) is essential for accurate coordination of DNA synthesis and mitosis. Here, we report a hybrid structural approach involving NMR, electron microscopy and enzymology, which reveal that EMI1's 143-residue C-terminal domain inhibits multiple APC/C(CDH1) functions. The intrinsically disordered D-box, linker and tail elements, together with a structured zinc-binding domain, bind distinct regions of APC/C(CDH1) to synergistically both block the substrate-binding site and inhibit ubiquitin-chain elongation. The functional importance of intrinsic structural disorder is explained by enabling a small inhibitory domain to bind multiple sites to shut down various functions of a 'molecular machine' nearly 100 times its size.


Asunto(s)
Cadherinas/química , Proteínas de Ciclo Celular/química , Proteínas F-Box/química , Complejos de Ubiquitina-Proteína Ligasa/química , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología , Proteínas de Ciclo Celular/ultraestructura , Proteínas F-Box/metabolismo , Proteínas F-Box/farmacología , Proteínas F-Box/ultraestructura , Humanos , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/ultraestructura , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Ultracentrifugación
13.
Biophys Chem ; 177-178: 1-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23562861

RESUMEN

The early embryonic Xenopus cell cycles are characterized by alternating oscillations of Cyclin-dependent kinase-1 (Cdk1) and Anaphase Promoting Complex/Cyclosome (APC/C) activities. The early cycles before midblastula transition lack significant inhibitory Cdk1 phosphorylations and are driven by periodic accumulation of Cyclin B before M phase and its degradation by APC/C at the end of M phase. Both experiments and mathematical modelling suggest that while Cdk1:CycB phosphorylation activates APC/C, it inhibits its co-activator Cdc20 (Fizzy). These interactions create an amplified negative-feedback loop which is at the heart of all cell cycle oscillations. Recent experiments find that the APC/C inhibitor, Emi2/XErp1 is essential for large amplitude and short period Cyclin B oscillations during early divisions in the intact Xenopus embryo. This finding is counter-intuitive since larger amplitudes should come with slower cycle times. We explain this paradox by analysing the amplified negative feedback model extended with APC/C inhibition by Emi2. We show that Emi2 interferes with the intrinsic time-delay in APC/C activation and inactivation to increase the amplitude as well as shorten the period of Cyclin B oscillation.


Asunto(s)
Proteínas F-Box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteína Quinasa CDC2/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas Cdc20 , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas F-Box/química , Modelos Teóricos , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/química
14.
Hum Pathol ; 44(3): 365-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22995332

RESUMEN

Early mitotic inhibitor-1 (Emi1) is a key cell-cycle regulator that promotes S-phase and M-phase entry by inhibiting anaphase-promoting complex/cyclosome (APC/C) activity. Immunohistochemical analysis was performed in 114 human hepatocellular carcinoma (HCC) samples, and the data were correlated with clinicopathologic features. Univariate and multivariate survival analyses were performed to determine the prognostic significance of the proteins. Expression of Emi1 correlated directly with the stage of HCC. More importantly, high expression of Emi1 was associated with a poor outcome. Western blot analysis showed that Emi1 was highly expressed in HCC compared with the adjacent noncancerous tissue. In vitro, after the release of HCC cell lines from serum starvation, the expression of Emi1 APC/C substrates (cyclins A, B) and Skp2 was up-regulated, whereas p27(Kip1) was down-regulated. In addition, we used small interfering RNA to knock out Emi1 expression and observed its effects on HCC growth in vitro to determine whether loss of Emi1 could inhibit cell proliferation by blocking S-phase and mitotic entry. Western blot analyses indicated that deletion of Emi1 was positively correlated with APC/C substrates (cyclins A, B) and Skp2 but was negatively correlated with p27(Kip1). Emi1 inhibits APC/C activity, whereas Skp2 degradation is mediated by APC/C, and degradation of Skp2 can stabilize p27(kip1). These results suggested that Emi1 participates in HCC cell proliferation and that progression is controlled by APC/C inhibition, which stabilized Skp2 and enabled p27(kip1) degradation. These findings provide a potential therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas F-Box/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Adulto , Ciclosoma-Complejo Promotor de la Anafase , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteínas F-Box/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Mitosis , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño , Proteínas Quinasas Asociadas a Fase-S/genética , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
15.
PLoS One ; 7(11): e49041, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145059

RESUMEN

The Spindle Assembly Checkpoint (SAC) delays the onset of anaphase in response to unattached kinetochores by inhibiting the activity of the Anaphase-Promoting Complex/Cyclosome (APC/C), an E3 ubiquitin ligase. Once all the chromosomes have bioriented, SAC signalling is somehow silenced, which allows progression through mitosis. Recent studies suggest that the APC/C itself participates in SAC silencing by targeting an unknown factor for proteolytic degradation. Key evidence in favour of this model comes from the use of proTAME, a small molecule inhibitor of the APC/C. In cells, proTAME causes a mitotic arrest that is SAC-dependent. Even though this observation comes at odds with the current view that the APC/C acts downstream of the SAC, it was nonetheless argued that these results revealed a role for APC/C activity in SAC silencing. However, we show here that the mitotic arrest induced by proTAME is due to the induction of cohesion fatigue, a phenotype that is caused by the loss of sister chromatid cohesion following a prolonged metaphase. Under these conditions, the SAC is re-activated and APC/C inhibition is maintained independently of proTAME. Therefore, these results provide a simpler explanation for why the proTAME-induced mitotic arrest is also dependent on the SAC. While these observations question the notion that the APC/C is required for SAC silencing, we nevertheless show that APC/C activity does partially contribute to its own release from inhibitory complexes, and importantly, this does not depend on proteasome-mediated degradation.


Asunto(s)
Mitosis/genética , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Tosilarginina Metil Éster/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Segregación Cromosómica/genética , Cromosomas/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Metafase/genética , Mitosis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
16.
Cell Death Dis ; 3: e411, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23076219

RESUMEN

The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.


Asunto(s)
Antineoplásicos/farmacología , Mitosis/efectos de los fármacos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Antineoplásicos/uso terapéutico , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Proteínas Motoras Moleculares/antagonistas & inhibidores , Proteínas Motoras Moleculares/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Neoplasias/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
17.
Science ; 338(6106): 520-4, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23019610

RESUMEN

Mitotic divisions result from the oscillating activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 activity is terminated by the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets cyclin B for destruction. In somatic divisions, the early mitotic inhibitor 1 (Emi1) and the spindle assembly checkpoint (SAC) regulate cell cycle progression by inhibiting the APC/C. Early embryonic divisions lack these APC/C-inhibitory components, which raises the question of how those cycles are controlled. We found that the APC/C-inhibitory activity of XErp1 (also known as Emi2) was essential for early divisions in Xenopus embryos. Loss of XErp1 resulted in untimely destruction of APC/C substrates and embryonic lethality. XErp1's APC/C-inhibitory function was negatively regulated by Cdk1 and positively by protein phosphatase 2A (PP2A). Thus, Cdk1 and PP2A operate at the core of early mitotic cell cycles by antagonistically controlling XErp1 activity, which results in oscillating APC/C activity.


Asunto(s)
Embrión no Mamífero/citología , Proteínas F-Box/metabolismo , Mitosis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteína Quinasa CDC2/metabolismo , Embrión no Mamífero/enzimología , Proteínas F-Box/antagonistas & inhibidores , Proteínas F-Box/genética , Mitosis/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética
18.
J Cell Biol ; 199(1): 27-37, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23007648

RESUMEN

The spindle assembly checkpoint (SAC) is essential to ensure proper chromosome segregation and thereby maintain genomic stability. The SAC monitors chromosome attachment, and any unattached chromosomes generate a "wait anaphase" signal that blocks chromosome segregation. The target of the SAC is Cdc20, which activates the anaphase-promoting complex/cyclosome (APC/C) that triggers anaphase and mitotic exit by ubiquitylating securin and cyclin B1. The inhibitory complex formed by the SAC has recently been shown to inhibit Cdc20 by acting as a pseudosubstrate inhibitor, but in this paper, we show that Mad2 also inhibits Cdc20 by binding directly to a site required to bind the APC/C. Mad2 and the APC/C competed for Cdc20 in vitro, and a Cdc20 mutant that does not bind stably to Mad2 abrogated the SAC in vivo. Thus, we provide insights into how Cdc20 binds the APC/C and uncover a second mechanism by which the SAC inhibits the APC/C.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Proteínas Represoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Sitios de Unión , Proteínas Cdc20 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Segregación Cromosómica/genética , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Mad2 , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
19.
PLoS Genet ; 8(7): e1002865, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844260

RESUMEN

Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Ciclina A1/genética , Ciclinas/genética , Meiosis/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ciclosoma-Complejo Promotor de la Anafase , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Ciclina A1/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Epistasis Genética , Gametogénesis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ratones , Mitosis/genética , Mutación , Oocitos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
20.
Cell Cycle ; 11(10): 2030-8, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22580462

RESUMEN

E2F1 is a eukaryotic transcription factor that is known to regulate various cellular pathways such as cell cycle progression, DNA replication, DNA damage responses and induction of apoptosis. Given its versatile roles, a precise and tight regulation of E2F1 is very critical to maintain genomic stability. E2F1 is regulated both at transcriptional and posttranslational levels during cell cycle and upon DNA damage. After S phase, E2F1 is targeted for degradation and is kept at low levels or in an inactive state until the next G 1/S phase transition. Our studies show that APC/C ubiquitin ligase in conjunction with its co-activator Cdh1 (APC/C (Cdh1) ) can downregulate E2F1. We also identify an APC/C subunit APC5 that binds to E2F1 and is essential for E2F1 ubiquitination. We confirm an interaction between E2F1 and Cdh1 as well as an interaction between E2F1 and APC5 both in vivo and in vitro. In vitro GST pull-down assays have mapped the C-terminal 79 a.a. of E2F1 as Cdh1 interacting residues. Ectopically expressed Cdh1 downregulates the expression of E2F1-4. Our studies have also shown for the first time that E2F1 can be modified by K11-linkage specific ubiquitin chain formation (Ub-K11). The formation of Ub-K11 chains on E2F1 is increased in the presence of Cdh1 and accumulated in the presence of proteasome inhibitor, suggesting that APC/C (Cdh1) targets E2F1 for degradation by forming Ub-K11 chains. We also show that the effect of Cdh1 on E2F1 degradation is blocked upon DNA damage. Interestingly, Ub-K11-linked E2F1 accumulates after treatment of DNA damaging agents. The data suggest that DNA damage signaling processes do not inhibit APC/C (Cdh1) to ubiquitinate E2F1. Instead, they block the proteasomal degradation of Ub-K11-linked E2F1, and therefore lead to its accumulation.


Asunto(s)
Cadherinas/metabolismo , Factor de Transcripción E2F1/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Antígenos CD , Subunidad Apc5 del Ciclosoma-Complejo Promotor de la Anafase , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Daño del ADN , Regulación hacia Abajo , Factor de Transcripción E2F1/genética , Células HEK293 , Humanos , Unión Proteica , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Fase S , Ubiquitina/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...