Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Autism ; 12(1): 1, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33436060

RESUMEN

BACKGROUND: Gene copy number variants play an important role in the occurrence of neurodevelopmental disorders. Particularly, the deletion of the 16p11.2 locus is associated with autism spectrum disorder, intellectual disability, and several other features. Earlier studies highlighted the implication of Kctd13 genetic imbalance in 16p11.2 deletion through the regulation of the RHOA pathway. METHODS: Here, we generated a new mouse model with a small deletion of two key exons in Kctd13. Then, we targeted the RHOA pathway to rescue the cognitive phenotypes of the Kctd13 and 16p11.2 deletion mouse models in a pure genetic background. We used a chronic administration of fasudil (HA1077), an inhibitor of the Rho-associated protein kinase, for six weeks in mouse models carrying a heterozygous inactivation of Kctd13, or the deletion of the entire 16p11.2 BP4-BP5 homologous region. RESULTS: We found that the small Kctd13 heterozygous deletion induced a cognitive phenotype similar to the whole deletion of the 16p11.2 homologous region, in the Del/+ mice. We then showed that chronic fasudil treatment can restore object recognition memory in adult heterozygous mutant mice for Kctd13 and for 16p11.2 deletion. In addition, learning and memory improvement occurred in parallel to change in the RHOA pathway. LIMITATIONS: The Kcdt13 mutant line does not recapitulate all the phenotypes found in the 16p11.2 Del/+ model. In particular, the locomotor activity was not altered at 12 and 18 weeks of age and the object location memory was not defective in 18-week old mutants. Similarly, the increase in locomotor activity was not modified by the treatment in the 16p11.2 Del/+ mouse model, suggesting that other loci were involved in such defects. Rescue was observed only after four weeks of treatment but no long-term experiment has been carried out so far. Finally, we did not check the social behaviour, which requires working in another hybrid genetic background. CONCLUSION: These findings confirm KCTD13 as one target gene causing cognitive deficits in 16p11.2 deletion patients, and the relevance of the RHOA pathway as a therapeutic path for 16p11.2 deletion. In addition, they reinforce the contribution of other gene(s) involved in cognitive defects found in the 16p11.2 models in older mice.


Asunto(s)
Trastorno Autístico/etiología , Trastorno Autístico/metabolismo , Trastornos de los Cromosomas/etiología , Trastornos de los Cromosomas/metabolismo , Discapacidad Intelectual/etiología , Discapacidad Intelectual/metabolismo , Aprendizaje , Memoria , Transducción de Señal/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Proteína de Unión al GTP rhoA/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Alelos , Animales , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 16/metabolismo , Cognición , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Ratones , Ratones Noqueados , Fenotipo , Resultado del Tratamiento , Quinasas Asociadas a rho/metabolismo
2.
Hippocampus ; 30(11): 1158-1166, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32644222

RESUMEN

Neur1 and Neur2, mouse homologs of the Drosophila neur gene, consist of two neuralized homology repeat domains and a RING domain. Both Neur1 and Neur2 are expressed in the whole adult brain and encode E3 ubiquitin ligases, which play a crucial role in the Notch signaling pathways. A previous study reported that overexpression of Neur1 enhances hippocampus-dependent memory, whereas the role of Neur2 remains largely unknown. Here, we aimed to elucidate the respective roles of Neur1 and Neur2 in hippocampus-dependent memory using three lines of genetically modified mice: Neur1 knock-out, Neur2 knock-out, and Neur1 and Neur2 double knock-out (D-KO). Our results showed that spatial memory was impaired when both Neur1 and Neur2 were deleted, but not in the individual knock-out of either Neur1 or Neur2. In addition, basal synaptic properties estimated by input-output relationships and paired-pulse facilitation did not change, but a form of long-term potentiation that requires protein synthesis was specifically impaired in the D-KO mice. These results collectively suggest that Neur1 and Neur2 are crucially involved in hippocampus-dependent spatial memory and synaptic plasticity.


Asunto(s)
Hipocampo/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Plasticidad Neuronal/fisiología , Proteínas Represoras/deficiencia , Memoria Espacial/fisiología , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Animales , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
3.
Cell Rep ; 27(10): 3006-3018.e4, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167144

RESUMEN

Gut mesenchyme provides key stem cell niche signals such as Wnt ligands, but how these signals are regulated is unclear. Because Hedgehog (Hh) signaling is critical for gut mesenchymal development and tumorigenesis, we investigated Hh-mediated mechanisms by analyzing mice deleted for key negative regulators of Hh signaling, Sufu and/or Spop, in the gut mesenchyme, and demonstrated their dosage-dependent roles. Although these mutants exhibit abnormal mesenchymal cell growth and functionally defective muscle layers, villification is completed with proper mesenchymal clustering, implying a permissive role for Hh signaling. These mesenchymal defects are partially rescued by Gli2 reduction. Consistent with increased epithelial proliferation caused by abnormal Hh activation in development, Sufu reduction promotes intestinal tumorigenesis, whereas Gli2 heterozygosity suppresses it. Our analyses of chromatin and GLI2 binding genomic regions reveal its transcriptional regulation of stem cell niche signals through enhancers, providing mechanistic insight into the intestinal stem cell niche in development and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica , Intestino Delgado/metabolismo , Proteínas Represoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Actinas/metabolismo , Animales , Proliferación Celular , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Intestino Delgado/crecimiento & desarrollo , Intestino Delgado/patología , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Contracción Muscular , Proteínas Musculares/metabolismo , Músculos/metabolismo , Músculos/fisiología , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Nicho de Células Madre , Factor de Crecimiento Transformador beta/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Proteínas Wnt/metabolismo , Proteína Gli2 con Dedos de Zinc/genética
4.
Hum Mol Genet ; 28(9): 1474-1486, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590535

RESUMEN

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Memoria a Corto Plazo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Animales , Conducta Animal , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Marcación de Gen , Sitios Genéticos , Genotipo , Masculino , Ratones , Ratones Noqueados , Fenotipo , Eliminación de Secuencia , Factores Sexuales
5.
Sci Rep ; 8(1): 9202, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907856

RESUMEN

DDB1- and CUL4-associated factor 17 (Dcaf17) is a member of DCAF family genes that encode substrate receptor proteins for Cullin-RING E3 ubiquitin ligases, which play critical roles in many cellular processes. To unravel the function of DCAF17, we performed expression profiling of Dcaf17 in different tissues of wild type mouse by qRT-PCR and generated Dcaf17 knockout mice by gene targeting. Expression profiling of Dcaf17 showed highest expression in testis. Analyses of Dcaf17 transcripts during post-natal development of testis at different ages displayed gradual increase in Dcaf17 mRNA levels with the age. Although Dcaf17 disruption did not have any effect on female fertility, Dcaf17 deletion led to male infertility due to abnormal sperm development. The Dcaf17 -/- mice produced low number of sperm with abnormal shape and significantly low motility. Histological examination of the Dcaf17 -/- testis revealed impaired spermatogenesis with presence of vacuoles and sloughed cells in the seminiferous tubules. Disruption of Dcaf17 caused asymmetric acrosome capping, impaired nuclear compaction and abnormal round spermatid to elongated spermatid transition. For the first time, these data indicate that DCAF17 is essential for spermiogenesis.


Asunto(s)
Envejecimiento , Eliminación de Gen , Infertilidad Masculina , Túbulos Seminíferos , Espermátides , Espermatogénesis , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Infertilidad Masculina/enzimología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Túbulos Seminíferos/enzimología , Túbulos Seminíferos/patología , Motilidad Espermática/genética , Espermátides/enzimología , Espermátides/patología
6.
J Biol Chem ; 292(38): 15976-15989, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28768766

RESUMEN

Iron-regulatory protein 1 (IRP1) belongs to a family of RNA-binding proteins that modulate metazoan iron metabolism. Multiple mechanisms are employed to control the action of IRP1 in dictating changes in the uptake and metabolic fate of iron. Inactivation of IRP1 RNA binding by iron primarily involves insertion of a [4Fe-4S] cluster by the cytosolic iron-sulfur cluster assembly (CIA) system, converting it into cytosolic aconitase (c-acon), but can also involve iron-mediated degradation of IRP1 by the E3 ligase FBXL5 that also targets IRP2. How CIA and FBXL5 collaborate to maintain cellular iron homeostasis through IRP1 and other pathways is poorly understood. Because impaired Fe-S cluster biogenesis associates with human disease, we determined the importance of FBXL5 for regulating IRP1 when CIA is impaired. Suppression of FBXL5 expression coupled with induction of an IRP1 mutant (IRP13C>3S) that cannot insert the Fe-S cluster, or along with knockdown of the CIA factors NUBP2 or FAM96A, reduced cell viability. Iron supplementation reversed this growth defect and was associated with FBXL5-dependent polyubiquitination of IRP1. Phosphorylation of IRP1 at Ser-138 increased when CIA was inhibited and was required for iron rescue. Impaired CIA activity, as noted by reduced c-acon activity, was associated with enhanced FBXL5 expression and a concomitant reduction in IRP1 and IRP2 protein level and RNA-binding activity. Conversely, expression of either IRP induced FBXL5 protein level, demonstrating a negative feedback loop limiting excessive accumulation of iron-response element RNA-binding activity, whose disruption reduces cell growth. We conclude that a regulatory circuit involving FBXL5 and CIA acts through both IRPs to control iron metabolism and promote optimal cell growth.


Asunto(s)
Proteínas F-Box/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Hierro/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas F-Box/genética , Ferritinas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteína 1 Reguladora de Hierro/química , Proteína 2 Reguladora de Hierro/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN/metabolismo , Serina/metabolismo , Azufre/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
7.
J Neurosci ; 37(14): 3887-3895, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28292828

RESUMEN

SCRAPPER is an E3 ubiquitin ligase expressed in presynaptic terminals, neural cell body, and dendrites of the hippocampus and cortex, which is coded by the FBXL20 gene. SCRAPPER is known to regulate synaptic transmissions and long-term potentiation (LTP) in the hippocampus, but no report is available for the cortex. Here we show genetic evidence for critical roles of SCRAPPER in excitatory transmission and presynaptic LTP (pre-LTP) of the anterior cingulate cortex (ACC), a critical cortical region for pain, anxiety, and fear. Miniature and spontaneous releases, but not evoked release, of glutamate were significantly increased in SCRAPPER knock-out (SCR-KO) mice. Interestingly, SCRAPPER selectively contributes to the increases of frequency and amplitude. The pre-LTP in the ACC was completely blocked in SCR-KO mice. Our results thus provide direct evidence for SCRAPPER in both spontaneous release and pre-LTP in the ACC and reveal a potential novel target for treating anxiety-related disease.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) plays critical roles in pain, anxiety, and fear. Peripheral injury induces long-term changes in synaptic transmission in the ACC. Our recent study found that a presynaptic form of LTP (pre-LTP) in the ACC contributes to chronic pain-induced anxiety. Here, we show that SCRAPPER plays a critical role in ACC pre-LTP as well as synaptic transmission.


Asunto(s)
Giro del Cíngulo/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/deficiencia , Terminales Presinápticos/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Animales , Potenciales Postsinápticos Excitadores/fisiología , Proteínas F-Box , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Complejos de Ubiquitina-Proteína Ligasa/genética
8.
FEMS Yeast Res ; 14(4): 567-74, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25035868

RESUMEN

The ubiquitin/proteasome system plays significant and important roles in the regulation of metabolism of various proteins. The dysfunction of this system is involved in several diseases, for example, cancer, neurogenic diseases and chronic inflammation. Therefore, the compounds, which regulate the ubiquitin/proteasome system, might be candidates for the development use as clinical drugs. The Saccharomyces cerevisiae mutant (rsp5(A401E)) has a single amino acid change, Ala401Glu, in the RSP5 gene, which encodes an essential E3 ubiquitin ligase, is hypersensitive to high-temperature stress. Here, we found that the immunosuppressants FK506 and cyclosporin A, both known as calcineurin inhibitors, complemented the high-temperature stress-induced growth defect of rsp5(A401E) strain. The defect of calcineurin pathway by disrupting the CNB1 and CRZ1 gene also partially complemented the high-temperature stress sensitivity of rsp5(A401E) cells. Thus, these results suggest that inhibition of the calcineurin pathway confers the tolerance to high-temperature stress on rsp5(A401E) cells. Furthermore, some diterpenoid compounds, which restore the growth of rsp5(A401E) cells, showed the activities of calcineurin inhibition and protein phosphatase 2C activation. These results indicate that calcineurin inhibitors suppress the high-temperature stress sensitivity of rsp5(A401E) cells and that analysis of their physiological function is effective for the screening of calcineurin inhibitors in yeast cells.


Asunto(s)
Inhibidores de la Calcineurina/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/efectos de la radiación , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Inhibidores de la Calcineurina/farmacología , Ciclosporina/farmacología , Calor , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae , Tacrolimus/farmacología
9.
Mol Biol Cell ; 23(10): 1928-42, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22438580

RESUMEN

Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in the absence of methionine, studies indicate that Met32 has a prominent role over Met31 when Met30, a negative regulator of Met4 and Met32, is inactive. To characterize different roles of Met31 and Met32 in coordinating Met4-activated transcription, we examined transcription in strains lacking either Met31 or Met32 upon Met4 induction in the absence of Met30. Microarray analysis revealed that transcripts involved in sulfate assimilation and sulfonate metabolism were dramatically decreased in met32Δ cells compared to its wild-type and met31Δ counterparts. Despite this difference, both met31Δ and met32Δ cells used inorganic sulfur compounds and sulfonates as sole sulfur sources in minimal media when Met30 was present. This discrepancy may be explained by differential binding of Met31 to Cbf1-dependent promoters between these two conditions. In the absence of Met30, genome-wide chromatin immunoprecipitation analyses found that Met32 bound all Met4-bound targets, supporting Met32 as the main platform for Met4 recruitment. Finally, Met31 and Met32 levels were differentially regulated, with Met32 levels mimicking the profile for active Met4. These different properties of Met32 likely contribute to its prominent role in Met4-activated transcription when Met30 is absent.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Activación Transcripcional , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Secuencia de Bases , Sitios de Unión , Análisis por Conglomerados , Secuencia de Consenso , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Sulfónicos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Complejos de Ubiquitina-Proteína Ligasa/genética
10.
Nature ; 474(7350): 173-8, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21614000

RESUMEN

Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.


Asunto(s)
Empalme Alternativo , Regulación Fúngica de la Expresión Génica , Ligasas/metabolismo , Sitios de Empalme de ARN/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Eliminación de Gen , Humanos , Ligasas/deficiencia , Ligasas/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/deficiencia , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/deficiencia , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Empalmosomas/química , Empalmosomas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinas
11.
Learn Mem ; 18(1): 49-57, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21191042

RESUMEN

Learning and memory processes critically involve the orchestrated regulation of de novo protein synthesis. On the other hand it has become clear that regulated protein degradation also plays a major role in neuronal plasticity and learning behavior. One of the key pathways mediating protein degradation is proteosomal protein destruction. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets proteins for proteosomal degradation by the 26S proteasome. While the APC/C is essential for cell cycle progression it is also expressed in postmitotic neurons where it has been implicated with axonal outgrowth and neuronal survival. In this study we addressed the role of APC/C in learning and memory function by generating mice that lack the essential subunit APC2 from excitatory neurons of the adult forebrain. Those animals are viable but exhibit a severe impairment in the ability to extinct fear memories, a process critical for the treatment of anxiety diseases such as phobia or post-traumatic stress disorder. Since deregulated protein degradation and APC/C activity has been implicated with neurodegeneration we also analyzed the effect of Apc2 deletion in a mouse model for Alzheimer's disease. In our experimental setting loss of APC2 form principle forebrain neurons did not affect the course of pathology in an Alzheimer's disease mouse model. In conclusion, our data provides genetic evidence that APC/C activity in the adult forebrain is required for cognitive function.


Asunto(s)
Memoria/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Ciclosoma-Complejo Promotor de la Anafase , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Encéfalo/citología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Humanos , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/genética , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Presenilina-1/genética , ARN Mensajero/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética
12.
Mol Cell Biol ; 30(16): 3994-4005, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20530197

RESUMEN

Cdh1 is an activator of the anaphase-promoting complex/cyclosome and contributes to mitotic exit and G(1) maintenance by targeting cell cycle proteins for degradation. However, Cdh1 is expressed and active in postmitotic or quiescent cells, suggesting that it has functions other than cell cycle control. Here, we found that homozygous Cdh1 gene-trapped (Cdh1(GT/GT)) mouse embryonic fibroblasts (MEFs) and Cdh1-depleted HeLa cells reduced stress fiber formation significantly. The GTP-bound active Rho protein was apparently decreased in the Cdh1-depleted cells. The p190 protein, a major GTPase-activating protein for Rho, accumulated both in Cdh1(GT/GT) MEFs and in Cdh1-knockdown HeLa cells. Cdh1 formed a physical complex with p190 and stimulated the efficient ubiquitination of p190, both in in vitro and in vivo. The motility of Cdh1-depleted HeLa cells was impaired; however, codepletion of p190 rescued the migration activity of these cells. Moreover, Cdh1(GT/GT) embryos exhibited phenotypes similar to those observed for Rho-associated kinase I and II knockout mice: eyelid closure delay and disruptive architecture with frequent thrombus formation in the placental labyrinth layer, respectively. Furthermore, the p190 protein accumulated in the Cdh1(GT/GT) embryonic tissues. Our data revealed a novel function for Cdh1 as a regulator of Rho and provided insights into the role of Cdh1 in cell cytoskeleton organization and cell motility.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Represoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Secuencia de Bases , Proteínas Cdh1 , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Citoesqueleto/metabolismo , Cartilla de ADN/genética , Proteínas Activadoras de GTPasa/química , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/química , Células HeLa , Humanos , Ratones , Ratones Noqueados , Complejos Multiproteicos , ARN Interferente Pequeño/genética , Proteínas Represoras/química , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
13.
Proc Natl Acad Sci U S A ; 106(42): 17799-804, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19805045

RESUMEN

Planar cell polarity signaling controls a variety of polarized cell behaviors. In multiciliated Xenopus epidermal cells, recruitment of Dishevelled (Dvl) to the basal body and its localization to the center of the ciliary rootlet are required to correctly position the motile cilia. We now report that the anaphase-promoting complex (APC/C) recognizes a D-box motif of Dvl and ubiquitylates Dvl on a highly conserved lysine residue. Inhibition of APC/C function by knockdown of the ANAPC2 subunit disrupts the polarity of motile cilia and alters the directionality of the fluid movement along the epidermis of the Xenopus embryo. Our results suggest that the APC/C activity enables cilia to correctly polarize in Xenopus epidermal cells.


Asunto(s)
Polaridad Celular/fisiología , Cilios/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Proteínas de Xenopus/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Animales Modificados Genéticamente , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Secuencia de Bases , Línea Celular , Secuencia Conservada , Proteínas Dishevelled , Células Epidérmicas , Femenino , Marcación de Gen , Humanos , Ratones , Oligodesoxirribonucleótidos Antisentido/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal/fisiología , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/fisiología
14.
PLoS Genet ; 3(6): e105, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17590086

RESUMEN

The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13-1, yku80Delta, yku70Delta, yku80-1, and yku80-4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Delta and cdc13-1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13-1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Telomerasa/fisiología , Telómero/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , ADN Helicasas/biosíntesis , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética
15.
Biochem J ; 395(1): 173-81, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16363994

RESUMEN

The Rsp5 ubiquitin ligase plays a role in many cellular processes including the biosynthesis of unsaturated fatty acids. The PIS1 (phosphatidylinositol synthase gene) encoding the enzyme Pis1p which catalyses the synthesis of phosphatidylinositol from CDP-diacyglycerol and inositol, was isolated in a screen for multicopy suppressors of the rsp5 temperature sensitivity phenotype. Suppression was allele non-specific. Interestingly, expression of PIS1 was 2-fold higher in the rsp5 mutant than in wild-type yeast, whereas the introduction of PIS1 in a multicopy plasmid increased the level of Pis1p 6-fold in both backgrounds. We demonstrate concomitantly that the expression of INO1 (inositol phosphate synthase gene) was also elevated approx. 2-fold in the rsp5 mutant as compared with the wild-type, and that inositol added to the medium improved growth of rsp5 mutants at a restrictive temperature. These results suggest that enhanced phosphatidylinositol synthesis may account for PIS1 suppression of rsp5 defects. Analysis of lipid extracts revealed the accumulation of saturated fatty acids in the rsp5 mutant, as a consequence of the prevention of unsaturated fatty acid synthesis. Overexpression of PIS1 did not correct the cellular fatty acid content; however, saturated fatty acids (C(16:0)) accumulated preferentially in phosphatidylinositol, and (wild-type)-like fatty acid composition in phosphatidylethanolamine was restored.


Asunto(s)
Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Catálisis , Supervivencia Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Supresores , Inositol/farmacología , Mutación/genética , Mio-Inositol-1-Fosfato Sintasa/genética , Fenotipo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Regulación hacia Arriba/genética
16.
Cell Cycle ; 4(11): 1555-7, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16258265

RESUMEN

The spindle assembly checkpoint monitors biorientation of chromosomes on the metaphase spindle and inhibits the Anaphase Promoting Complex (APC) specificity factor Cdc20. If APC-Cdc20 is the sole target of the spindle checkpoint, then cells lacking APC and its targets, B-type cyclin and securin, would lack spindle checkpoint function. We tested this hypothesis in yeast cells that are APC-null. Surprisingly, we find that such yeast cells are able to activate the spindle assembly checkpoint, delaying cell cycle progression in G2/M phase. These data suggest that the spindle checkpoint has a non-APC target that can restrain anaphase onset.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Huso Acromático/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , División Celular/genética , Ciclina B/deficiencia , Ciclina B/genética , Fase G2/genética , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Securina , Huso Acromático/genética , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética
17.
J Biol Chem ; 280(36): 31783-91, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15994309

RESUMEN

The anaphase-promoting complex or cyclosome (APC/C) is a multiprotein subunit E3 ubiquitin ligase complex that controls segregation of chromosomes and exit from mitosis in eukaryotes. It triggers elimination of key cell cycle regulators such as securin and mitotic cyclins during mitosis by polyubiquitinating them for proteasome degradation. Seven core subunit homologs of APC/C (APC1, APC2, APC11, CDC16, CDC23, CDC27, and DOC1) were identified in the Trypanosoma brucei genome data base. Expression of six of them was individually ablated by RNA interference in both the procyclic and bloodstream forms of T. brucei. Only the CDC27- and APC1-depleted cells were enriched in the G2/M phase with inhibited growth. Further studies indicated that T. brucei APC1 and CDC27 failed to complement the corresponding deletion mutants of budding yeast. However, their depletion from procyclic-form T. brucei enriched cells with two kinetoplasts and an enlarged nucleus possessing short metaphase-like mitotic spindles, suggesting that APC1 and CDC27 may play essential roles in promoting anaphase in the procyclic form. Their depletion from the bloodstream form, however, enriched cells with two kinetoplasts and two nuclei connected through a microtubule bundle, suggesting a late anaphase arrest. This is the first time functional APC/C subunit homologs were identified in T. brucei. The apparent differential activities of this putative APC/C in two distinct developmental stages suggest an unusual function. The apparent lack of functional involvement of some of the other individual structural subunit homologs of APC/C may indicate the structural uniqueness of T. brucei APC/C.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Metafase/fisiología , Subunidades de Proteína/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/crecimiento & desarrollo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular/genética , Bases de Datos Genéticas , Citometría de Flujo , Genoma de Protozoos , Subunidades de Proteína/genética , Interferencia de ARN , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/genética , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas
18.
Genetics ; 167(2): 663-72, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15238519

RESUMEN

Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Factor de Crecimiento Epidérmico/genética , Factores de Transcripción/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ciclosoma-Complejo Promotor de la Anafase , Animales , Secuencia de Bases , Diferenciación Celular , Cartilla de ADN , Factores de Transcripción E2F , Femenino , Regulación de la Expresión Génica , Genes de Retinoblastoma , Genes Sintéticos , Faringe/citología , Faringe/crecimiento & desarrollo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Vulva/citología , Vulva/crecimiento & desarrollo
19.
J Virol ; 78(5): 2615-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14963168

RESUMEN

The papillomavirus E1 replicative helicase is essential for replication and maintenance of extrachromosomal viral genomes in infected cells. We previously found that the bovine papillomavirus E1 protein is a substrate of the ubiquitin-dependent proteolytic pathway. Here we show that E1 is targeted for degradation by the anaphase-promoting complex (APC). Inhibition of APC activity by the specific inhibitor Emi1 or point mutations in the D-box and KEN-box motifs of E1 stabilize the protein and increase viral DNA replication in both a cell-free system and in living cells. These findings involve APC as the ubiquitin ligase that controls E1 levels to maintain a constant low copy number of the viral genome during latent infection.


Asunto(s)
Papillomavirus Bovino 1/enzimología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , ADN Helicasas/química , ADN Helicasas/genética , Replicación del ADN , ADN Viral/biosíntesis , ADN Viral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas , Proteínas F-Box , Humanos , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas de Xenopus , Xenopus laevis
20.
Genes Dev ; 18(1): 88-98, 2004 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-14724179

RESUMEN

The anaphase-promoting complex or cyclosome (APC/C) is an ubiquitin protein ligase that together with Cdc20 and Cdh1 targets mitotic proteins for degradation by the proteosome. APC-Cdc20 activity during mitosis triggers anaphase by destroying securin and cyclins. APC-Cdh1 promotes degradation of cyclins and other proteins during G(1). We show that loss of APC/C during embryogenesis is early lethal before embryonic day E6.5 (E6.5). To investigate the role of APC/C in quiescent cells, we conditionally inactivated the subunit Apc2 in mice. Deletion of Apc2 in quiescent hepatocytes caused re-entry into the cell cycle and arrest in metaphase, resulting in liver failure. Re-entry into the cell cycle either occurred without any proliferative stimulus or could be easily induced. We demonstrate that the APC has an additional function to prevent hepatocytes from unscheduled re-entry into the cell cycle.


Asunto(s)
División Celular/genética , Hepatocitos/citología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans , Drosophila melanogaster/citología , Humanos , Ratones , Ratones Noqueados , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces/citología , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA