RESUMEN
Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.
Asunto(s)
Inactivadores del Complemento/farmacología , Vía Clásica del Complemento/efectos de los fármacos , Proteínas de Insectos/farmacología , Psychodidae/inmunología , Psychodidae/metabolismo , Saliva/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Activación de Complemento/efectos de los fármacos , Complemento C1/antagonistas & inhibidores , Complemento C1/inmunología , Complemento C1/metabolismo , Complemento C4/antagonistas & inhibidores , Complemento C4/inmunología , Complemento C4/metabolismo , Humanos , Proteínas Recombinantes/farmacologíaRESUMEN
Hereditary angioedema (HAE) is an inherited deficiency of C1 esterase inhibitor (C1 inh). The two types of genetic C1 inh deficiency are type I, which is quantitative, and type II, which is functional. For the purpose of the present study, four HAE patients were selected. None of them had received any androgenic therapy. The group included three type I and one type II cases. All patients that entered the protocol received danazol, 400 mg/day for 14 days. The complement system was evaluated by monitoring C4, hemolytic complement 50% (CH50), circulating immune complexes (CIC), and antigenic and functional C1 inh during the study. The level of complement factors at the beginning and at the end of this period demonstrated a statistically significant increase in C4 and CH50 and the disappearance of CIC, while C1 inh remained unmodified. These results suggest that the therapeutic effect of danazol may have two mechanisms of action: (1) promotion of C4 synthesis by anabolic effect resulting in an improvement of the complement system with the disappearance of CIC and (2) a minor increase in C1 inh level primarily due to the lack of its consumption.