Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.725
Filtrar
1.
Cell Biochem Funct ; 42(4): e4053, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773932

RESUMEN

Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.


Asunto(s)
Diabetes Mellitus , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Animales
2.
Cell Biochem Funct ; 42(4): e4037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736204

RESUMEN

Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Complicaciones de la Diabetes/metabolismo , Estrés Oxidativo , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Inflamación/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/etiología
3.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632264

RESUMEN

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Exosomas , Células Madre Mesenquimatosas , Humanos , Exosomas/metabolismo , Complicaciones de la Diabetes/metabolismo , Comunicación Celular , Células Madre Mesenquimatosas/metabolismo , Resultado del Tratamiento , Diabetes Mellitus/metabolismo
4.
Mol Biol Rep ; 51(1): 434, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520585

RESUMEN

BACKGROUND: The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS: In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION: This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.


Asunto(s)
Catequina , Complicaciones de la Diabetes , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Catequina/farmacología , Catequina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Complicaciones de la Diabetes/metabolismo , Productos Finales de Glicación Avanzada/metabolismo
5.
Eur J Neurosci ; 59(10): 2628-2645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491850

RESUMEN

Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.


Asunto(s)
Forminas , Transducción de Señal , Humanos , Animales , Forminas/metabolismo , Transducción de Señal/fisiología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Complicaciones de la Diabetes/metabolismo , Neuropatías Diabéticas/metabolismo
6.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528533

RESUMEN

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Asunto(s)
Nefropatías Diabéticas , FN-kappa B , Receptores de Interleucina-8B , Animales , Humanos , Ratones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Glucosa , Glicocálix/metabolismo , Inflamación/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Receptores de Quimiocina/uso terapéutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo
7.
J Mol Med (Berl) ; 102(6): 709-717, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38538987

RESUMEN

Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recovery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflammation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/inmunología , Animales , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/inmunología , Transducción de Señal , Diabetes Mellitus/metabolismo , Diabetes Mellitus/inmunología , Complicaciones de la Diabetes/metabolismo
8.
Medicine (Baltimore) ; 103(8): e37265, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394525

RESUMEN

Red blood cells (RBCs), traditionally recognized for their oxygen transport role, have garnered increasing attention for their significance as crucial contributors to the pathophysiology of diabetes mellitus. In this comprehensive review, we elucidate the multifaceted roles of RBCs as both biomarkers and mediators in diabetes mellitus. Amidst the intricate interplay of altered metabolic pathways and the diabetic milieu, RBCs manifest distinct alterations in their structure, function, and lifespan. The chronic exposure to hyperglycemia induces oxidative stress, leading to modifications in RBC physiology and membrane integrity. These modifications, including glycation of hemoglobin (HbA1c), establish RBCs as invaluable biomarkers for assessing glycemic control over extended periods. Moreover, RBCs serve as mediators in the progression of diabetic complications. Their involvement in vascular dysfunction, hemorheological changes, and inflammatory pathways contributes significantly to diabetic microangiopathy and associated complications. Exploring the therapeutic implications, this review addresses potential interventions targeting RBC abnormalities to ameliorate diabetic complications. In conclusion, comprehending the nuanced roles of RBCs as biomarkers and mediators in diabetes mellitus offers promising avenues for enhanced diagnostic precision, therapeutic interventions, and improved patient outcomes. This review consolidates the current understanding and emphasizes the imperative need for further research to harness the full potential of RBC-related insights in the realm of diabetes mellitus.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Hiperglucemia , Humanos , Diabetes Mellitus/diagnóstico , Eritrocitos/metabolismo , Hiperglucemia/diagnóstico , Complicaciones de la Diabetes/metabolismo , Biomarcadores
9.
Adv Med Sci ; 69(1): 36-50, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335908

RESUMEN

Glycation is a physiological process that determines the aging of the organism, while in states of metabolic disorders it is significantly intensified. High concentrations of compounds such as reducing sugars or reactive aldehydes derived from lipid oxidation, occurring for example in diabetes, atherosclerosis, dyslipidemia, obesity or metabolic syndrome, lead to increased glycation of proteins, lipids and nucleic acids. The level of advanced glycation end-products (AGEs) in the body depends on rapidity of their production and the rate of their removal by the urinary system. AGEs, accumulated in the extracellular matrix of the blood vessels and other organs, cause irreversible changes in the biochemical and biomechanical properties of tissues. As a consequence, micro- and macroangiopathies appear in the system, and may contribute to the organ failure, like kidneys and heart. Elevated levels of AGEs also increase the risk of Alzheimer's disease and various cancers. In this paper, we propose a new classification due to modified amino acid residues: arginyl-AGEs, monolysyl-AGEs and lysyl-arginyl-AGEs and dilysyl-AGEs. Furthermore, we describe in detail the effect of AGEs on the pathogenesis of metabolic and old age diseases, such as diabetic complications, atherosclerosis and neurodegenerative diseases. We summarize the currently available data on the diagnostic value of AGEs and present the AGEs as a therapeutic goal in a wide range of medical problems, including SARS-CoV-2 infection and so-called long COVID.


Asunto(s)
COVID-19 , Productos Finales de Glicación Avanzada , SARS-CoV-2 , Productos Finales de Glicación Avanzada/metabolismo , Humanos , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Complicaciones de la Diabetes/metabolismo , Aterosclerosis/metabolismo , Enfermedades Neurodegenerativas/metabolismo
10.
Invest Ophthalmol Vis Sci ; 65(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165707

RESUMEN

Purpose: Diabetic keratopathy (DK) is a vision-threatening disease that occurs in people with diabetes. Mounting evidence indicates that microRNAs (miRNAs) are indispensable in nerve regeneration within DK. Herein, the role of miRNAs associated with DK, especially focusing on autophagy and apoptosis regulation, was investigated. Methods: To identify differentially expressed miRNAs, we performed miRNA sequencing on trigeminal ganglion (TG) tissues derived from streptozotocin-induced type 1 diabetic mellitus (T1DM) and normal mice. MiR-144-3p was chosen for the subsequent experiments. To explore the regulatory role of miR-144-3p in DK, miRNA antagomir was utilized to inhibit miR-144-3p expression. Bioinformatic tools were used to predict the target genes of miR-144-3p, and a dual-luciferase reporter assay was then applied for validation. Autophagy and apoptosis activities were measured utilizing TUNEL staining, immunofluorescence staining, and Western blotting. Results: Overall, 56 differentially expressed miRNAs were detected in diabetic versus control mice. In the diabetic mouse TG tissue, miR-144-3p expression was aberrantly enhanced, whereas decreasing its expression contributed to improved diabetic corneal re-epithelialization and nerve regeneration. Fork-head Box O1 (FOXO1) was validated as a target gene of miR-144-3p. Overexpression of FOXO1 could prevent both inadequate autophagy and excessive apoptosis in DK. Consistently, a specific miR-144-3p inhibition enhanced autophagy and prevented apoptosis in DK. Conclusions: In this study, our research confirmed the target binding relationship between miR-144-3p and FOXO1. Inhibiting miR-144-3p might modulate autophagy and apoptosis, which could generate positive outcomes for corneal nerves via targeting FOXO1 in DK.


Asunto(s)
Córnea , Complicaciones de la Diabetes , MicroARNs , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Córnea/inervación , Córnea/patología , Animales , Ratones , Masculino , Ratones Endogámicos C57BL , Regeneración Nerviosa , Hiperglucemia/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Autofagia , Apoptosis , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/patología
11.
Pharmacol Res ; 200: 107054, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181858

RESUMEN

Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.


Asunto(s)
Productos Biológicos , Complicaciones de la Diabetes , Diabetes Mellitus , Enfermedades Mitocondriales , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Estudios Multicéntricos como Asunto
12.
Mol Cell Biochem ; 479(3): 603-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37129768

RESUMEN

Stem cell-based therapy has been proposed as a novel therapeutic strategy for diabetic nephropathy. This study was designed to evaluate the effect of systemic administration of rat bone marrow-derived c-kit positive (c-kit+) cells on diabetic nephropathy in male rats, focusing on PI3K/AKT/GSK-3ß pathway and apoptosis as a possible therapeutic mechanism. Twenty-eight animals were randomly classified into four groups: Control group (C), diabetic group (D), diabetic group, intravenously received 50 µl phosphate-buffered saline (PBS) containing 3 × 105 c-kit- cells (D + ckit-); and diabetic group, intravenously received 50 µl PBS containing 3 × 105 c-Kit positive cells (D + ckit+). Control and diabetic groups intravenously received 50 µl PBS. C-kit+ cell therapy could reduce renal fibrosis, which was associated with attenuation of inflammation as indicated by decreased TNF-α and IL-6 levels in the kidney tissue. In addition, c-kit+ cells restored the expression levels of PI3K, pAKT, and GSK-3ß proteins. Furthermore, renal apoptosis was decreased following c-kit+ cell therapy, evidenced by the lower apoptotic index in parallel with the increased Bcl-2 and decreased Bax and Caspase-3 levels. Our results showed that in contrast to c-kit- cells, the administration of c-kit+ cells ameliorate diabetic nephropathy and suggested that c-kit+ cells could be an alternative cell source for attenuating diabetic nephropathy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Nefropatías Diabéticas , Animales , Masculino , Ratas , Apoptosis , Médula Ósea/metabolismo , Nefropatías Diabéticas/terapia , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas Proto-Oncogénicas c-kit , Complicaciones de la Diabetes/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos
13.
Biochem Biophys Res Commun ; 690: 149254, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988877

RESUMEN

Hyperglycemia -induced oxidative stress and inflammation have been closely associated with diabetes complications including testicular dysfunction. Conversely, reducing blood glucose and/or use of antioxidant have been associated with reduced diabetes complications. The present study investigated the effect of erythritol (which has both antioxidant and blood glucose lowering function) on diabetes -induced testicular dysfunction in rats. Thirty male Wistar rats (170-200g) were randomly divided into 5 groups: 1) control; 2) erythritol; 3) diabetic; 4) diabetic + erythritol 1000 mg/kg; and 5) diabetic + metformin 300 mg/kg. After 8 weeks of treatment period, blood sample, testes and epididymis were collected for reproductive hormones, biochemical and histological examinations, and sperm analysis respectively. There was a significant (p < 0.05) decrease in sperm count, sperm motility, sperm morphology and serum reproductive hormones (Follicle stimulating hormone (FSH), Leutinizing hormone (LH), testosterone and gonadotropin releasing hormone (GnRH)) of diabetes rat compared to control. Also, diabetes rat showed increase in sperm and testicular malonaldehyde (MDA) and decrease in sperm and testicular superoxide dismutase (SOD) activity and glutathione (GSH) level. Further, diabetes rat showed reduced testicular weight, decreased testicular 17ß-HSD and 3ß-HSD activity and testicular histo-architectural alteration which were accompanied by decrease testicular vascular endothelial growth factor (VEGF) and concomitant increase in testicular myeloperoxidase activity and level of caspase 3. The present results indicates that induction of diabetes in rat causes reduction in the level of reproductive hormones (Testosterone, LH and FSH) as well as sperm and testicular oxidative stress causing abnormal sperm parameters, and biochemical and histo-architectural alterations in the testes of rats. In addition, the present results suggest that erythritol administration reduced blood glucose and ameliorated hyperglycemia -induced oxidative stress -mediated alterations in both sperm and testes of diabetes rat. Further, the present study suggests that erythritol improved testicular oxidative stress, inflammation and apoptosis by up-regulating VEGF.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Hiperglucemia , Ratas , Masculino , Animales , Antioxidantes/efectos adversos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratas Wistar , Glucemia/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Motilidad Espermática , Semen/metabolismo , Testículo/metabolismo , Estrés Oxidativo , Espermatozoides/metabolismo , Testosterona/metabolismo , Apoptosis , Hormona Folículo Estimulante/metabolismo , Hiperglucemia/metabolismo , Inflamación/metabolismo , Complicaciones de la Diabetes/metabolismo
14.
Diabetes ; 73(1): 120-134, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37874683

RESUMEN

Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS: FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Animales , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Histonas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Queratinocitos/metabolismo , Complicaciones de la Diabetes/metabolismo , Epigénesis Genética , Glucosa/metabolismo , ADN/metabolismo , Repitelización
15.
Mol Cell Endocrinol ; 579: 112089, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37863468

RESUMEN

A diabetic wound is a refractory disease that afflicts patients globally. MicroRNA-146a-5p (miR-146a-5p) is reported to represent a potential therapeutic target for diabetic wounds. However, microRNA easily degrades in the wound microenvironment. This study extracted bone marrow mesenchymal stem cell (BMSC)-derived exosomes (EXO). Electroporation technology was used to load miR-146a-5p into EXO (labeled as EXO-miR-146a). The endothelial cells (human umbilical vein endothelial cells [HUVECs]) and macrophages were cocultured in transwell chambers in the presence of high glucose. Cell proliferation, migration, and angiogenesis were measured with cell counting kit 8, scratch, and tube forming assays, respectively. Flow cytometry was introduced to validate the biomarker of macrophages and BMSCs. The expression level of macrophage polarization-related proteins and tumor necrosis factor receptor-associated factor 6 (TRAF6) was assessed with western blotting analysis. The full-thickness skin wound model was developed to verify the in vitro results. EXO-miR-146a promoted the proliferation, migration, and angiogenesis of HUVECs in the hyperglycemic state by suppressing the TRAF6 expression in vitro. Additionally, EXO-miR-146a treatment facilitated M2 but inhibited M1 macrophage polarization. Furthermore, EXO-miR-146a enhances reepithelialization, angiogenesis, and M2 macrophage polarization, thereby accelerating diabetic wound healing in vivo. The EXO-miR-146a facilitated M2 macrophage polarization, proliferation, migration, and angiogenesis of HUVECs through TRAF6, thereby ameliorating intractable diabetic wound healing. These results established the basis for using EXO to deliver drugs and revealed mediators for diabetic wound treatment.


Asunto(s)
Complicaciones de la Diabetes , Células Madre Mesenquimatosas , MicroARNs , Cicatrización de Heridas , Animales , Humanos , Ratones , Diabetes Mellitus/patología , Células Endoteliales de la Vena Umbilical Humana , Macrófagos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Factor 6 Asociado a Receptor de TNF , Exosomas/genética , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Cicatrización de Heridas/genética
16.
Nature ; 624(7992): 645-652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093014

RESUMEN

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Asunto(s)
Células Dendríticas , Complicaciones de la Diabetes , Diabetes Mellitus , Susceptibilidad a Enfermedades , Hiperglucemia , Pulmón , Virosis , Animales , Ratones , Acetilcoenzima A/metabolismo , Acetilación , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Complicaciones de la Diabetes/inmunología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Linfocitos T/inmunología , Virosis/complicaciones , Virosis/inmunología , Virosis/mortalidad , Virus/inmunología , Modelos Animales de Enfermedad , Humanos
17.
Cell Commun Signal ; 21(1): 365, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129863

RESUMEN

Hyperglycaemia-induced endothelial dysfunction is a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy. STING, which is a newly discovered regulator of innate immunity, has also been reported to play an important role in various metabolic diseases. However, the role of STING in diabetes-induced endothelial cell dysfunction is unknown. In this study, we established a diabetic macroangiopathy mouse model by streptozotocin (STZ) injection combined with high-fat diet (HFD) feeding and a glucotoxicity cell model in high glucose (HG)-treated rat aortic endothelial cells (RAECs). We found that STING expression was specifically increased in the endothelial cells of diabetic arteries, as well as in HG-treated RAECs. Moreover, genetic deletion of STING significantly ameliorated diabetes-induced endothelial cell dysfunction and apoptosis in vivo. Likewise, STING inhibition by C-176 reversed HG-induced migration dysfunction and apoptosis in RAECs, whereas STING activation by DMXAA resulted in migration dysfunction and apoptosis. Mechanistically, hyperglycaemia-induced oxidative stress promoted endothelial mitochondrial dysfunction and mtDNA release, which subsequently activated the cGAS-STING system and the cGAS-STING-dependent IRF3/NF-kB pathway, ultimately resulting in inflammation and apoptosis. In conclusion, our study identified a novel role of STING in diabetes-induced aortic endothelial cell injury and suggested that STING inhibition was a potential new therapeutic strategy for the treatment of diabetic macroangiopathy. Video Abstract.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Hiperglucemia , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Transducción de Señal , Hiperglucemia/complicaciones , Nucleotidiltransferasas/metabolismo , Complicaciones de la Diabetes/metabolismo
18.
Life Sci ; 335: 122256, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949210

RESUMEN

Diabetic kidney disease (DKD) is a leading diabetic complication causing significant mortality among people around the globe. People with poor glycemic control accompanied by hyperinsulinemia, dyslipidemia, hypertension, and obesity develop diabetic complications. These diabetic patients develop epigenetic changes and suffer from diabetic kidney complications even after subsequent glucose control, the phenomenon that is recognized as metabolic memory. DNA methylation is an essential epigenetic modification that contributes to the development and progression of several diabetic complications, including DKD. The aberrant DNA methylation pattern at CpGs sites within several genes, such as mTOR, RPTOR, IRS2, GRK5, SLC27A3, LCAT, and SLC1A5, associated with the accompanying risk factors exacerbate the DKD progression. Although drugs such as azacytidine and decitabine have been approved to target DNA methylation for diseases such as hematological malignancies, none have been approved for the treatment of DKD. More importantly, no DNA hypomethylation-targeting drugs have been approved for any disease conditions. Understanding the alteration in DNA methylation and its association with the disease risk factors is essential to target DKD effectively. This review has discussed the abnormal DNA methylation pattern and the kidney tissue-specific expression of critical genes involved in DKD onset and progression. Moreover, we also discuss the new possible therapeutic approach that can be exploited for treating DNA methylation aberrancy in a site-specific manner against DKD.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Metilación de ADN , Riñón/metabolismo , Complicaciones de la Diabetes/metabolismo , Epigénesis Genética , Diabetes Mellitus/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo
19.
Biomater Adv ; 154: 213640, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804684

RESUMEN

Diabetic complications with high-glucose status (HGS) cause the dysregulated autophagy and excessive apoptosis of multiple-type cells, leading to the difficulty in wound self-healing. Herein, we firstly developed fiber-reinforced gelatin (GEL)/ß-cyclodextrin (ß-CD) therapeutic hydrogels by the modification of platelet-rich plasma exosomes (PRP-EXOs). The GEL fibers that were uniformly dispersed within the GEL/ß-CD hydrogels remarkably enhanced the compression strengths and viscoelasticity. The PRP-EXOs were encapsulated in the hydrogels via the covalent crosslinking between the PRP-EXOs and genipin. The diabetic rat models demonstrated that the GEL/ß-CD hydrogels and PRP-EXOs cooperatively promoted diabetic wound healing. On the one hand, the GEL/ß-CD hydrogels provided the biocompatible microenvironments and active components for cell adhesion, proliferation and skin tissue regeneration. On the other hand, the PRP-EXOs in the therapeutic hydrogels significantly activated the autophagy and inhibited the apoptosis of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts (HSFs). The activation of autophagy and inhibition of apoptosis in HUVECs and HSFs induced the blood vessel creation, collagen formation and re-epithelialization. Taken together, this work proved that the incorporation of PRP-EXOs in a wound dressing was an effective strategy to regulate autophagy and apoptosis, and provide a novel therapeutic platform for diabetic wound healing.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Exosomas , Plasma Rico en Plaquetas , Ratas , Humanos , Animales , Hidrogeles/farmacología , Gelatina/farmacología , Exosomas/metabolismo , Cicatrización de Heridas , Complicaciones de la Diabetes/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Plasma Rico en Plaquetas/metabolismo , Diabetes Mellitus/metabolismo
20.
Mol Nutr Food Res ; 67(23): e2300468, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863813

RESUMEN

Copper is an essential trace metal for normal cellular functions; a lack of copper is reported to impair the function of important copper-binding enzymes, while excess copper could lead to cell death. Numerous studies have shown an association between dietary copper consumption or plasma copper levels and the incidence of diabetes/diabetes complications. And experimental studies have revealed multiple signaling pathways that are triggered by copper shortages or copper overload in diabetic conditions. Moreover, studies show that treated with copper chelators improve vascular function, maintain copper homeostasis, inhibit cuproptosis, and reduce cell toxicity, thereby alleviating diabetic neuropathy, retinopathy, nephropathy, and cardiomyopathy. However, the mechanisms reported in these studies are inconsistent or even contradictory. This review summarizes the precise and tight regulation of copper homeostasis processes, and discusses the latest progress in the association of diabetes and dietary copper/plasma copper. Further, the study pays close attention to the therapeutic potential of copper chelators and copper in diabetes and its complications, and hopes to provide new insight for the treatment of diabetes.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Oligoelementos , Humanos , Cobre/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Complicaciones de la Diabetes/prevención & control , Complicaciones de la Diabetes/metabolismo , Quelantes/uso terapéutico , Quelantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...