Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Angew Chem Int Ed Engl ; 61(28): e202201240, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35502813

RESUMEN

A two-step strategy for the transition-metal-free C-H functionalization of arenes using unsymmetrical iodonium salts as versatile synthetic linchpins is presented. The key to the success of this strategy is the identification of the 3,5-dimethyl-4-isoxazolyl (DMIX) group as a superior dummy ligand, which enables not only site-selective C-H functionalization to afford unsymmetrical iodonium salts, but also highly selective aryl transfer during the subsequent metal-free coupling reaction. Both electron-rich and moderately electron-deficient arenes can be converted into the iodonium salts through C-H functionalization, allowing for diverse structural elaboration by metal-free C-N, C-C, C-S, and C-O coupling.


Asunto(s)
Sales (Química) , Elementos de Transición , Ligandos , Metales/química , Compuestos Onio/química , Sales (Química)/química
2.
J Phys Chem B ; 126(2): 412-422, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34994564

RESUMEN

The alkyltriphenylphosphonium (TPP) group is the most widely used vector targeted to mitochondria. Previously, the length of the alkyl linker was varied as well as structural modifications in the TPP phenyl rings to obtain the optimal therapeutic effect of a pharmacophore conjugated with a lipophilic cation. In the present work, we synthesized butyltriphenylphosphonium cations halogenated and methylated in phenyl rings (C4TPP-X) and measured electrical current through a planar lipid bilayer in the presence of C4TPP-X. The permeability of C4TPP-X varied in the range of 6 orders of magnitude and correlates well with the previously measured translocation rate constant for dodecyltriphenylphosphonium analogues. The partition coefficient of the butyltriphenylphosphonium analogues obtained by calculating the difference in the free energy of cation solvation in water and octane using quantum chemical methods correlates well with the permeability values. Using an ion-selective electrode, a lower degree of accumulation of analogues with halogenated phenyl groups was found on isolated mitochondria of rat liver, which is in agreement with their permeability decrease. Our results indicate the translocation of the butyltriphenylphosphonium cations across the hydrophobic membrane core as rate-limiting stage in the permeability process rather than their binding/release to/from the membrane.


Asunto(s)
Membrana Dobles de Lípidos , Compuestos Onio , Animales , Cationes/química , Membrana Dobles de Lípidos/química , Compuestos Onio/química , Compuestos Organofosforados , Permeabilidad , Ratas
3.
Chem Commun (Camb) ; 57(76): 9656-9671, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34472551

RESUMEN

N-(Acyloxy)phthalimide and oxime derivatives containing N-O bonds are important chemicals and synthetic intermediates, and visible light photoredox reductions of the N-O bonds provide carbon- or nitrogen-centered radicals for N-(acyloxy)phthalimide derivatives and iminyl radicals for oxime derivatives. This feature article summarises the recent progress in the visible light photoredox organic reactions, including decarboxylative addition reactions, alkylation, allylation, alkenylation, alkynylation, arylation, heteroarylation and cascade annulation of N-(acyloxy)phthalimide derivatives through the formation of carbon-carbon bonds, decarboxylative borylation, amination, oxygenation, sulfuration, selenylation, fluorination and iodination of N-(acyloxy)phthalimide derivatives through the formation of carbon-heteroatom bonds, and additions to arenes and alkenes, hydrogen atom transfer and the cleavage of α-carbon-carbon bonds via the iminyl radical intermediates for oxime derivatives.


Asunto(s)
Nitrógeno/química , Compuestos Onio/química , Oxígeno/química , Ftalimidas/química , Catálisis , Estructura Molecular , Procesos Fotoquímicos
4.
Chemphyschem ; 22(21): 2222-2230, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34390312

RESUMEN

The addition of aprotic solvents results in higher reactivities and selectivities in many key aqueous phase biomass reactions, including the acid-catalyzed conversion of fructose to 5-hydroxyl methyl furfural (HMF). The addition of certain co-solvents inhibits the formation of humins via preferential solvation of key functional groups and can alter reaction kinetics. An important factor in this context is the relative stability of the hydronium ion (the catalyst) in the vicinity of the biomass moiety as compared to that in bulk, as it could determine its efficacy in the protonation step. Hence, in the present work, molecular dynamics (MD) simulations of HMF (the model product) and fructose (the model reactant) in acidic water and water-DMSO mixtures are performed to analyze their interaction with the hydronium ions. We show that the presence of DMSO favors the interaction of the hydronium ion with fructose, whereas it has a detrimental effect on the interaction of hydronium ion with HMF. Well-tempered metadynamics (WT-MTD) simulations are performed to determine the relative stability of the hydronium ion in the immediate vicinity of fructose and HMF, as compared to that in the bulk solvent phase, as a function of solvent composition. We find that DMSO improves the stabilization of the hydronium ions in the first solvation shell of fructose compared to that in the bulk solvent. On the other hand, hydronium ions become less stable in the immediate vicinity of HMF, as the concentration of DMSO increases.


Asunto(s)
Fructosa/química , Furaldehído/análogos & derivados , Simulación de Dinámica Molecular , Compuestos Onio/química , Biomasa , Catálisis , Dimetilsulfóxido/química , Furaldehído/síntesis química , Furaldehído/química , Concentración de Iones de Hidrógeno , Solventes/química , Agua/química
5.
Molecules ; 26(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205065

RESUMEN

Bacterial resistance to antibiotics due to increased efficiency of the efflux is a serious problem in clinics of infectious diseases. Knowledge of the factors affecting the activity of efflux pumps would help to find the solution. For this, fast and trustful methods for efflux analysis are needed. Here, we analyzed how the assay conditions affect the accumulation of efflux indicators ethidium (Et+) and tetraphenylphosphonium in Salmonella enterica ser. Typhimurium cells. An inhibitor phenylalanyl-arginyl-ß-naphtylamide was applied to evaluate the input of RND family pumps into the total efflux. In parallel to spectrofluorimetric analysis, we used an electrochemical assessment of Et+ concentration. The results of our experiments indicated that Et+ fluorescence increases immediately after the penetration of this indicator into the cells. However, when cells bind a high amount of Et+, the intensity of the fluorescence reaches the saturation level and stops reacting to the accumulated amount of this indicator. For this reason, electrochemical measurements provide more trustful information about the efficiency of efflux when cells accumulate high amounts of Et+. Measurements of Et+ interaction with the purified DNA demonstrated that the affinity of this lipophilic cation to DNA depends on the medium composition. The capacity of DNA to bind Et+ considerably decreases in the presence of Mg2+, Polymyxin B or when DNA is incubated in high ionic strength media.


Asunto(s)
ADN/química , Etidio/análisis , Salmonella typhimurium/crecimiento & desarrollo , Espermatozoides/química , Animales , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple , Etidio/química , Masculino , Compuestos Onio/química , Compuestos Organofosforados/química , Salmón , Salmonella typhimurium/metabolismo , Espectrometría de Fluorescencia , Espermatozoides/metabolismo
6.
J Am Chem Soc ; 143(24): 9016-9025, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34124896

RESUMEN

We have developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole substrates. Oxonium ylides formed in situ from substituted indoles selectively undergo [2,3]- and [1,2]-rearrangements in the presence of a rhodium and a copper catalyst, respectively. The combined experimental and density functional theory (DFT) computational studies indicate divergent mechanistic pathways involving a metal-free ylide in the rhodium catalyzed reaction favoring [2,3]-rearrangement, and a metal-coordinated ion-pair in the copper catalyzed [1,2]-rearrangement that recombines in the solvent-cage. The application of our methodology was demonstrated in the first total synthesis of the indole alkaloid (±)-sorazolon B, which enabled the stereochemical reassignment of the natural product. Further functional group transformations of the rearrangement products to generate valuable synthetic intermediates were also demonstrated.


Asunto(s)
Cobre/química , Indoles/síntesis química , Compuestos Onio/síntesis química , Rodio/química , Catálisis , Indoles/química , Estructura Molecular , Compuestos Onio/química
7.
Org Lett ; 23(12): 4813-4817, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34032454

RESUMEN

Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.


Asunto(s)
Indicadores y Reactivos/química , Compuestos Onio/química , Compuestos de Tosilo/química , Estructura Molecular , Paladio/química
8.
J Am Soc Mass Spectrom ; 32(8): 1936-1944, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-33534996

RESUMEN

Thorough characterization of protein therapeutics is often challenging due to the heterogeneity arising from primary sequence variants, post-translational modifications, proteolytic clipping, or incomplete processing of the signal peptide. Modern mass spectrometry (MS) techniques are now routinely used to characterize such heterogeneous protein populations. Here, we present an LC-MS/MS method using (N-succinimidyloxycarbonylmethyl)-tris (2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to label any free N-terminal α-amines to rapidly and selectively identify proteolytic clipping events. Electron transfer dissociation (ETD) fragmentation of these chemically tagged peptides generates two unique TMPP product ions, TMPP+ and TMPP-Ac-NH2/c0. The presence of these signature ions following ETD is used to trigger subsequent collisional induced dissociation (CID) fragmentation of the precursor ion. This results in a small subset of CID tandem MS spectra that are used in a customized database search. Using a purified fusion monoclonal antibody (mAb) as an example, we demonstrate how TMPP labeling followed by ETD product ion triggered CID fragmentation is used to accurately identify two undesired clipping sites.


Asunto(s)
Proteínas/análisis , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Fraccionamiento Químico , Cromatografía Liquida/métodos , Transporte de Electrón , Compuestos Onio/química , Compuestos Organofosforados/química , Proteínas/química , Proteolisis , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Soluciones
9.
Biochim Biophys Acta Biomembr ; 1863(1): 183483, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002452

RESUMEN

To clarify the contribution of charge delocalization in a lipophilic ion to the efficacy of its permeation through a lipid membrane, we compared the behavior of alkyl derivatives of triphenylphosphonium, tricyclohexylphosphonium and trihexylphosphonium both in natural and artificial membranes. Exploring accumulation of the lipophilic cations in response to inside-negative membrane potential generation in mitochondria by using an ion-selective electrode revealed similar mitochondrial uptake of butyltricyclohexylphosphonium (C4TCHP) and butyltriphenylphosphonium (C4TPP). Fluorescence correlation spectroscopy also demonstrated similar membrane potential-dependent accumulation of fluorescein derivatives of tricyclohexyldecylphosphonium and decyltriphenylphosphonium in mitochondria. The rate constant of lipophilic cation translocation across the bilayer lipid membrane (BLM), measured by the current relaxation method, moderately increased in the following sequence: trihexyltetradecylphosphonium ([P6,6,6,14]) < triphenyltetradecylphosphonium (C14TPP) < tricyclohexyldodecylphosphonium (C12TCHP). In line with these results, measurements of the BLM stationary conductance indicated that membrane permeability for C4TCHP is 2.5 times higher than that for C4TPP. Values of the difference in the free energy of ion solvation in water and octane calculated using the density functional theory and the polarizable continuum solvent model were similar for methyltriphenylphosphonium, tricyclohexylmethylphosphonium and trihexylmethylphosphonium. Our results prove that both cyclic and aromatic moieties are not necessary for lipophilic ions to effectively permeate through lipid membranes.


Asunto(s)
Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Compuestos Onio/química , Compuestos Organofosforados/química , Compuestos de Tritilo/química , Permeabilidad
10.
Molecules ; 25(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291596

RESUMEN

The unprecedented Nazarov cyclization of a model divinyl ketone using phosphonium-based Deep Eutectic Solvents as sustainable non-innocent reaction media is described. A two-level full factorial Design of Experiments was conducted for elucidating the effect of the components of the eutectic mixture and optimizing the reaction conditions in terms of temperature, time, and substrate concentration. In the presence of the Deep Eutectic Solvent (DES) triphenylmethylphosphonium bromide/ethylene glycol, it was possible to convert more than 80% of the 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one, with a specific conversion, into the cyclopentenone Nazarov derivative of 62% (16 h, 60 °C). For the reactions conducted in the DES triphenylmethylphosphonium bromide/acetic acid, quantitative conversions were obtained with percentages of the Nazarov product above 95% even at 25 °C. Surface Responding Analysis of the optimized data furnished a useful tool to determine the best operating conditions leading to quantitative conversion of the starting material, with complete suppression of undesired side-reactions, high yields and selectivity. After optimization, it was possible to convert more than 90% of the model substrate into the desired cyclopentenone with cis percentages up to 77%. Experimental validation of the implemented model confirmed the robustness and the suitability of the procedure, leading to possible further extension to this specific combination of experimental designs to other substrates or even to other synthetic processes of industrial interest.


Asunto(s)
Solventes/química , Ácido Acético/química , Ciclización , Ciclopentanos/química , Compuestos Onio/química , Temperatura , Compuestos de Tritilo/química
11.
J Am Chem Soc ; 142(44): 18735-18740, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33095984

RESUMEN

Capturing the folding dynamics of large, functionally important RNAs has relied primarily on global measurements of structure or on per-nucleotide chemical probing. These approaches infer, but do not directly measure, through-space structural interactions. Here we introduce trimethyloxonium (TMO) as a chemical probe for RNA. TMO alkylates RNA at high levels in seconds, and thereby enables time-resolved, single-molecule, through-space probing of RNA folding using the RING-MaP correlated chemical probing framework. Time-resolved correlations in the RNase P RNA-a functional RNA with a complex structure stabilized by multiple noncanonical interactions-revealed that a long-range tertiary interaction guides native RNA folding for both secondary and tertiary structure. This unanticipated nonhierarchical folding mechanism was directly validated by examining the consequences of concise disruption of the through-space interaction. Single-molecule, time-resolved RNA structure probing with TMO is poised to reveal a wide range of dynamic RNA folding processes and principles of RNA folding.


Asunto(s)
Compuestos Onio/química , ARN/química , Alquilación , Emparejamiento Base , Conformación de Ácido Nucleico , ARN/metabolismo , Pliegue del ARN , Ribonucleasa P/metabolismo , Ésteres del Ácido Sulfúrico/química
12.
Dalton Trans ; 49(33): 11657-11667, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32785370

RESUMEN

A series of defect pyrochlores of the composition (H3O)1+pSb1+pTe1-pO6 have been prepared by ion exchange from K-containing pyrochlores K1+pSb1+pTe1-pO6 in sulfuric acid at 280 °C for 24 h. The structural characterization of the hydronium-containing pyrochlores, including the location of the H3O+ units within the three-dimensional framework, was possible from neutron powder diffraction data in undeuterated samples. The crystal structure for all the compounds is defined in the Fd3[combining macron]m space group, and consists of a covalent framework of SbVO6 and TeVIO6 octahedra distributed at random and connected by their vertices with (Sb,Te)-O1-(Sb,Te) angles close to 136°, conforming to large cages where the hydronium species are located off-center. The absence of K+ ions in the ion-exchanged pyrochlores was confirmed by inductively coupled plasma optical emission spectroscopy and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The shape and size of the hydronium units evolve along with the series, becoming more compact as the framework covalence and Lewis-basicity decrease upon Sb enrichment of the structure (for greater p values). The amount and lability of the H3O+ species also increase throughout the series, as wanted: a straightforward correlation of the catalytic activity in the fructose dehydration reaction to 5-hydroxymethylfurfural has been observed, reaching conversion rates up to 88.5% of concentrated fructose solution for the p = 0.25 catalyst. Moreover, a pseudo-first-order kinetic mechanism was simulated, and the kinetic constants obtained from diluted and concentrated enhanced reaction systems were determined and compared.


Asunto(s)
Antimonio/química , Fructosa/química , Niobio/química , Compuestos Onio/química , Óxidos/química , Telurio/química , Catálisis , Deshidratación , Furaldehído/análogos & derivados , Furaldehído/química , Calor , Isomerismo , Conformación Molecular , Difracción de Polvo , Factores de Tiempo , Difracción de Rayos X
13.
ACS Comb Sci ; 22(9): 457-467, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32589005

RESUMEN

New 8-chloro-2-phenyl-2,7-naphthyridin-1(2H)-one building blocks bearing diverse substitutes on the 2-phenyl group were synthesized via an efficient diaryliodonium salt-based N-arylation strategy with the advantage of mild conditions, short reaction times, and high yields. A small combinatorial library of 8-amino substituted 2-phenyl-2,7-naphthyridin-1(2H)-one was further conveniently constructed based on the above chlorinated naphthyridinones and substituted aniline. Preliminary biochemical screening resulted in the discovery of the new 2,7-naphthyridone-based MET/AXL kinase inhibitors. More importantly, 17c (IC50,MET of 13.8 nM) or 17e (IC50,AXl of 17.2 nM) and 17i (IC50,AXl of 31.8 nM) can efficient selectively inhibit MET or AXL kinase, respectively, while commercial cabozantinib showed no selectivity. The further exploration of the 8-substituted 2-phenyl-2,7-naphthyridin-1(2H)-one combinatorial library would significantly accelerate the discovery of more potent and selective inhibitors against diverse kinases.


Asunto(s)
Descubrimiento de Drogas , Compuestos Onio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Compuestos Onio/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad , Tirosina Quinasa del Receptor Axl
14.
Cancer Radiother ; 24(4): 332-334, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32446537

RESUMEN

Monte Carlo simulations of γ/fast electron-radiolysis of water show that the in situ formation of H3O+ temporarily renders each "native" isolated spur/track region very acidic. For pulsed (FLASH) irradiation with high dose rate, this early time, transient "acid-spike" response is shown to extend evenly across the entire irradiated volume. Since pH controls many cellular processes, this study highlights the need to consider these spikes of acidity in understanding the fundamental mechanisms underlying FLASH radiotherapy.


Asunto(s)
Electrones , Compuestos Onio/química , Dosificación Radioterapéutica , Agua/química , Hidrógeno/efectos de la radiación , Concentración de Iones de Hidrógeno , Transferencia Lineal de Energía , Método de Montecarlo , Neoplasias/radioterapia , Compuestos Onio/análisis , Radiólisis de Impulso
15.
J Am Chem Soc ; 142(25): 11295-11305, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32469220

RESUMEN

Halopyridines are key building blocks for synthesizing pharmaceuticals, agrochemicals, and ligands for metal complexes, but strategies to selectively halogenate pyridine C-H precursors are lacking. We designed a set of heterocyclic phosphines that are installed at the 4-position of pyridines as phosphonium salts and then displaced with halide nucleophiles. A broad range of unactivated pyridines can be halogenated, and the method is viable for late-stage halogenation of complex pharmaceuticals. Computational studies indicate that C-halogen bond formation occurs via an SNAr pathway, and phosphine elimination is the rate-determining step. Steric interactions during C-P bond cleavage account for differences in reactivity between 2- and 3-substituted pyridines.


Asunto(s)
Halogenación , Indicadores y Reactivos/química , Compuestos Onio/química , Fosfinas/química , Piridinas/química , Bromuros/química , Teoría Funcional de la Densidad , Indicadores y Reactivos/síntesis química , Yoduros/química , Cloruro de Litio/química , Compuestos de Litio/química , Modelos Químicos , Compuestos Onio/síntesis química , Fosfinas/síntesis química
16.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218347

RESUMEN

UV-VIS spectroscopy analysis of six mixtures containing choline chloride or triphenylmethylphosphonium bromide as the hydrogen bond acceptor (HBA) and different hydrogen bond donors (HBDs, nickel sulphate, imidazole, d-glucose, ethylene glycol, and glycerol) allowed to determine the indirect and direct band-gap energies through the Tauc plot method. Band-gap energies were compared to those relative to known choline chloride-containing deep band-gap systems. The measurements reported here confirmed the tendency of alcohols or Lewis acids to increment band-gap energy when employed as HBDs. Indirect band-gap energy of 3.74 eV was obtained in the case of the triphenylmethylphosphonium bromide/ethylene glycol system, which represents the smallest transition energy ever reported to date for such kind of systems.


Asunto(s)
Colina/química , Compuestos Onio/química , Compuestos de Tritilo/química , Espectrofotometría Ultravioleta , Termodinámica
17.
J Labelled Comp Radiopharm ; 63(8): 368-375, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32221982

RESUMEN

L-2-[18 F]fluoro-alpha-methylphenylalanine (2-[18 F]FAMP) is a promising amino acid tracer for positron emission tomography (PET) imaging, yet the low production yield of direct electrophilic radiofluorination with [18 F]F2 necessitates further optimization of the radiolabeling process. This paper describes a two-step preparation method for L-2-[18 F]fluoro-alpha-methylphenylalanine (2-[18 F]FAMP) starting from [18 F]fluoride. The (Mesityl)(L-alpha-methylphenylalanine)-2-iodonium tetrafluoroborate precursors with various protecting groups were prepared. The copper-mediated 18 F-fluorination of the iodonium salt precursors successfully produced 2-[18 F]FAMP. The highest radio chemical conversion of 57.6% was noted with N-Piv-protected (mesityl)(aryl)iodonium salt in the presence of 5 equivalent of Cu (OTf)2 . Subsequent deprotection with 57% hydrogen iodide produced 2-[18 F]FAMP within 120 min in 21.4 ± 11.7% overall radiochemical yield with >95% radiochemical purity and an enantiomeric excess >99%. The obtained 2-[18 F]FAMP showed comparable biodistribution profiles in normal mice with that of the carrier-added 2-[18 F]FAMP. These results indicate that usefulness of copper mediated 18 F-fluorination for the production of 2-[18 F]FAMP, which would facilitate clinical translation of the promising tumor specific amino acid tracer. Individual facilities could adopt either production method based on radioactivity demand and equipment availability.


Asunto(s)
Compuestos de Bifenilo/química , Cobre/química , Radioisótopos de Flúor/química , Halogenación , Compuestos Onio/química , Fenilalanina/química , Fenilalanina/síntesis química , Catálisis , Técnicas de Química Sintética , Radioquímica
18.
J Phys Chem B ; 124(8): 1361-1373, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32003220

RESUMEN

This study investigates the effect of hydronium ions (H3O+) on the structure and dynamics of water at the interface of a phospholipid bilayer using molecular dynamics simulations of a POPC bilayer in the presence and absence of H3O+ ions. From these simulations, the survival probability, hydrogen bond lifetimes, orientation relaxation, and angular distribution of interfacial water, at increasing distances from the membrane surface, were calculated. Simulations of POPC in the absence of H3O+ ions reproduce previously reported deviations of interfacial water from the properties of bulk water. Our results show that in the presence of H3O+, these deviations are even more pronounced with the strongest effects seen in the survival probability and orientation relaxation. To further investigate the effect of the H3O+-induced reduction of area per lipid on interfacial water, we carried out simulations where H3O+ ions were removed, but the area per lipid was fixed to the values seen in the presence of H3O+. The combined findings from our study suggest that the presence of H3O+ ions affects the properties of interfacial water, accentuates the deviation from bulk properties, and extends the long-range effect of these deviations further away from the membrane surface.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Compuestos Onio/química , Fosfolípidos/química , Agua/química , Estructura Molecular
19.
Biophys J ; 117(9): 1751-1763, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31587826

RESUMEN

Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.


Asunto(s)
Antígenos Bacterianos/química , Toxinas Bacterianas/química , Cationes , Dendrímeros/química , Cinética , Compuestos Onio/química , Factores de Tiempo , Compuestos de Tritilo/química , beta-Ciclodextrinas/química
20.
J Am Chem Soc ; 141(40): 15951-15962, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31560524

RESUMEN

Reactive intermediates frequently play significant roles in the biosynthesis of numerous classes of natural products although the direct observation of these biosynthetically relevant species is rare. We present here direct evidence for the existence of complex, thermally unstable, tricyclic oxonium ions that have been postulated as key reactive intermediates in the biosynthesis of numerous halogenated natural products from Laurencia species. Evidence for their existence comes from full characterization of these oxonium ions by low-temperature NMR spectroscopy supported by density functional theory (DFT) calculations, coupled with the direct generation of 10 natural products on exposure of the oxonium ions to various nucleophiles.


Asunto(s)
Acetogeninas/síntesis química , Productos Biológicos/síntesis química , Laurencia/química , Compuestos Onio/síntesis química , Acetogeninas/biosíntesis , Acetogeninas/química , Productos Biológicos/química , Halogenación , Laurencia/metabolismo , Modelos Moleculares , Estructura Molecular , Compuestos Onio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...