RESUMEN
In the search of new cymantrenyl- and ferrocenyl-sulfonamides as potencial inhibitors of human carbonic anhydrases (hCAs), four compounds based on N-ethyl or N-methyl benzenesulfonamide units have been obtained. These cymantrenyl (1a-b) and ferrocenyl (2a-b) derivatives were prepared by the reaction between aminobenzene sulfonamides ([NH2-(CH2)n-(C6H4)-SO2-NH2)], where n = 1, 2) with cymantrenyl sulfonyl chloride (P1) or ferrocenyl sulfonyl chloride (P2), respectively. All compounds were characterized by conventional spectroscopic techniques and cyclic voltammetry. In the solid state, the molecular structures of compounds 1a, 1b, and 2b were determined by single-crystal X-ray diffraction. Biological evaluation as carbonic anhydrases inhibitors were carried out and showed derivatives 1b y 2b present a higher inhibition than the drug control for the Human Carbonic Anhydrase (hCA) II and IX isoforms (KI = 7.3 nM and 5.8 nM, respectively) and behave as selective inhibition for hCA II isoform. Finally, the docking studies confirmed they share the same binding site and interactions as the known inhibitors acetazolamide (AAZ) and agree with biological studies.
Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Simulación del Acoplamiento Molecular , Sulfonamidas , Humanos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica II/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/química , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Bencenosulfonamidas , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Cristalografía por Rayos XRESUMEN
Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.
Asunto(s)
Compuestos Ferrosos , Rutenio , Tripanocidas , Trypanosoma cruzi , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/síntesis química , Trypanosoma cruzi/efectos de los fármacos , Ligandos , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Animales , Rutenio/química , Rutenio/farmacología , Ratones , Metalocenos/química , Metalocenos/farmacología , Metalocenos/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Estructura Molecular , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis químicaRESUMEN
Herein we describe results for the synthesis and synthetic application of 4-amino-3-(arylselenyl)benzenesulfonamides, and preliminary evaluation of antioxidant, anti-edematogenic and antinociceptive properties. This class of compounds was synthesized in good yields by a reaction of commercially available sulfanilamide and diorganyl diselenides in the presence of 10â mol% of I2 . Furthermore, the synthesized compound 4-amino-3-(phenylselenyl)benzenesulfonamide (3 a) was evaluated on complete Freund's adjuvant (CFA)-induced acute inflammatory pain. Dose- and time-response curves of antinociceptive effect of compound 3 a were performed using this experimental model. Also, the effect of compound 3 a was monitored in a hot-plate test to evaluate the acute non-inflammatory antinociception. The open-field test was performed to evaluate the locomotor and exploratory behaviors of mice. Oxidative stress markers, such as glutathione peroxidase activity; reactive species, non-protein thiols, and lipid peroxidation levels were performed to investigate the antioxidant action of compound 3 a. Our findings suggest that the antioxidant effect of compound 3 a may contribute to reducing the nociception and suppress the signaling pathways of inflammation on the local injury induced by CFA. Thus, compound 3 a reduced the paw edema as well as the hyperalgesic behavior in mice, being a promising therapeutic agent for the treatment of painful conditions.
Asunto(s)
Analgésicos Opioides/farmacología , Antiinflamatorios no Esteroideos/farmacología , Compuestos Organometálicos/farmacología , Dolor/tratamiento farmacológico , Compuestos de Selenio/farmacología , Sulfonamidas/farmacología , Analgésicos Opioides/síntesis química , Analgésicos Opioides/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antioxidantes , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Adyuvante de Freund , Inflamación/tratamiento farmacológico , Peroxidación de Lípido/efectos de los fármacos , Locomoción/efectos de los fármacos , Ratones , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Estrés Oxidativo/efectos de los fármacos , Compuestos de Selenio/química , Relación Estructura-Actividad , Sulfonamidas/química , BencenosulfonamidasRESUMEN
Fabrication of functional silk fibroin microstructures has extensive applications in biotechnology and photonics. Considerable progress has been made based on lithographic methods and self-assembly approaches. However, most methods require chemical modification of silk fibroin, which restricts the functionalities of the designed materials. At the same time, femtosecond laser-induced forward transfer (fs-LIFT) has been explored as a simple and attractive processing tool for microprinting of high-resolution structures. In this paper, we propose the use of LIFT with fs-pulses for creating high-resolution structures of regenerated silk fibroin (SF). Furthermore, upon adding Eu3+/Tb3+ complexes to SF, we have been able to demonstrate the printing by LIFT of luminescent SF structures with a resolution on the order of 2 µm and without material degradation. This approach provides a facile method for printing well-defined two-dimensional (2D) micropatterns of pure and functionalized SF, which can be used in a wide range of optical and biomedical applications.
Asunto(s)
Fibroínas/química , Rayos Láser , Compuestos Organometálicos/química , Impresión Tridimensional , Fibroínas/aislamiento & purificación , Compuestos Organometálicos/síntesis química , Tamaño de la Partícula , Propiedades de Superficie , Factores de TiempoRESUMEN
Transition metal-based compounds have shown promising uses as therapeutic agents. Among their unique characteristics, these compounds are suitable for interaction with specific biological targets, making them important potential drugs to treat various diseases. Copper compounds, of which Casiopeinas® are an excellent example, have shown promising results as alternatives to current cancer therapies, in part because of their intercalative properties with DNA. Vanadium compounds have been extensively studied for their pharmacological properties and application, mostly in diabetes, although recently, there is a growing interest in testing their activity as anti-cancer agents. In the present work, two compounds, [Cu(Metf)(bipy)Cl]Cl·2H2O and [Cu(Impy)(Gly)(H2O)]VO3, were obtained and characterized by visible and FTIR spectroscopies, single-crystal X-ray diffraction, and theoretical methods. The structural and electronic properties of the compounds were calculated through the density functional theory (DFT) using the Austin-Frisch-Petersson functional with dispersion APFD, and the 6-311 + G(2d,p) basis set. Non-covalent interactions were analyzed using Hirshfeld surface analysis (HSA) and atom in molecules analysis (AIM). Additionally, docking analysis to test DNA/RNA interactions with the Casiopeina-like complexes were carried out. The compounds provide metals that can interact with critical biological targets. In addition, they show interesting non-covalent interactions that are responsible for their supramolecular arrangements.
Asunto(s)
Antineoplásicos/química , Cobre/química , Compuestos Organometálicos/química , Compuestos de Vanadio/química , Antineoplásicos/síntesis química , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/síntesis química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Vanadio/síntesis químicaRESUMEN
The synthesis of the new dye 1,6-methano[10]annulenecyanine is described. For this purpose, the 3,4-dicyano-1,6-methano[10]annulene and 3,4-carboxyimide-1,6-methano[10]annulene buildings blocks were synthesized in six to eight steps. In both cases, these building blocks were then cyclotetramerized to furnish a new Zn(II)-1,6-methano[10]annulenecyanine which presents a strong red-shifted absorption band at 800 nm and high solubility in common organic solvents.
Asunto(s)
Colorantes Fluorescentes/síntesis química , Compuestos Organometálicos/síntesis química , Colorantes Fluorescentes/química , Estructura Molecular , Compuestos Organometálicos/química , SolubilidadRESUMEN
A series of bio-organometallic-hydrazones of the general formula [{(η5-C5H4)-C(R)=N-N(H)-C6H4-4-SO2NH2}]MLn(MLn = Re(CO)3, Mn(CO)3, FeCp; R=H, CH3) were prepared by reaction of formyl/acetyl organometallic precursors with 4-hydrazino-benzenesulphonamide. All compounds were characterized by conventional spectroscopic techniques (infra-red, 1H and 13C NMR, mass spectrometry and elemental analysis). Biological evaluation as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors agents was carried out using four human/h) isoforms, hCA I, II, IX and XII. The cytosolic isoforms hCA I and II were effectively inhibited by almost all derivatives with inhibition constants of 1.7-22.4 nM. Similar effects were observed for the tumour-associated transmembrane isoform hCA XII (KIs of 1.9-24.4 nM). hCA IX was less sensitive to inhibition with these compounds. The presence of bio-organometallic or metallo-carbonyl moieties in the molecules of these CAIs makes them amenable for interesting pharmacologic applications, for example for compounds with CO donating properties.
Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Hidrazinas/farmacología , Compuestos Organometálicos/farmacología , Sulfonamidas/farmacología , Dióxido de Carbono/antagonistas & inhibidores , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Hidrazinas/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Relación Estructura-Actividad , Sulfonamidas/química , BencenosulfonamidasRESUMEN
Bridge splitting reactions between [Pd(C2,N-dmba)(µ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.
Asunto(s)
Antineoplásicos/síntesis química , Compuestos Organometálicos/síntesis química , Paladio/química , Inhibidores de Proteasas/síntesis química , Piridinas/química , Animales , Antineoplásicos/farmacología , Bencilaminas/química , Catepsinas/antagonistas & inhibidores , Catepsinas/química , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/farmacología , Inhibidores de Proteasas/farmacología , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismoRESUMEN
BACKGROUND/AIM: Melanoma represents a big challenge for clinical treatment. Besides being the most aggressive and the deadliest form of skin cancer, it is often refractory to commonly used anticancer drugs. Hence, developing new anti-cancer agents is crucial to improve refractory melanoma treatment. Studies using palladium(II) complexes have reported antitumor effects on cancer cells. In this study, we aimed to determine the cytotoxic effect of three novel synthesized Pd(II) complexes with Schiff bases derived from 4-aminoacetophenone on the MDA-MB-435 melanoma cell line. MATERIALS AND METHODS: Cells were treated with ligand and Pd(II) complexes. Cell viability, morphology and death induction upon treatment were examined. RESULTS: Novel synthesized Pd(II) complexes led to decreased viability of cells. They also induced morphological alterations and cell death, mainly in the C3 complex. CONCLUSION: The novel synthesized complexes have a significant cytotoxic effect on cell line MDA-MB-435, especially C3 and can be considered as an antitumor agent for further studies.
Asunto(s)
Acetofenonas/química , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Compuestos Organometálicos/uso terapéutico , Paladio/uso terapéutico , Bases de Schiff/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/síntesis química , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Técnicas In Vitro , Ligandos , Compuestos Organometálicos/síntesis química , Paladio/química , Rodaminas , Bases de Schiff/químicaRESUMEN
Fourteen new complexes were obtained from Ln(III)(NO3)3ân-H2O and the chromophores 2-(1H-benzo[d]imidazol-2-yl)-phenol (Bzp1) or 2-(5-methyl-1H-benzo[d]imidazol-2-yl)-phenol (Bzp2). The complete characterization allowed us to assign unequivocally the structures of all the complexes. The techniques used for this purpose were Ultraviolet-Visible (UV-Vis) and Fourier-Transform Infrared (FT-IR) spectroscopies, High-Resolution Mass Spectrometry (HRMS), Magnetic Susceptibility (MS), Elemental Analysis (EA) and Molar Conductivity (MC). HRMS allowed us to find the molecular ion and its isotopic pattern. The FT-IR spectral data suggested that benzimidazolyl-phenol ligands coordinate with Ln(III) ions through iminic nitrogen and phenolic oxygen. Thermogravimetric Analysis (TGA) studies of NdBzp1 and GdBzp2 complexes indicate the presence of lattice water along with three nitrates and two benzimidazolyl-phenol ligands; the thermal decomposition was consistent with the minimal formula suggested by EA. The coordination type of the benzimidazolyl-phenol ligands, the geometry and the structural organization of these coordination complexes have been interpreted by Density Functional Theory (DFT) calculations, and they coincided with the physicochemical data suggesting a coordination number eight for the Ln(III) ions. The cytotoxicity of the chromophores and their coordination complexes was tested against a cancer cell line (HeLa), as compared with structure/support cells (NIH-3T3) and defense cells (J774A.1), revealing that three coordination complexes showed moderate cytotoxicity against the cell lines studied.
Asunto(s)
Bencimidazoles/química , Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/síntesis química , Fenoles/química , Células 3T3 , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células HeLa , Humanos , Ratones , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/toxicidadRESUMEN
Two new complexes of Ru(II) with mixed ligands were prepared: [Ru(bpy)2smp](PF6) (1) and [Ru(phen)2smp](PF6) (2), in which smp = sulfamethoxypyridazine; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline. The complexes have been characterized by elemental and conductivity analyses; infrared, NMR, and electrospray ionization mass spectroscopies; and X-ray diffraction of single crystal. Structural analyses reveal a distorted octahedral geometry around Ru(II) that is bound to two bpy (in 1) or two phen (in 2) via their two heterocyclic nitrogens and to two nitrogen atoms from sulfamethoxypyridazine-one of the methoxypyridazine ring and the sulfonamidic nitrogen, which is deprotonated. Both complexes inhibit the growth of chronic myelogenous leukemia cells. The interaction of the complexes with bovine serum albumin and DNA is described. DNA footprinting using an oligonucleotide as substrate showed the complexes' preference for thymine base rich sites. It is worth notifying that the complexes interact with the Src homology SH3 domain of the Abl tyrosine kinase protein. Abl protein is involved in signal transduction and implicated in the development of chronic myelogenous leukemia. Nuclear magnetic resonance (NMR) studies of the interaction of complex 2 with the Abl-SH3 domain showed that the most affected residues were T79, G97, W99, and Y115.
Asunto(s)
Antineoplásicos/síntesis química , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Compuestos Organometálicos/síntesis química , Rutenio/química , Sulfametoxipiridazina/química , Antineoplásicos/química , Antineoplásicos/farmacología , Dicroismo Circular , Humanos , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Estructura Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Difracción de Rayos X , Dominios Homologos srcRESUMEN
We use molecular mechanics and DFT calculations to analyze the particular electronic behavior of a giant nanoball. This nanoball is a self-assembled M12L24 nanoball; with M equal to Pd+2; Cr; and Mo. These systems present an extraordinarily large cavity; similar to biological giant hollow structures. Consequently, it is possible to use these nanoballs to trap smaller species that may also become activated. Molecular orbitals, molecular hardness, and Molecular Electrostatic Potential enable us to define their potential chemical properties. Their hardness conveys that the Mo system is less reactive than the Cr system. Eigenvalues indicate that electron transfer from the system with Cr to other molecules is more favorable than from the system with Mo. Molecular Electrostatic Potential can be either positive or negative. This means that good electron donor molecules have a high possibility of reacting with positive regions of the nanoball. Each of these nanoballs can trap 12 molecules, such as CO. The nanoball that we are studying has large pores and presents electronic properties that make it an apposite target of study.
Asunto(s)
Cromo/química , Electrones , Molibdeno/química , Nanoestructuras/química , Compuestos Organometálicos/química , Paladio/química , Monóxido de Carbono/química , Catálisis , Modelos Químicos , Compuestos Organometálicos/síntesis química , Porosidad , Piridinas/química , Teoría Cuántica , TermodinámicaRESUMEN
The use of antioxidants is the most effective means to protect the organism against cellular damage caused by oxidative stress. In this context, organotellurides have been described as promising antioxidant agents for decades. Herein, a series of N-functionalized organotellurium compounds has been tested as antioxidant and presented remarkable activities by three different in vitro chemical assays. They were able to reduce DPPH radical with IC50 values ranging from 5.08 to 19.20⯵gâ¯mL-1, and some of them also reduced ABTS+ radical and TPTZ-Fe3+ complex in ABTS+ and FRAP assays, respectively. Initial structure-activity relationship discloses that the nature of N-substituent strongly influenced both activity and cytotoxicity of the studied compounds. Furthermore, radical scavenging activities of N-functionalized organotellurides have been compared with those of their selenilated congeners, demonstrating that the presence of tellurium atom has an essential role in antioxidant activity.
Asunto(s)
Depuradores de Radicales Libres/química , Compuestos Organometálicos/química , Telurio/química , Animales , Benzotiazoles/química , Compuestos de Bifenilo/química , Diseño de Fármacos , Fibroblastos/efectos de los fármacos , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/toxicidad , Ratones , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/toxicidad , Oxidación-Reducción , Picratos/química , Relación Estructura-Actividad , Ácidos Sulfónicos/químicaRESUMEN
This paper describes on the interaction studies of carbonyl heterobimetallic compounds of Ru(II)/Fe(II) containing polypyridyl ligands, with general formula ct-[RuCl(CO)(N-N)(dppf)]PF6, N-Nâ¯=â¯1,10-phenanthroline (phen) 5; dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) 6; dipyrido[3,2-a:2',3'-c]phenazine (dppz) 7; dipyrido[3,2-f:2',3'-h]quinoxalino[2,3-b]quinoxaline (dpqQX) 8 and dppfâ¯=â¯1,1'-bis(diphenylphosphino) ferrocene], with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA). Also, it describes the cellular viability assays of these complexes in tumorigenic and non-tumorigenic cell lines. The carbonyl complexes 5-8 and their respective precursors with formula cis-[RuCl2(N-N)(dppf)], N-Nâ¯=â¯phen (1), dpq (2), dppz (3) and dpqQX (4), were characterized by elemental analysis and spectroscopic techniques (FTIR, UV-vis, 1H and 31P{1H} NMR). Also, a cyclic voltammetry study was performed for all complexes. The crystal structure of the complex 3 is presented and discussed. Spectrofluorimetric titrations shows spontaneous and strong interaction of 5-8 with BSA, through a static quenching mechanism, resulting in binding constants in the order of 104-106â¯Lâ¯mol-1, at 310â¯K. Viscosity measurements and circular dichroism spectra prompts interactions of 5-8 with ct-DNA via non-classical intercalations or by an electrostatic pathway. MTT assays in breast tumor cells MDA-MB-231 and in non-tumorigenic cells MCF-10A and V79-4â¯cell lines revealed IC50 values ranging from 0.19 to 1.11⯵molâ¯L-1, 1.07-3.18⯵molâ¯L-1 and 1.29-3.85⯵molâ¯L-1 respectively, for complexes 5-8.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Piridinas/química , Rutenio/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Cricetinae , ADN/metabolismo , Humanos , Ligandos , Células MCF-7 , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Albúmina Sérica Bovina/metabolismoRESUMEN
Leishmaniasis, a neglected tropical disease caused by protozoans of the genus Leishmania, kills around 20-30 thousand people in Africa, Asia, and Latin America annually and, despite its potential lethality, it can be treated and eventually cured. However, the current treatments are limited owing to severe side effects and resistance development by some Leishmania. These factors make it urgent to develop new leishmanicidal drugs. In the present study, three ruthenium(II) organometallic complexes containing as ligands the commercially available anti-inflammatories diclofenac (dic), ibuprofen (ibu), and naproxen (nap) were synthesized, characterized, and subjected to in vitro leishmanicidal activity. The in vitro cytotoxicity assays against Leishmania (L.) amazonensis and Leishmania (L.) infantum promastigotes have shown that complexes [RuCl(dic)(η6-p-cymene)] (1) and [RuCl(nap)(η6-p-cymene)] (3) were active against both Leishmania species. Complex [RuCl(ibu)(η6-p-cymene)] (2) has exhibited no activity. The IC50 values for the two active complexes were respectively 7.42 and 23.55 µM, for L. (L.) amazonensis, and 8.57 and 42.25 µM, for L. (L.) infantum. Based on the toxicological results and computational analysis, we proposed a correlation between the complexes and their activity. Our results suggest both complexation to ruthenium(II) and ligands structure are key elements to leishmanicidal activity.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Rutenio/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Relación Dosis-Respuesta a Droga , Leishmania/citología , Ligandos , Modelos Moleculares , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Pruebas de Sensibilidad Parasitaria , Rutenio/química , Relación Estructura-ActividadRESUMEN
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. It is estimated that 6 million people are infected in Latin America. Current treatment is not effective due to the severe side effects and the limited efficacy towards the chronic phase of the disease. Considering the growing need for specific anti-Trypanosoma cruzi drugs, organometallic Pt and Pd based compounds were previously synthesized. Although the Pt-based compound effects on T. cruzi death have been reported, no mechanism of action has been proposed for the Pd-based analogous compound. In this work, we determined excellent to very good values of IC50 and SI. To analyze the compound mode of action, we measured Pd uptake and its association to the macromolecules of the parasite by electrothermal atomic absorption spectrometry. We found a poor uptake, which reaches only 16% after 24 h of incubation using 10× IC50, being the scarce incorporated metal preferentially associated to DNA. However, this compound has a trypanocidal effect, leading to morphological changes such as shortening of the parasite cell body and inducing necrosis after 24 h of treatment. Furthermore, this compound impairs the parasite development in the host both at the trypomastigote infection process and the intracellular amastigotes replication. In conclusion, our findings support that Pd-dppf-mpo compound constitutes a promising anti-T. cruzi compound effective against the chronic phase of the disease.
Asunto(s)
Compuestos Organometálicos/farmacología , Paladio/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Paladio/química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/citologíaRESUMEN
A new series of Fischer carbenes have been synthetized and examined as hole-transporting or electron-transporting layers (HTLs or ETLs) in the fabrication of organic solar cells (OSCs). The synthesis of three Fischer aminocarbene complexes with the general formula [Cr(CO)5{C(NHCH2)Ar}] (Ar = 2-pyridyl (3a), 3-pyridyl (3b) and 4-pyridyl (3c)) is reported. The molecular structure of complex 3b has been confirmed by X-ray analysis. In order to study the possible applications of the three Fischer aminocarbenes in OSCs, thin films of these complexes were prepared using a vacuum deposition process. These organometallic films were chemically and morphologically characterized by IR spectroscopy, SEM, AFM and XRD. According to the IR and Tauc analysis, the vacuum deposition process generates thin films free of impurities with an activation energy of 4.0, 2.7 and 2.1 eV for 3a, 3b y 3c, respectively. The UV-vis spectra of the amorphous aminocarbene films show that they are practically transparent to the visible radiation of the electromagnetic spectrum. This is due to the fact that their absorption is located mainly in the ultraviolet range. Two OSCs with bulk-heterojunction configuration were manufactured in order to prove the use of the aminocarbenes as ETL o HTL. The aminocarbene [Cr(CO)5{C(NHCH2) 4-pyridyl}] (3c) proved to be suitable as ETL with a fill factor (FF) of 0.23 and a short circuit current density (JSC) of 1.037 mA/cm².
Asunto(s)
Alquinos/química , Dioxolanos/química , Compuestos Organometálicos/síntesis química , Cristalografía por Rayos X , Transporte de Electrón , Estructura Molecular , Compuestos Organometálicos/química , Energía Renovable , Energía SolarRESUMEN
Artificial metalloproteins (ArMs) containing Co4O4 cubane active sites were constructed via biotin-streptavidin technology. Stabilized by hydrogen bonds (H-bonds), terminal and cofacial CoIII-OH2 moieties are observed crystallographically in a series of immobilized cubane sites. Solution electrochemistry provided correlations of oxidation potential and pH. For variants containing Ser and Phe adjacent to the metallocofactor, 1e-/1H+ chemistry predominates until pH 8, above which the oxidation becomes pH-independent. Installation of Tyr proximal to the Co4O4 active site provided a single H-bond to one of a set of cofacial CoIII-OH2 groups. With this variant, multi-e-/multi-H+ chemistry is observed, along with a change in mechanism at pH 9.5 that is consistent with Tyr deprotonation. With structural similarities to both the oxygen-evolving complex of photosystem II (H-bonded Tyr) and to thin film water oxidation catalysts (Co4O4 core), these findings bridge synthetic and biological systems for water oxidation, highlighting the importance of secondary sphere interactions in mediating multi-e-/multi-H+ reactivity.
Asunto(s)
Cobalto/química , Metaloproteínas/química , Compuestos Organometálicos/química , Oxígeno/química , Sitios de Unión , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Oxidación-ReducciónRESUMEN
Combination of multifunctionalities into one compound is a rational strategy in medicinal chemical design, and have often been used with metallodrug-based compounds. In the present study, we synthesized a novel ruthenium-based 5-fluorouracil complex [Ru(5-FU)(PPh3)2(bipy)]PF6 (PPh3 = triphenylphosphine; and bipy = 2,2'-bipyridine) with enhanced cytotoxicity in different cancer cells, and assessed its apoptosis induction action in human colon carcinoma HCT116 cells. The complex was characterized by infrared, cyclic voltammetry, molar conductance measurements, elemental analysis, NMR experiments and X-ray crystallographic analysis. In both 2D and 3D cell culture models, the complex presented cytotoxicity to cancer cells more potent than 5-FU. A typical morphology of apoptotic cell death, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HCT116 cells. Moreover, the pre-treatment with Z-DEVD-FMK, a caspase-3 inhibitor, reduced the apoptosis induced by the complex, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. The complex failed to induce reactive oxygen species production and DNA intercalation. In conclusion, the novel complex displays enhanced cytotoxicity to different cancer cells, and is able to induce caspase-mediated apoptosis in HCT116 cells.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Fluorouracilo/farmacología , Compuestos Organometálicos/farmacología , Rutenio , Antineoplásicos/síntesis química , Antineoplásicos/química , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fluorouracilo/síntesis química , Fluorouracilo/química , Células HCT116 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química , Transducción de Señal/efectos de los fármacosRESUMEN
Compostos organometálicos do tipo rutênio-areno têm sido estudados no transcurso dos últimos anos em razão do potencial que apresentam para o tratamento de doenças dentre as quais se destaca o câncer. Neste contexto, o presente trabalho teve como principal objetivo o estudo de organometálicos de Ru(II)-p-cimeno contendo como ligantes fármacos anti-inflamatórios não esteroides (FAINEs) ou seus derivados piridinaamida (FAINE-amida). Foram realizadas as sínteses de duas classes de compostos de fórmulas gerais [RuCl(p-cimeno)L] e [RuCl2(p-cimeno)Lam] em que L = ibuprofeno, naproxeno ou indometacina e Lam = derivado amida desses FAINES, respectivamente. A composição e estrutura dos compostos foram elucidadas principalmente com base em análise elementar, espectrometria de massas (ESI-MS), espectroscopia de ressonância magnética nuclear (1H RMN, 13C RMN, HSQC, HMBC) e espectroscopia vibracional ATR/FT-IR. Os dados indicaram que todos os fármacos-ligantes utilizados estabilizam a unidade Ru(II)-areno, sendo que os carboxilatos coordenam-se ao Ru(II) de modo bidentado por ambos os átomos de oxigênio, enquanto que a coordenação dos derivados amida ocorre pelo nitrogênio do anel piridínico. No entanto, em contraste ao comportamento em solventes não-coordenantes como clorofórmio, estudos em solução indicaram que a presença de dimetilsulfóxido promove dissociação do fármaco ligante acompanhada pela coordenação do solvente (gradual, no caso de L, ou imediata total no caso de Lam). Resultados preliminares de estudos de espectroscopia de fluorescência sugerem interação dos compostos de Ru(II)-areno-indometacina com albumina de soro humano (HSA)
Ruthenium-arene organometallics have been investigated in recent years due to the potential for treatment of diseases among which cancer is highlighted. In this context, the main objective of the present work is the study of organometallics of Ru(II)-p-cymene bearing non steroidal anti-inflammatory drugs (NSAIDs) or their pyridine-amide (NSAIDamide) as ligands. Two classes of compounds of general formula [RuCl(p-cymene)L] and [RuCl2(p-cymene)Lam], in which L = ibuprofen, naproxen or indomethacin and Lam = amide derivative of these NSAIDs, respectively have been synthesized. The composition and the structure of these compounds have been elucidated mainly based on elemental analysis, mass spectrometry (ESI-MS), nuclear magnetic resonance spectroscopy (1H RMN, 13C RMN, HSQC, HMBC) and vibrational spectroscopy (ATR/FT-IR). The data indicate that all the used drug-ligands stabilize the Ru(II)-arene framework, being that the carboxylates coordinate Ru(II) in bidentate mode through both oxygen atoms while the coordination of the amide derivatives occurs via nitrogen atom of the pyridine ring. However, in contrast to the behavior in non-coordinating solvents such as chloroform, studies in solution indicate that the presence of dimethylsulfoxide promotes dissociation of the drug ligand accompanied by the coordination of the solvent (gradual, for L, or total immediate for Lam). Preliminary results from fluorescence spectroscopy suggest interaction of the Ru(II)-arene-indomethacin compounds with human serum albumin (HSA)