Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.984
Filtrar
1.
Microb Pathog ; 190: 106639, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616002

RESUMEN

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Compuestos de Estaño , Difracción de Rayos X , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Staphylococcus aureus/efectos de los fármacos , Nanopartículas/química , Bacterias/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
2.
Biosensors (Basel) ; 14(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667192

RESUMEN

Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.


Asunto(s)
Cristales Líquidos , Propiedades de Superficie , Cristales Líquidos/química , Compuestos de Estaño/química , Electrodos , Técnicas Biosensibles
3.
Nanotechnology ; 35(28)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38574484

RESUMEN

Nitrogen dioxide (NO2) is a major pollutant that poses significant risks to sustainable human life. As a result, a growing focus has been placed on the development of highly selective and sensitive gas sensors for NO2. Traditional cutting-edge non-organic NO2gas detectors often necessitate stringent production conditions and potentially harmful materials, which are not environmentally friendly, and these shortcomings have limited their widespread practical use. To overcome these challenges, we synthesized self-assembled peptide nanotubes (SPNTs) through a molecular self-assembly process. The SPNTs were then combined with SnO2in varying proportions to construct NO2gas sensors. The design of this sensor ensured efficient electron transfer and leverage the extensive surface area of the SPNTs for enhanced gas adsorption and the effective dispersion of SnO2nanoparticles. Notably, the performance of the sensor, including its sensitivity, response time, and recovery rate, along with a lower detection threshold, could be finely tuned by varying the SPNTs content. This approach illustrated the potential of bioinspired methodologies, using peptide self-assemblies, to develop integrated sensors for pollutant detection, providing a significant development in environmentally conscious sensor technology.


Asunto(s)
Nanocompuestos , Nanotubos de Péptidos , Dióxido de Nitrógeno , Compuestos de Estaño , Compuestos de Estaño/química , Dióxido de Nitrógeno/análisis , Nanotubos de Péptidos/química , Nanocompuestos/química , Temperatura
4.
Mikrochim Acta ; 191(5): 272, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634999

RESUMEN

A biosensing electrochemical platform for heat shock protein 70 (HSP70) has been developed by integrating a three-electrode indium tin oxide (ITO) on a chip. The platform includes modifications to the reference electrode and working electrode for the detection of HSP70. The new platform is constructed by assembly of HSP70 antibody on PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode to create a high HSP70 sensitive surface. The PS-AuNPs@Cys/Au indium tin oxide (ITO) electrode is obtained by immersing the ITO electrode into the PS-AuNPs@Cys solution and performing constant potential deposition at -1.4 V (Ag/AgCl). The PS-AuNPs@Cys/Au film deposited on ITO glass provides a desirable substrate for the immobilization of the HSP70 antibody and improves the loading of antibody between PS-AuNPs@Cys/Au and the electrode resulting in a significant amplification. Under optimal conditions, the fabricated sensor demonstrates a linear range extending from 0.1 ng mL- 1 to 1000 ng mL- 1, with an impressive detection limit of 25.7 pg mL- 1 (S/N = 3). The developed immunoassay method successfully detected the HSP70 content in normal human blood samples and outperformed the ELISA method commonly used for clinical sample analysis.


Asunto(s)
Oro , Nanopartículas del Metal , Compuestos de Estaño , Humanos , Anticuerpos , Proteínas HSP70 de Choque Térmico
5.
Biomater Adv ; 160: 213855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643692

RESUMEN

This research introduces a novel method that leverages Spirulina extract (S.E) as a bio-surfactant in the ultrasound-assisted synthesis (UAS) of Pd3+ (0.25-10 mol%) doped tin oxide (SnO2) self-assembled superstructures. Nanotechnology has witnessed significant advancements in recent years, driven by the exploration of novel synthesis methods and the development of advanced nanomaterials tailored for specific applications. Metal oxide nanoparticles, particularly SnO2, have garnered considerable attention due to their versatile properties and potential applications in various fields, including gas sensing, catalysis, and biomedical engineering. The study explores how varying influential parameters like S.E concentration, sonication time, pH, and sonication power can influence the resulting superstructures' morphology, size, and shape. A theoretical model for forming different hierarchical superstructures (HS) is proposed. X-ray diffraction (XRD) analysis confirms the crystalline tetragonal rutile phase of the SnO2:Pd HS. Raman spectroscopy reveals a red shift in the A1g mode, indicating phonon confinement due to various defects in the SnO2 structure. Further characterization using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) provides insights into particle size, surface morphology, elemental composition, and binding energy. The study also demonstrates the application of optimized SnO2:3Pd HS in developing latent fingerprints (LFPs) on different surfaces using a simple powder dusting (PD) method, with the fingerprints (FPs) visualized under normal light. A mathematical model developed in Python-based software is used to analyze various features of the developed FPs, including pore properties such as number, position, inter-spacing, area, and shape. Additionally, an in vitro MTT assay shows concentration-dependent anticancer activity of SnO2:3Pd nanoparticles (NPs) on MCF7 cell lines, highlighting their potential as a promising cancer treatment option. Overall, the study suggests that the optimized HS can serve as multifunctional platforms for biomedical and dermatoglyphics applications, demonstrating the versatility and potential of the synthesized materials.


Asunto(s)
Antineoplásicos , Paladio , Compuestos de Estaño , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Humanos , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Células MCF-7
6.
Chemosphere ; 356: 141853, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582161

RESUMEN

Ceftazidime (CAZ) is an emerging organic pollutant with a long-lasting presence in the environment. Although some PbO2 materials exhibit degradation capabilities, inefficient electron transport in the substrate layer and the problem of electrode stability still limit their use. Here, an interfacial design in which TiO2 nanotube arrays generate Ti3+ self-doping oxide substrate layers and highly active 3D Sb-SnO2 nanoflowers-like interlayers was used to prepare PbO2 anodes for efficient degradation of CAZ. Interestingly, after implementing Ti3+ self-doping in the PbO2 anode base layer and introducing 3D nanoflowers-like structures, the capacity for •OH generation increased significantly. The modified electrode exhibited 5-fold greater •OH generation capacity compared to the unmodified electrode, and a 2.7-fold longer accelerated electrode lifetime. The results indicate that interfacial engineering of the base and intermediate layers of the electrodes can improve the electron transfer efficiency, promote the formation of •OH, and extend the anode lifetime of the activated CAZ system.


Asunto(s)
Electrodos , Plomo , Nanotubos , Compuestos de Estaño , Titanio , Titanio/química , Nanotubos/química , Compuestos de Estaño/química , Plomo/química , Óxidos/química , Antimonio/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/química
7.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38546096

RESUMEN

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Asunto(s)
Aptámeros de Nucleótidos , Fuentes de Energía Bioeléctrica , Carbono , Técnicas Electroquímicas , Estradiol , Oro , Nanopartículas del Metal , Estradiol/química , Estradiol/análisis , Aptámeros de Nucleótidos/química , Oro/química , Nanopartículas del Metal/química , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Límite de Detección , Humanos , ADN/química , Glucosa Oxidasa/química , Compuestos de Estaño/química
8.
J Hazard Mater ; 470: 134118, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547752

RESUMEN

Urine is the major source of nitrogen pollutants in domestic sewage and is a neglected source of H2. Although ClO• is used to overcome the poor selectivity and slow kinetics of urea decomposition, the generation of ClO• suffers from the inefficient formation reaction of HO• and reactive chlorine species (RCS). In this study, a synergistic catalytic method based on TiO2/WO3 photoanode and Sb-SnO2 electrode efficiently producing ClO• is proposed for urine treatment. The critical design is that TiO2/WO3 photoanode and Sb-SnO2 electrode that generate HO• and RCS, respectively, are assembled in a confined space through face-to-face (TiO2/WO3//Sb-SnO2), which effectively strengthens the direct reaction of HO• and RCS. Furthermore, a Si solar panel as rear photovoltaic cell (Si PVC) is placed behind TiO2/WO3//Sb-SnO2 to fully use sunlight and provide the driving force of charge separation. The composite photoanode (TiO2/WO3//Sb-SnO2 @Si PVC) has a ClO• generation rate of 260% compared with the back-to-bake assembly way. In addition, the electrons transfer to the NiFe LDH@Cu NWs/CF cathode for rapid H2 production by the constructed photoelectric catalytic (PEC) cell without applied external biasing potential, in which the H2 production yield reaches 84.55 µmol h-1 with 25% improvement of the urine denitrification rate. The superior performance and long-term stability of PEC cell provide an effective and promising method for denitrification and H2 generation.


Asunto(s)
Antimonio , Electrodos , Óxidos , Compuestos de Estaño , Titanio , Tungsteno , Titanio/química , Tungsteno/química , Compuestos de Estaño/química , Catálisis , Antimonio/química , Óxidos/química , Orina/química , Cloro/química , Radical Hidroxilo/química
9.
Chem Asian J ; 19(9): e202400074, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38545693

RESUMEN

This work demonstrates the use of jute stick extract as a reducing and stabilizing agent for the synthesis of spherical gold nanoparticles (AuNPs). In UV-Vis spectroscopy, peak at 550 nm was used to confirm the formation of AuNPs. The spherical surface morphology of AuNPs was determined through SEM and TEM analysis. While XRD investigation revealed the crystallinity of the prepared AuNPs. To ensure the biocompatibility of synthesized AuNPs, a bacterial investigation was conducted with negative results towards bacterial strain. The, modified FTO with AuNPs were able to detect glucose in CV analysis and the constructed sensor displayed a wide linear range of 50 µM to 40 mM with a detection limit of 20 µM. Scan rate analysis was performed to determine the charge transfer coefficient (0.42) and Tafel slope (102 mV/decade). Furthermore, the interfacial surface mechanism is illustrated to understand the interaction of glucose with the electrode surface in an alkaline medium and the product formation through the dehydrogenation and hydrolysis process. The prepared sensor also showed good stability, reproducibility, and anti-interference capabilities. In the case of real sample analysis, we used a blood serum sample. A low RSD value (<10 %) suggests the practical use of AuNPs/FTO in real-life applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Flúor , Oro , Nanopartículas del Metal , Compuestos de Estaño , Oro/química , Nanopartículas del Metal/química , Flúor/química , Compuestos de Estaño/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Glucosa/análisis , Propiedades de Superficie , Humanos , Glucemia/análisis , Tamaño de la Partícula
10.
J Dent ; 143: 104901, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417610

RESUMEN

OBJECTIVES: To assess the effect of different tin-containing toothpastes on the control of erosive tooth wear in enamel and dentin. METHODS: Enamel and dentin slabs were randomly distributed into 7 experimental groups (n = 10/substrate): C-: negative control (Artificial saliva); AmF (regular fluoridated toothpaste without tin); Sn-1 (SnF2/NaF); Sn-2 (SnF2/NaF/SnCl2); Sn-3 (SnCl2/NaF); Sn-4 (SnF2/SnCl2); Sn-5 (SnCl2/AmF/NaF/chitosan). Specimens were submitted to 5-day erosion-abrasion cycling. Surface loss (SL) was determined with an optical profilometer. Tin deposition on the tooth surfaces and some characteristics of the toothpastes (pH, potentially available F-, %weight of solid particles, and RDA) were also assessed. Data were statistically analyzed (α = 0.05). RESULTS: For enamel, the Sn-2 presented the lowest SL, not differing significantly from AmF, C+, and Sn-3. The SL of these groups was significantly lower than the C-, except for Sn-3. Sn-1 and Sn-4 were also not significantly different from C-. For dentin, C- significantly showed the highest SL values, whilst, Sn-1 presented the lowest SL, not differing significantly from AmF, Sn-2, C+, and Sn-3. There was a significant positive association between enamel SL and the pH and tin deposition. Dentin SL was significantly negatively associated with the %weight of solid particles and RDA. CONCLUSIONS: Most of the tin-toothpastes were able to exhibit some protection against ETW. In this process, the toothpastes characteristics play a role, as lower enamel SL was significantly associated with lower pH values and tin deposition; and lower dentin SL was associated with higher %weight of solid particles and RDA of the toothpastes. CLINICAL SIGNIFICANCE: Tin-containing toothpastes can be used for erosive tooth wear protection, but our study showed that their effect depends on the pH, amount of tin deposition, % weight of solid particles and RDA of the toohpastes.


Asunto(s)
Compuestos de Estaño , Abrasión de los Dientes , Erosión de los Dientes , Desgaste de los Dientes , Humanos , Fluoruros de Estaño/farmacología , Pastas de Dientes/farmacología , Fluoruros/farmacología , Erosión de los Dientes/prevención & control , Estaño , Abrasión de los Dientes/prevención & control , Fluoruro de Sodio/farmacología , Cepillado Dental
11.
Talanta ; 271: 125740, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335847

RESUMEN

Developing low-cost and efficient methods to enhance the electrochemiluminescence (ECL) intensity of luminophores is highly desirable and challenging. Herein, we developed an efficient ECL system based on palladium-modified graphene oxide as a substrate and tin dioxide quantum dot-modified spike-like gold-silver alloy as an immunoprobe. Specifically, palladium-modified graphene oxide was rationally selected as the sensor substrate for the attachment of zearalenone antigens while facilitating the amplification of the ECL signal through enhanced electron transfer efficiency. A spike-like gold-silver alloy modified with tin dioxide quantum dots was attached to the zearalenone antibody as an immunoprobe, and the sensor exhibited remarkable sensitivity due to the exceptional ECL performance of the quantum dots. To demonstrate the practical feasibility of the principle, zearalenone levels were detected in actual samples of maize and pig urine, and the sensor showed a broad linear range (0.0005-500 ng mL-1) and low detection limit (0.16 pg mL-1) in the high-sensitivity detection of Zearalenone. Overall, this work first reports the construction of a highly sensitive ECL immunosensor for the detection of zearalenone using a protruding gold-silver alloy modified with tin dioxide as an immunoprobe and a palladium modified graphene oxide as a substrate. It provides a novel approach for the detection of small molecule toxin-like substances.


Asunto(s)
Técnicas Biosensibles , Grafito , Puntos Cuánticos , Compuestos de Estaño , Zearalenona , Animales , Porcinos , Puntos Cuánticos/química , Paladio , Técnicas Biosensibles/métodos , Plata , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Grafito/química , Oro/química , Aleaciones , Técnicas Electroquímicas/métodos , Límite de Detección
12.
Langmuir ; 40(8): 4434-4446, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38345916

RESUMEN

Capsaicin, a chemical compound present in chili peppers, is widely acknowledged as the main contributor to the spicy and hot sensations encountered during consumption. Elevated levels of capsaicin can result in meals being excessively spicy, potentially leading to health issues, such as skin burning, irritation, increased heart rate and circulation, and discomfort in the gastrointestinal system and even inducing nausea or diarrhea. The level of spiciness that individuals can tolerate may vary, so what may be considered incredibly hot for one person could be mild for another. To ensure food safety, human healthcare, regulatory compliance, and quality control in spicy food products, capsaicin levels must be measured. For these purposes, a reliable and stable sensor is required to quantify the capsaicin level. To leverage the effect of zinc oxide (ZnO), herein, we demonstrated the one-step fabrication process of an electronic tongue (E-Tongue) based on an electrochemical biosensor for the determination of capsaicin. ZnO was electrodeposited on the indium tin oxide (ITO) surface. The biosensor demonstrated the two notable linear ranges from 0.01 to 50 µM and from 50 to 500 µM with a limit of detection (LOD) of 2.1 nM. The present study also included the analysis of real samples, such as green chilis, red chili powder, and dried red chilis, to evaluate their spiciness levels. Furthermore, the E-Tongue exhibited notable degrees of sensitivity, selectivity, and long-term stability for a duration of more than a month. The development of an E-Tongue for capsaicin real-time monitoring as a point-of-care (POC) device has the potential to impact various industries and improve safety, product quality, and healthcare outcomes.


Asunto(s)
Capsaicina , Óxido de Zinc , Humanos , Capsaicina/química , Óxido de Zinc/química , Nariz Electrónica , Compuestos de Estaño
13.
Biosens Bioelectron ; 250: 116067, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301542

RESUMEN

Microbial fuel cells (MFCs) are an emerging technology that holds promise for renewable energy production and the mitigation of environmental challenges. This research paper introduces a single-compartment MFC reactor that utilizes transparent conducting oxides (TCOs), such as fluorine-doped tin oxide (FTO) and indium tin oxides (ITO), as the working electrodes. The effectiveness of MFCs based on FTO and ITO was evaluated by characterizing the transparent electrode and examining its performance during biofilm cultivation. Additionally, the optical properties of the biofilm grown directly on these electrodes were investigated using LEDs as a light source. The impressive average current density of 200 µA cm-2 over 100 days demonstrates the efficiency of the see-through electrodes in bioenergy extraction. The correlation between spectroscopic and microscopic analyses substantiates the feasibility of employing transparent electrodes for accurate quantification of biofilm thickness, with an initial accuracy of ±10 µm in the initial cycle, ±22 µm in the subsequent cycle, and a maximum of ±31 µm after seven days of growth. This innovative approach holds great potential for advancing our understanding of MFCs and their application in environmentally friendly energy generation and optical-based monitoring.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , Compuestos de Estaño , Óxidos , Biopelículas , Electrodos
14.
Sci Rep ; 14(1): 3378, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336814

RESUMEN

This study evaluates the ideal pH for anti-erosion and anti-adherent efficacy of fluoride and stannous solutions (sodium fluoride (SF), amine fluoride (AF), sodium monofluorophosphate (SMFP), stannous fluoride (SnF2) with 500 ppm fluoride concentration each and stannous chloride (SnCl2, 1563 ppm stannous)). In vitro, solutions were tested at pH 4.5 and 5.5. The main in situ experiments were carried out at the pH of 4.5: For pellicle formation 6 volunteers wore bovine enamel slabs intraorally for 1 min, rinsed with 8 ml solution for 1 min and continued for up to 30 min/8 h. Physiological pellicle samples served as controls. After incubation in HCl (2.0, 2.3) for 2 min mineral release was determined photometrically. Bacterial counts on 8 h biofilms were determined by fluorescence microscopy (BacLight™ and DAPI with Concanavalin A). Modification of the pellicle ultrastructure was examined by TEM. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney-U tests with Bonferroni-correction (p < 0.05). SnF2 showed a significant erosion protection. AF, SnF2, and SnCl2 were most anti-adherent. SnF2 and SnCl2 caused a pronounced basal pellicle with stannous precipitates. Compared to other fluoride monosubstances, stannous ions offer greater protection against erosive acidic attacks. Stannous ions act as crucial co-factor in this process.


Asunto(s)
Fluoruros , Erosión de los Dientes , Animales , Bovinos , Humanos , Fluoruros/farmacología , Erosión de los Dientes/prevención & control , Compuestos de Estaño , Fluoruro de Sodio/farmacología , Fluoruro de Sodio/química , Concentración de Iones de Hidrógeno
15.
Chemosphere ; 346: 140579, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303391

RESUMEN

Molybdenum-doped BiVO4 thin films were uniformly coated on indium-doped tin oxide (ITO) substrates via a facile modified hot spin coating (HSC) technique. The prepared layers were used as photoanode in a photoelectrochemical (PEC) cell. Different percentage of Mo dopant was examined to maximize the photo-current density (J) of the layers. The highest J value (872 ± 8 µA/cm2) was obtained by 5 atomic% of Mo doping. After that, the surface topographies of these samples were changed by varying the initial precursor concentration from 27 to 80 mM. The relation between surface topographies and the PEC activity of Mo-doped BiVO4 thin films was investigated from microscopic point of view by calculating the surface roughness exponent of α, and a mechanism for the PEC activity of Mo-doped BiVO4 photoanodes was proposed accordingly. The sample with a small roughness exponent provided a surface with jagged microscopic fluctuations which may trap the air molecules between the electrolyte and sample surface, hindering the fine atomic interaction for photo-generated electron-hole transition. Therefore, the layer with the highest roughness exponent (2α = 0.48 ± 0.03), which means the smoother microscopic surface and better interfacial contact with the electrolyte, exhibited the best PEC activity.


Asunto(s)
Electrones , Molibdeno , Compuestos de Estaño , Programas Informáticos , Electrólitos
16.
PLoS One ; 19(1): e0296084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165873

RESUMEN

This study aims to provide a concise overview of the behavior exhibited by Sn-doped ZnO crystals using a computational technique known as density functional theory (DFT). The influence of Sn doping on the electronic, structural, and optical properties of ZnO have been explored. Specifically, the wavelength dependent refractive index, extinction coefficient, reflectance, and absorption coefficient, along with electronic band gap structure of the Sn doped ZnO has been examined and analyzed. In addition, X-ray diffraction (XRD) patterns have been obtained to investigate the structural characteristics of Sn-doped ZnO crystals with varying concentrations of Sn dopant atoms. The incorporation of tin (Sn) into zinc oxide (ZnO) has been observed to significantly impact the opto-electronic properties of the material. This effect can be attributed to the improved electronic band structure and optical characteristics resulting from the tin doping. Furthermore, the controllable structural and optical characteristics of tin-doped zinc oxide will facilitate the development of various light-sensitive devices. Moreover, the impact of Sn doping on the optoelectronic properties of ZnO is thoroughly investigated and documented.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/química , Estaño/química , Difracción de Rayos X , Compuestos de Estaño/química
17.
Anal Chem ; 96(6): 2378-2386, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38285499

RESUMEN

Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.


Asunto(s)
Oro , Oligonucleótidos , Análisis de Secuencia por Matrices de Oligonucleótidos , Oro/química , ADN , Compuestos de Estaño/química , Oxidación-Reducción
18.
J Environ Manage ; 352: 120082, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232595

RESUMEN

New photoactive materials with uniform and well-defined morphologies were developed for efficient and sustainable photoelectrochemical (PEC) water splitting and hydrogen production. The investigation is focused on hydrothermal deposition of zinc oxide (ZnO) onto indium tin oxide (ITO) conductive surfaces and optimization of hydrothermal temperature for growing uniform sized 3D ZnO morphologies. Fine-tuning of hydrothermal temperature enhanced the scalability, efficiency, and performance of ZnO-decorated ITO electrodes used in PEC water splitting. Under UV light irradiation and using eco-friendly low-cost hydrothermal process in the presence of stable ZnO offered uniform 3D ZnO, which exhibited a high photocurrent of 0.6 mA/cm2 having stability up to 5 h under light-on and light-off conditions. The impact of hydrothermal temperature on the morphological properties of the deposited ZnO and its subsequent performance in PEC water splitting was investigated. The work contributes to advancement of scalable and efficient fabrication technique for developing energy converting photoactive materials.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Agua/química , Nanoestructuras/química , Compuestos de Estaño/química
19.
Environ Res ; 245: 117878, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147921

RESUMEN

A tin oxide (SnO2) nanostructure was prepared using Matricaria recutita leaf extract to investigate its anticancer activity against SK-MEL-28 cells. The tetragonal crystal structure of tin oxide nanoparticles with an average crystal size of 27 nm was confirmed by X-ray diffraction (XRD) analysis. The tetragonal crystal structure of the tin oxide nanoparticles, with an average crystallite size of 27 nm, was confirmed by XRD an absorbance peak at 365 nm was identified by UV-visible spectroscopy analysis as belonging to the bio-mediated synthesis of SnO2 nanoparticles. The SnO2 NPs are capped and stabilized with diverse functional groups derived from bioactive molecules, including aldehydes, benzene rings, amines, alcohols, and carbonyl stretch protein molecules. Fourier transform infrared spectroscopy (FTIR) analysis validated the presence of these capping and stabilizing chemical bonds. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed the cauliflower-shaped morphology of the SnO2 nanoparticles with an average particle size of 28 nm. The antimicrobial activity of both prepared and encapsulated samples confirmed their biological activities. Furthermore, both prepared and encapsulated tin oxide samples exhibited excellent anticancer activity against SK-MEL-28 human cancer cells. The present study introduces a reliable and uncomplicated approach to produce SnO2 nanoparticles and demonstrates their effectiveness in various applications, including cancer therapy, drug administration, and disinfectant.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanoestructuras , Humanos , Antiinfecciosos/farmacología , Compuestos de Estaño/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Antibacterianos/química , Difracción de Rayos X
20.
Environ Sci Pollut Res Int ; 31(3): 4528-4538, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38102431

RESUMEN

Ti/SnO2-Sb electrodes possess high catalytic activity and efficiently degrade nitrobenzene (NB); however, their low service life limits their wide application. In this study, we used one-step hydrothermal synthesis to successfully prepare Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the surface morphology, microstructure, and chemical composition of the electrodes, respectively. The electrochemical activity and stability of the electrodes were characterized via linear sweep and cyclic voltammetry, electrochemical impedance spectroscopy, and an accelerated service life test; their performance for NB degradation was also studied. An appropriate amount of Pt-Nd co-doping refined the average grain size of SnO2 and formed a uniform and compact coating on the electrode surface. The oxygen evolution potential, total voltammetric charge, and electron transfer resistance of the Ti/SnO2-Sb-Nd-Pt electrodes were 1.88 V, 3.77 mC/cm2, and 11.50 Ω, respectively. Hydroxy radical was the main active radical species during the electrolytic degradation of nitrobenzene with Ti/SnO2-Sb-Nd-Pt. After Pt-Nd co-doping, the accelerated service life of the electrodes was extended from 8.0 min to 78.2 h (500 mA/cm2); although the NB degradation rate decreased from 94.1 to 80.6%, the total amount of theoretical catalytic degradation of NB in the effective working time increased from 17.4 to 8754.1 mg/cm2. These findings reveal good application potential for the electrodes and provide a reference for developing efficient and stable electrode materials.


Asunto(s)
Nanosferas , Contaminantes Químicos del Agua , Oxidación-Reducción , Titanio/química , Compuestos de Estaño/química , Electrodos , Nitrobencenos , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...