Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732115

RESUMEN

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Asunto(s)
Antivirales , Aprendizaje Automático , Simulación de Dinámica Molecular , Antivirales/química , Antivirales/farmacología , Teoría Funcional de la Densidad , Termodinámica , Isoindoles/química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Azoles/química , Azoles/farmacología
2.
Transl Psychiatry ; 14(1): 200, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714646

RESUMEN

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants. We conducted a double-blind, placebo-controlled 7-day experimental medicine study in 51 patients with major depressive disorder who were currently taking antidepressants but had an inadequate response to treatment. Participants received either ebselen 600 mg twice daily for seven days or identical matching placebo. An emotional testing battery, magnetic resonance spectroscopy and depression and anxiety rating scales were conducted at baseline and after seven days of treatment. Ebselen did not increase the recognition of positive facial expressions in the depressed patient group. However, ebselen increased the response bias towards fear emotion in the signal detection measurement. In the anterior cingulate cortex, ebselen significantly reduced the concentrations of inositol and Glx (glutamate+glutamine). We found no significant differences in depression and anxiety rating scales between visits. Our study did not find any positive shift in emotional bias in depressed patients with an inadequate response to antidepressant medication. We confirmed the ability of ebselen to lower inositol and Glx in the anterior cingulate cortex. These latter effects are probably mediated through inhibition of inositol monophosphatase and glutaminase respectively.


Asunto(s)
Antidepresivos , Azoles , Trastorno Depresivo Mayor , Emociones , Isoindoles , Compuestos de Organoselenio , Humanos , Femenino , Masculino , Compuestos de Organoselenio/farmacología , Método Doble Ciego , Adulto , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Persona de Mediana Edad , Emociones/efectos de los fármacos , Azoles/farmacología , Espectroscopía de Resonancia Magnética , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen
3.
Biochem Biophys Res Commun ; 710: 149885, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588612

RESUMEN

Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1ß-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1ß-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).


Asunto(s)
Derivados del Benceno , Compuestos de Organoselenio , Osteoartritis , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Transducción de Señal , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Condrocitos/metabolismo , Interleucina-1beta/metabolismo
4.
Brain Res ; 1834: 148904, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561086

RESUMEN

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Asunto(s)
Antidepresivos , Dopamina , Monoaminooxidasa , Compuestos de Organoselenio , Animales , Masculino , Ratones , Antidepresivos/farmacología , Compuestos de Organoselenio/farmacología , Monoaminooxidasa/metabolismo , Monoaminooxidasa/efectos de los fármacos , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Natación , Norepinefrina/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Actividad Motora/efectos de los fármacos
5.
Free Radic Res ; 58(4): 229-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38588405

RESUMEN

Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 µM) and purified myeloperoxidase (MPO) (IC50=3.8 µM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1ß, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 µM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.


Asunto(s)
Carragenina , Inflamación , Infiltración Neutrófila , Animales , Ratones , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Infiltración Neutrófila/efectos de los fármacos , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Edema/tratamiento farmacológico , Edema/inducido químicamente , Peroxidasa/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Ácido Hipocloroso
6.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675530

RESUMEN

The diselenide bond has attracted intense interest in redox-responsive drug delivery systems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond, namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy. The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respectively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom. The resultant solubility-controlled slow drug release performance makes it a promising candidate as a long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations in the design of self-immolation traceless linkers was also proposed for the first time as another key factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.


Asunto(s)
Ácidos Carboxílicos , Doxorrubicina , Liberación de Fármacos , Oxidación-Reducción , Profármacos , Profármacos/química , Profármacos/síntesis química , Profármacos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Sistemas de Liberación de Medicamentos , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/síntesis química , Compuestos de Selenio/química , Compuestos de Selenio/síntesis química , Peróxido de Hidrógeno/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química
7.
J Med Chem ; 67(9): 7585-7602, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38630440

RESUMEN

An efficient protocol for the synthesis of ß-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.


Asunto(s)
Diseño de Fármacos , Osteoclastos , Osteoporosis , Ligando RANK , Animales , Ratones , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Ligando RANK/antagonistas & inhibidores , Femenino , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Diferenciación Celular/efectos de los fármacos , Ovariectomía , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/síntesis química , Compuestos de Organoselenio/química , Relación Estructura-Actividad , Osteogénesis/efectos de los fármacos , Resorción Ósea/tratamiento farmacológico , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Ratones Endogámicos C57BL
8.
ACS Chem Neurosci ; 15(9): 1904-1914, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639539

RESUMEN

The compound N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), which combines a selenium atom and a benzamide nucleus in an organic structure, has demonstrated a fast antidepressant-like effect in mice. This action is influenced by the serotonergic system and represents a promising development in the search for novel antidepressant drugs to treat major depressive disorder (MDD), which often resists conventional treatments. This study aimed to further explore the mechanism underlying the antidepressant-like effect of SePB by investigating the involvement of the dopaminergic and noradrenergic systems in the tail suspension test (TST) in mice and evaluating its pharmacokinetic profile in silico. Preadministration of the dopaminergic antagonists haloperidol (0.05 mg/kg, intraperitoneally (i.p.)), a nonselective antagonist of dopamine (DA) receptors, SCH23390 (0.01 mg/kg, subcutaneously (s.c.)), a D1 receptor antagonist, and sulpiride (50 mg/kg, i.p.), a D2/3 receptor antagonist, before SePB (10 mg/kg, intragastrically (i.g.)) prevented the anti-immobility effect of SePB in the TST, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. Administration of the noradrenergic antagonists prazosin (1 mg/kg, i.p.), an α1-adrenergic antagonist, yohimbine (1 mg/kg, i.p.), an α2-adrenergic antagonist, and propranolol (2 mg/kg, i.p.), a ß-adrenergic antagonist, did not block the antidepressant-like effect of SePB on TST, indicating that noradrenergic receptors are not involved in this effect. Additionally, the coadministration of SePB and bupropion (a noradrenaline/dopamine reuptake inhibitor) at subeffective doses (0.1 and 3 mg/kg, respectively) produced antidepressant-like effects. SePB also demonstrated good oral bioavailability and low toxicity in computational absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses. These findings suggest that SePB has potential as a new antidepressant drug candidate with a particular focus on the dopaminergic system.


Asunto(s)
Antidepresivos , Benzamidas , Animales , Antidepresivos/farmacología , Antidepresivos/farmacocinética , Benzamidas/farmacología , Benzamidas/farmacocinética , Ratones , Masculino , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacocinética , Dopamina/metabolismo , Suspensión Trasera , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/farmacocinética , Compuestos de Organoselenio/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-38518983

RESUMEN

Copper (Cu2+) is a biologically essential element that participates in numerous physiological processes. However, elevated concentrations of copper have been associated with cellular oxidative stress and neurodegenerative diseases. Organo­selenium compounds such as diphenyl diselenide (DPDS) have in vitro and in vivo antioxidant properties. Hence, we hypothesized that DPDS may modulate the toxicity of Cu2+ in Drosophila melanogaster. The acute effects (4 days of exposure) caused by a high concentration of Cu2+ (3 mM) were studied using endpoints of toxicity such as survival and behavior in D. melanogaster. The potential protective effect of low concentration of DPDS (20 µM) against Cu2+ was also investigated. Adult flies aged 1-5 days post-eclosion (both sexes) were divided into four groups: Control, DPDS (20 µM), CuSO4 (3 mM), and the combined exposure of DPDS (20 µM) and CuSO4 (3 mM). Survival, biochemical, and behavioral parameters were determined. Co-exposure of DPDS and CuSO4 increased acetylcholinesterase (AChE) activity and the generation of reactive oxygen species (ROS as determined by DFCH oxidation). Contrary to our expectation, the co-exposure reduced survival, body weight, locomotion, catalase activity, and cell viability in relation to control group. Taken together, DPDS potentiated the Cu2+ toxicity.


Asunto(s)
Conducta Animal , Derivados del Benceno , Drosophila melanogaster , Compuestos de Organoselenio , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Derivados del Benceno/toxicidad , Derivados del Benceno/farmacología , Drosophila melanogaster/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/toxicidad , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Conducta Animal/efectos de los fármacos , Femenino , Cobre/toxicidad , Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Catalasa/metabolismo , Sulfato de Cobre/toxicidad , Locomoción/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
10.
Metab Brain Dis ; 39(4): 625-633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416338

RESUMEN

Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.


Asunto(s)
Apoptosis , Glioma , Ratones Desnudos , Compuestos de Organoselenio , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Apoptosis/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C
11.
Neurotox Res ; 42(1): 13, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332435

RESUMEN

Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.


Asunto(s)
Encefalopatías , Compuestos de Organoselenio , Animales , Pez Cebra , Mitocondrias , Derivados del Benceno/farmacología , Derivados del Benceno/uso terapéutico , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Hipoxia/tratamiento farmacológico
12.
Chembiochem ; 25(4): e202400074, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293899

RESUMEN

The synthesis of diarylamine-based organoselenium compounds via the nucleophilic substitution reactions has been described. Symmetrical monoselenides and diselenides were conveniently synthesized by the reduction of their corresponding selenocyanates using sodium borohydride. Selenocyanates were obtained from 2-chloro acetamides by the nucleophilic displacement with potassium selenocyanate. Selenides were synthesized by treating the 2-chloro acetamides with in situ generated sodium butyl selenolate as nucleophile. Further, the newly synthesized organoselenium compounds were evaluated for their glutathione peroxidase (GPx)-like activity in thiophenol assay. This study revealed that the methoxy-substituted organoselenium compounds showed significant effect on the GPx-like activity. The catalytic parameters for the most efficient catalysts were also determined. The anti-ferroptotic activity for all GPx-mimics evaluated in a 4-OH-tamoxifen (TAM) inducible GPx4 knockout cell line using liproxstatin as standard.


Asunto(s)
Ferroptosis , Compuestos de Organoselenio , Glutatión Peroxidasa/metabolismo , Aminas , Compuestos de Organoselenio/farmacología , Antioxidantes/metabolismo , Acetamidas
13.
Biochem Biophys Res Commun ; 696: 149514, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38237233

RESUMEN

Organoselenium compounds modulate the metabolism by regulating carbohydrate and lipid syntheses and degradation in the liver, muscle, and adipose tissue. Notably, p-chloro-diphenyl diselenide (p-ClPhSe)2 can directly regulate the activities of enzymes involved in glucose metabolism, suggesting an insulin-like effect in rodents; however, there is still a lack of scientific evidence to confirm this hypothesis. The objective of this study was to investigate (p-ClPhSe)2 effects on glucose and lipid metabolism in Caenorhabditis elegans. The contribution of AGE-1/PI3K, AKT-1, AKT-2, PFK-1, DAF-16, and DAF-2 in the (p-ClPhSe)2 effects were also investigated. Our results demonstrate that (p-ClPhSe)2 acute exposure presented some toxicity to the worms, and therefore, lower concentrations were further used. (p-ClPhSe)2 reduced glucose and triglyceride levels to the baseline levels, after induction with glucose or fructose, in wild-type worms. This effect required proteins involved in the insulin/IGF-1 like signaling, such as the DAF-2, AGE-1, AKT-1 and AKT-2, PFK-1, but also DAF-16, which would be negatively regulated by DAF-2 activation. Moreover, the reduction in glucose and triglyceride levels, caused by (p-ClPhSe)2per se was lost in age-1/daf-16 worms, suggesting that insulin/IGF-1-like signaling in a DAF-2 and AGE-1/DAF-16 dependent-manner in C. elegans are necessary to effects of (p-ClPhSe)2. In conclusion, (p-ClPhSe)2 requires proteins involved in the IIS pathway to modulate carbohydrate and lipid metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans , Compuestos de Organoselenio , Animales , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Metabolismo de los Lípidos , Compuestos de Organoselenio/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Glucosa/metabolismo , Triglicéridos/metabolismo , Longevidad , Factores de Transcripción Forkhead/metabolismo
14.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267690

RESUMEN

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Asunto(s)
Compuestos de Organoselenio , Temefós , Humanos , Ratas , Animales , Caspasa 3 , Temefós/farmacología , Acetilcolinesterasa , Estrés Oxidativo , Antioxidantes/farmacología , Derivados del Benceno/farmacología , Derivados del Benceno/uso terapéutico , Derivados del Benceno/química , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Glutatión/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Doxorrubicina/toxicidad
15.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959771

RESUMEN

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Asunto(s)
Compuestos de Organoselenio , Selenio , Oligoelementos , Antioxidantes/química , Selenio/farmacología , Estrés Oxidativo , Glutatión Peroxidasa/metabolismo , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo
16.
Bioorg Chem ; 141: 106896, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37806050

RESUMEN

The reaction of aromatic ring-substituted isoselenocyanates with 2-thiopheacetic and 4-pyridinecarboxylic acid hydrazides yielded selenosemicarbazides which were further converted into previously unknown 1,2,4-triazole-3-selones and 3,3'-di(4H-1, 2,4-triazolyl)diselenides. The structures of the obtained compounds were studied by NMR spectroscopy, IR spectroscopy, and high-resolution mass spectroscopy (HR-MS). The bactericidal and fungicidal activity of some obtained compounds was evaluated in molecular modeling studies such as docking and simulation studies. The compound 3ba was reported as the most promising compound to show robust binding energy with different antibacterial and antifungal compounds. The compounds were observed in strong hydrophilic and hydrophobic interactions and remained in stable binding conformation with the receptor enzymes. Furthermore, the interatomic interaction energies were dominated by Van der Waals and electrostatic energies indicating the formation of stable complexes.


Asunto(s)
Antibacterianos , Fungicidas Industriales , Antibacterianos/química , Antifúngicos/química , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Triazoles/química , Compuestos de Organoselenio/farmacología
17.
Mar Biotechnol (NY) ; 25(6): 1020-1030, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819466

RESUMEN

Selenoneine is an organic selenium compound contained in blood and dark muscle of fish. It has a strong antioxidative capacity and is considered useful as a new functional food material. However, the distribution and effects of selenoneine in the mammalian body have not been thoroughly examined. In this study, a selenoneine-rich mackerel extract was developed and fed to mice at 0.07% in standard rodent chow (ME diet) for 32 days to examine its distribution in the body. Selenoneine was distributed in the liver, kidney, and spleen in mice fed with mackerel extract, but it was not distributed in the plasma or erythrocytes. Moreover, concentrations of the major selenium-containing protein were not affected by the mackerel extract. The results of this study suggest that selenoneine is absorbed in the body following ingestion of low doses in crude material and preferentially accumulates in organs and later distributes in erythrocytes. Biochemical analyses of plasma in male mice showed that the glucose level was significantly increased and LDL-cholesterol level was significantly decreased by ME diet feeding. The results indicate that male mice are sensitive to ME diet.


Asunto(s)
Compuestos de Organoselenio , Perciformes , Selenio , Masculino , Animales , Ratones , Selenio/análisis , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/análisis , Compuestos de Organoselenio/química , Ingestión de Alimentos , Mamíferos
18.
Comput Biol Chem ; 107: 107956, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748316

RESUMEN

The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.


Asunto(s)
COVID-19 , Compuestos de Organoselenio , Selenio , Humanos , Dominio Catalítico , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Albúminas , Azoles/farmacología , Cisteína , Glutatión , Simulación de Dinámica Molecular , Compuestos de Organoselenio/farmacología , Péptido Hidrolasas , Inhibidores de Proteasas , Antivirales/farmacología
19.
Comput Biol Chem ; 107: 107963, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776812

RESUMEN

N-heterocyclic carbene (NHC) based compounds are remarkably known for astonishing biological potentials. Coordination of metal center with these compounds can substantially improve the biological potential for better efficacy. In this context, three binuclear azolium salts (L1-L3) and subsequent selenium adducts L1Se-L3Se were synthesized and assured through analytical techniques. Synthesized compounds were also simulated through computational approach and results were compared with experimental observations that also relatable with biological potentials. Synthesized compounds were screened against bacterial strains and interestingly, the studied compounds showed good antimicrobial potential with MIC values of 7.01, 10.7 and 10.5 µM for S. Aureus (gram positive bacteria) while 12.5, 11.75 and 14.5 µM against E. Coli (gram negative bacteria). The studied compounds showed good antioxidant activity to scavenge DPPH free radicals among which azolium salts were found better in antioxidant potential (IC50 5.75-6.55 µg/mL) than their respective selenium compounds (IC50 9.50-12.75 µg/mL). The hemolytic assay against red blood cells showed that ligands are least toxic comparative to their Se-adducts and can be further trialed for In Vivo studies.


Asunto(s)
Compuestos Heterocíclicos , Compuestos de Organoselenio , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Organoselenio/farmacología , Escherichia coli , Staphylococcus aureus , Sales (Química) , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/química , Pruebas de Sensibilidad Microbiana
20.
Curr Opin Chem Biol ; 75: 102337, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276751

RESUMEN

Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.


Asunto(s)
Neoplasias , Compuestos de Organoselenio , Humanos , Antioxidantes/farmacología , Oxidación-Reducción , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...