RESUMEN
Oxidative stress on cysteine (Cys)-containing proteins has been associated with physiological disorders, as suggested for the human cofilin-1 (CFL-1) protein, in which the oxidized residues are likely implicated in the aggregation process of α-synuclein, leading to severe neuronal injuries. Considering the relevance of the oxidation state of cysteine, quantification of thiols may offer a guide for the development of effective therapies. This work presents, for the very first time, thiol quantification within CFL-1 in solution and on the surface following classic and adapted versions of Ellman's assay. The 1:1 stoichiometric Ellman's reaction occurs between 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), and the free thiol of the cysteine residue, producing two 2-nitro-5-thiobenzoate (TNB2-) ions, one of which is released into the medium. While in solution, the thiol concentration was determined by the absorbance of the released TNB2-, on the surface, the mass of the attached TNB2- ion to the protein allowed the quantification by means of the multiparametric surface plasmon resonance (MP-SPR) technique. The SPR angle change after the interaction of DTNB with immobilized CFL-1 gave a surface coverage of 26.5 pmol cm-2 for the TNB2- ions (ΓTNB2-). The ratio of this value to the surface coverage of CFL-1, ΓCFL-1 = 6.5 ± 0.6 pmol cm-2 (also determined by MP-SPR), gave 4.1 as expected for this protein, i.e., CFL-1 contains four Cys residues in its native form (reduced state). A control experiment with adsorbed oxidized protein showed no SPR angle change, thus proving the reliability of adapting Ellman's assay to the surface using the MP-SPR technique. The results presented in this work provide evidence of the heterogenization of Ellman's assay, offering a novel perspective for studying thiol-containing species within proteins. This may be particularly useful to ensure further studies on drug-like molecules that can be carried out with validated oxidized or reduced CFL-1 or other analogous systems.
Asunto(s)
Cofilina 1 , Compuestos de Sulfhidrilo , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , Humanos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/análisis , Cofilina 1/química , Cofilina 1/metabolismo , Ácido Ditionitrobenzoico/química , Propiedades de Superficie , Cisteína/química , Cisteína/análisisRESUMEN
Aquatic biota are exposed to toxic substances resulting from human activities, reducing environmental quality and can compromise the health of the organisms. This study aimed to employ Danio rerio as an environmental bioindicator, analyzing the effects of water from distinct urban aquatic environments. An active biomonitoring system was set up to compare the temporal dynamics of histological biomarkers for gill and liver and the patterns of non-protein thiols (NPSH) in muscle in specimens exposed for 3, 6, and 12 days. Three large urban basins in the city of Campo Grande (Midwest of Brazil) were selected. Two sites are in a very populous area (i.e Lagoa and Bandeira) and another on in an area with agricultural activities (i.e Anhanduí). All the streams displayed distinct qualitative characteristics. The presence of metals, including Mn, Zn, Fe, and Al, as well as pH, temperature, and dissolved oxygen, accounted for 38% of the variability (PC1), while total solids, conductivity, ammonia, nitrite, and explained 24 % (PC2). Degree tissue changes index (DTC) in gill and the concentration of NPSH increased in all streams during 3, 6 and 12 days of exposure. DTC in liver increases in all exposure times in most populous stream (i.e Lagoa and Bandeira). Histopathological evidence in the gill, including proliferation, desquamation, and necrosis of the primary lamellar epithelium; fusion and aneurysms in the secondary lamellar epithelium were observed after three days of exposure. Degenerative nuclear figures were noted in the liver after three days of exposure, followed by hepatocellular hypertrophy, lipidosis, and necrosis at twelve days. Our findings showing time-dependent effects of urban aquatic environments in histopathological (i.e DTC) and biochemical biomarkers in zebrafish. The biomonitoring model enabled a comparison of the temporal dynamics of various health markers, using zebrafish as bioindicator. Future studies might use this experimental model and biomarkers for environmental biomonitoring program.
Asunto(s)
Monitoreo Biológico , Monitoreo del Ambiente , Branquias , Hígado , Músculos , Ríos , Compuestos de Sulfhidrilo , Contaminantes Químicos del Agua , Pez Cebra , Animales , Branquias/patología , Branquias/metabolismo , Hígado/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Compuestos de Sulfhidrilo/metabolismo , Ríos/química , Músculos/química , Músculos/metabolismo , Brasil , Biomarcadores/metabolismoRESUMEN
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Asunto(s)
Antioxidantes , Catequina , Persea , Proantocianidinas , Persea/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Proantocianidinas/química , Proantocianidinas/farmacología , Proantocianidinas/síntesis química , Proantocianidinas/aislamiento & purificación , Catequina/química , Catequina/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Compuestos de Sulfhidrilo/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antibacterianos/aislamiento & purificación , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , Fenoles/síntesis químicaRESUMEN
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Asunto(s)
Antineoplásicos , Complejos de Coordinación , Fosfinas , Rutenio , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fosfinas/química , Fosfinas/farmacología , Rutenio/química , Rutenio/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estructura MolecularRESUMEN
OBJECTIVE: We aimed to examine the effect of remission status on thiol-disulfide homeostasis in celiac patients and thus to indirectly determine the effect of oxidative stress and inflammation caused by non-compliance with the diet. METHODS: Between February 2019 and December 2021, 117 patients diagnosed with celiac disease were included in this prospective randomized and controlled study. In addition to routine tests of celiac patients, thiol and disulfide measurements were made from the blood both at the beginning of the study and at the end of the first year. RESULTS: While 52 of the patients (44.4%) were in remission, 65 patients (55.6%) were not. There was an evident increase in native thiol levels of the patients who were initially not in remission but went into at the end of the first year (347.4±46.7 µmol/L vs. 365.3±44.0 µmol/L; p=0.001). Mean plasma disulfide levels of patients with celiac going into remission became reduced in the first year from the level of 14.5±5.1 µmol/L down to 8.9±4.2 µmol/L (p<0.001). In celiac patients who entered remission, disulfide and anti-tissue transglutaminase immunoglobulin A levels decreased in a correlation (r=0.526; p<0.001). CONCLUSION: Not being in remission in celiac disease leads to increased oxidative stress, and thiol-disulfide homeostasis is an indirect indicator of this. Additionally, providing remission in celiac patients reduces oxidative stress.
Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Disulfuros , Estrés Oxidativo , Cooperación del Paciente , Compuestos de Sulfhidrilo , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/sangre , Estrés Oxidativo/fisiología , Femenino , Masculino , Disulfuros/sangre , Estudios Prospectivos , Compuestos de Sulfhidrilo/sangre , Adulto , Inducción de Remisión , Adulto Joven , Adolescente , Persona de Mediana Edad , Inmunoglobulina A/sangre , Transglutaminasas/sangreRESUMEN
Antarctic seaweeds are vital components of polar marine ecosystems, playing a crucial role in nutrient cycling and supporting diverse life forms. The sulfur content in these organisms is particularly interesting due to its implication in biogeochemical processes and potential impacts on local and global environmental systems. In this study, we present a comprehensive characterization of seaweed collected in the Antarctic in terms of their total sulfur content and its distribution among different classes of species, including thiols, using various methods and high-sensitivity techniques. The data presented in this paper are unprecedented in the scientific literature. These methods allowed for the determination of total sulfur content and the distribution of sulfur compounds in different fractions, such as water-soluble and proteins, as well as the speciation of sulfur compounds in these fractions, providing valuable insights into the chemical composition of these unique marine organisms. Our results revealed that the total sulfur concentration in Antarctic seaweeds varied widely across different species, ranging from 5.5 to 56 g kg-1 dry weight. Furthermore, our investigation into the sulfur speciation revealed the presence of various sulfur compounds, including sulfate, and some thiols, which were quantified in all ten seaweed species evaluated. The concentration of these individual sulfur species also displayed considerable variability among the studied seaweeds. This study provides the first in-depth examination of total sulfur content and sulfur speciation in brown and red Antarctic seaweeds.
Asunto(s)
Algas Marinas , Algas Marinas/química , Regiones Antárticas , Peso Molecular , Ecosistema , Azufre/metabolismo , Compuestos de Azufre/metabolismo , Verduras , Compuestos de Sulfhidrilo/metabolismoRESUMEN
Cancer development and progression are intimately related with post-translational protein modifications, e.g., highly reactive thiol moiety of cysteines enables structural rearrangements resulting in redox biological switches. In this context, redox proteomics techniques, such as 2D redox DIGE, biotin switch assay and OxIcat are fundamental tools to identify and quantify redox-sensitive proteins and to understand redox mechanisms behind thiol modifications. Given the great variability in redox proteomics protocols, problems including decreased resolution of peptides and low protein amounts even after enrichment steps may occur. Considering the biological importance of thiol's oxidation in melanoma, we adapted the biotin-switch assay technique for melanoma cells in order to overcome the limitations and improve coverage of detected proteins.
Asunto(s)
Biotina , Melanoma , Oxidación-Reducción , Proteómica , Proteómica/métodos , Melanoma/metabolismo , Melanoma/patología , Humanos , Línea Celular Tumoral , Biotina/química , Biotina/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismoRESUMEN
PURPOSE: This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. METHODS: Fifty male Sprague Dawley rats (250-300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid-Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. RESULTS: Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. CONCLUSIONS: Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.
Asunto(s)
Hesperidina , Daño por Reperfusión , Masculino , Ratas , Animales , Antígeno Nuclear de Célula en Proliferación , Antioxidantes , Ratas Sprague-Dawley , Estómago , Superóxido Dismutasa , Isquemia , Malondialdehído , Compuestos de Sulfhidrilo , Glutatión PeroxidasaRESUMEN
The bacterial envelope is an essential compartment involved in metabolism and metabolites transport, virulence, and stress defense. Its roles become more evident when homeostasis is challenged during host-pathogen interactions. In particular, the presence of free radical groups and excess copper in the periplasm causes noxious reactions, such as sulfhydryl group oxidation leading to enzymatic inactivation and protein denaturation. In response to this, canonical and accessory oxidoreductase systems are induced, performing quality control of thiol groups, and therefore contributing to restoring homeostasis and preserving survival under these conditions. Here, we examine recent advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the scsABCD locus and its integration into a global regulatory pathway directing envelope response to Cu stress during the evolution of pathogens that also harbor the canonical Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the extra demands that the host-pathogen interface imposes to preserve functional thiol groups. This resulted in the acquisition of the Scs system by Salmonella. We propose that the ScsABCD complex evolved to connect Cu and redox stress responses in this pathogen as well as in other bacterial pathogens.
Asunto(s)
Proteínas Bacterianas , Proteínas Portadoras , Cobre , Salmonella , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Homeostasis , Oxidación-Reducción , Oxidorreductasas/metabolismo , Salmonella/metabolismo , Compuestos de Sulfhidrilo , Proteínas Portadoras/metabolismoRESUMEN
BACKGROUND: Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD: Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 µg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS: Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION: Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.
Asunto(s)
Compuestos de Etilmercurio , Compuestos de Mercurio , Mercurio , Humanos , Niño , Lactante , Ratas , Animales , Mercurio/toxicidad , Mercurio/metabolismo , Timerosal/farmacología , Peróxido de Hidrógeno/metabolismo , Ratas Wistar , Mitocondrias/metabolismo , Superóxido Dismutasa , Compuestos de SulfhidriloRESUMEN
Mercury is a ubiquitous environmental contaminant and can be found in inorganic (Hg0, Hg+ and Hg2+) and organic forms (chiefly CH3Hg+ or MeHg+). The main route of human, mammals and bird exposure occurs via predatory fish ingestion. Occupational exposure to Hg0 (and Hg2+) can also occur; furthermore, in gold mining areas the exposure to inorganic Hg can also be high. The toxicity of electrophilic forms of Hg (E+Hg) is mediated by disruption of thiol (-SH)- or selenol (-SeH)-containing proteins. The therapeutic approaches to treat methylmercury (MeHg+), Hg0 and Hg2+ are limited. Here we discuss the potential use of ebselen as a potential therapeutic agent to lower the body burden of Hg in man. Ebselen is a safe drug for humans and has been tested in clinical trials (for instance, brain ischemia, noise-induce hearing loss, diabetes complications, bipolar disorders) at doses varying from 400 to 3600 mg per day. Two clinical trials with ebselen in moderate and severe COVID are also approved. Ebselen can be metabolized to an intermediate with -SeH (selenol) functional group, which has a greater affinity to electrophilic Hg (E+Hg) forms than the available thiol-containing therapeutic agents. Accordingly, as observed in vitro and rodent models in vivo, Ebselen exhibited protective effects against MeHg+, indicating its potential as a therapeutic agent to treat MeHg+ overexposure. The combined use of ebselen with thiol-containing molecules (e.g. N-acetylcysteine and enaramide)) is also commented, because they can have synergistic protective effects against MeHg+.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Animales , Humanos , Mercurio/toxicidad , Compuestos de Metilmercurio/toxicidad , Compuestos de Metilmercurio/metabolismo , Azoles/uso terapéutico , Compuestos de Sulfhidrilo , Mamíferos/metabolismoRESUMEN
We have studied the reduction reactions of two cytosolic human peroxiredoxins (Prx) in their disulfide form by three thioredoxins (Trx; two human and one bacterial), with the aim of better understanding the rate and mechanism of those reactions, and their relevance in the context of the catalytic cycle of Prx. We have developed a new methodology based on stopped-flow and intrinsic fluorescence to study the bimolecular reactions, and found rate constants in the range of 105 -106 m-1 s-1 in all cases, showing that there is no marked kinetic preference for the expected Trx partner. By combining experimental findings and molecular dynamics studies, we found that the reactivity of the nucleophilic cysteine (CN ) in the Trx is greatly affected by the formation of the Prx-Trx complex. The protein-protein interaction forces the CN thiolate into an unfavorable hydrophobic microenvironment that reduces its hydration and results in a remarkable acceleration of the thiol-disulfide exchange reactions by more than three orders of magnitude and also produces a measurable shift in the pKa of the CN . This mechanism of activation of the thiol disulfide exchange may help understand the reduction of Prx by alternative reductants involved in redox signaling.
Asunto(s)
Peroxirredoxinas , Tiorredoxinas , Humanos , Tiorredoxinas/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxidación-Reducción , Compuestos de Sulfhidrilo/química , Disulfuros/químicaRESUMEN
An increasing number of studies have shown that the local release of nitric oxide (NO) from hydrogels stimulates tissue regeneration by modulating cell proliferation, angiogenesis, and inflammation. The potential biomedical uses of NO-releasing hydrogels can be expanded by enabling their application in a fluid state, followed by controlled gelation triggered by an external factor. In this study, we engineered a hydrogel composed of methacrylated hyaluronic acid (HAGMA) and thiolated gelatin (GELSH) with the capacity for in situ photo-cross-linking, coupled with localized NO release. To ensure a gradual and sustained NO release, we charged the hydrogels with poly(l-lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with S-nitrosoglutathione (GSNO), safeguarding SNO group integrity during photo-cross-linking. The formation of thiol-ene bonds via the reaction between GELSH's thiol groups and HAGMA's vinyl groups substantially accelerated gelation (by a factor of 6) and increased the elastic modulus of hydrated hydrogels (by 1.9-2.4 times). HAGMA/GELSH hydrogels consistently released NO over a 14 day duration, with the release of NO depending on the hydrogels' equilibrium swelling degree, determined by the GELSH-to-HAGMA ratio. Biocompatibility assessments confirmed the suitability of these hydrogels for biological applications as they display low cytotoxicity and stimulated fibroblast adhesion and proliferation. In conclusion, in situ photo-cross-linkable HAGMA/GELSH hydrogels, loaded with PLGA-GSNO nanoparticles, present a promising avenue for achieving localized and sustained NO delivery in tissue regeneration applications.
Asunto(s)
Gelatina , Ácido Hialurónico , Ácido Hialurónico/química , Gelatina/química , Óxido Nítrico , Hidrogeles/farmacología , Hidrogeles/química , Compuestos de Sulfhidrilo/químicaRESUMEN
Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.
Asunto(s)
Arabidopsis , Herbicidas , Liasas , Arabidopsis/metabolismo , Cisteína , Cisteína Sintasa/metabolismo , Herbicidas/farmacología , Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismoRESUMEN
Cutaneous melanoma (CM) is a malignant neoplasm with a high metastatic rate that shows poor response to systemic treatments in patients with advanced stages. Recently, studies have highlighted the antineoplastic potential of natural compounds, such as polyphenols, in the adjuvant therapy context to treat CM. The objective of the present study was to evaluate the effect of different concentrations of curcumin (0.1-100 µM) on the metastatic CM cell line SK-MEL-28. The cells were treated for 6 and 24 h with different concentrations of curcumin. Cell viability was assessed by 3-(4,5-dimethyl-2thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and fluorescence microscopy. The apoptotic-inducing potential was detected by annexin V flow cytometry. The wound healing assay was used to verify cell migration after the curcumin exposition. The redox profile was evaluated by levels of the pro-oxidant markers reactive oxygen species (ROS) and Nitric oxide (NOx) and antioxidants of total thiols (PSH) and nonprotein thiols. The gene expression and enzymatic activity of caspase 3 were evaluated by reverse transcription-quantitative polymerase chain reaction and a sensitive fluorescence assay, respectively. Curcumin significantly decreased the cell viability of SK-MEL-28 cells at both exposure times. It also induced apoptosis at the highest concentration tested (p < .0001). SK-MEL-28 cell migration was inhibited by curcumin after treatment with 10 µM (p < .0001) and 100 µM (p < .0001) for 6 and 24 h (p = .0006 and p < .0001, respectively). Furthermore, curcumin significantly increased levels of ROS and NOx. Finally, curcumin was capable of increasing the gene expression at 10 µM (p = .0344) and 100 µM (p = .0067) and enzymatic activity at 10 µM (p = .0086) and 100 µM (p < .0001) of caspase 3 after 24 h. For the first time, we elucidated in our study that curcumin increases ROS levels, promoting oxidative stress that activates the caspase pathway and culminates in SK-MEL-28 metastatic CM cell death.
Asunto(s)
Curcumina , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/metabolismo , Curcumina/farmacología , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Apoptosis , Compuestos de Sulfhidrilo/farmacología , Línea Celular Tumoral , Supervivencia CelularRESUMEN
Cysteine-based perfluoroaromatic (hexafluorobenzene (HFB) and decafluorobiphenyl (DFBP)) were synthesized and established as a chemoselective and available core to construct molecular systems ranging from small molecules to biomolecules with interesting properties. The DFBP was found more effective than HFB for the monoalkylation of decorated thiol molecules. As proof of concept of the potential application of perfluorinated derivatives as non-cleavable linkers, some antibody-perfluorinated conjugates were prepared via thiol through two different strategies, i)â using thiol from reduced cystamine coupling to carboxylic acids from mAb by amide bond, and ii)â using thiols from reduction of mAb disulfide bond. Conjugates cell binding analysis demonstrated that the bioconjugation does not affect the macromolecular entity. Besides, some molecular properties of synthesized compounds are evaluated through spectroscopic characterization (FTIR and 19 Fâ NMR chemical shifts) and theoretical calculations. The comparison of calculated and experimental 19 Fâ NMR shifts and IR wavenumbers give excellent correlations, asserting as powerful tools in structurally identifying HFB and DFBP derivatives. Moreover, molecular docking was also developed to predict cysteine-based perfluorated derivatives' affinity against topoisomerase Il and cyclooxygenase 2 (COX-2). The results suggested that mainly cysteine-based DFBP derivatives could be potential topoisomerase II α and COX-2 binders, becoming potential anticancer agents and candidates for anti-inflammatory treatment.
Asunto(s)
Antineoplásicos , Cisteína , Cisteína/química , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2/metabolismo , Antineoplásicos/química , Compuestos de Sulfhidrilo/químicaRESUMEN
Glutathione (GSH) is one of the main antioxidant molecules present in cells. It harbors a thiol group responsible for sustaining cellular redox homeostasis. This moiety can react with cellular electrophiles such as formaldehyde yielding the compound S-hydroxymethyl-GSH (HSMGSH). HSMGSH is the substrate of the enzyme alcohol dehydrogenase 5 (ADH5) and thus a key intermediate in formaldehyde metabolism. In this work, we describe a method for the chemical synthesis of HSMGSH and a pipeline to identify this compound in complex cell extracts by means of ultra-high-performance liquid chromatography coupled to high-resolution spectrometry (UHPLC-HRMS). This method also allows determining GSH and oxidized disulfide (GSSG) in the same samples, thus providing broad information about formaldehyde-GSH metabolism.
Asunto(s)
Antioxidantes , Glutatión , Humanos , Disulfuro de Glutatión/química , Cromatografía Líquida de Alta Presión/métodos , Glutatión/metabolismo , Antioxidantes/metabolismo , Compuestos de Sulfhidrilo , Oxidación-ReducciónRESUMEN
Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.
Asunto(s)
Complejos de Coordinación , Rutenio , Animales , Ratas , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Rutenio/química , Compuestos de Sulfhidrilo/química , Enfermedades CardiovascularesRESUMEN
BACKGROUND: Evidence indicates that inflammation in Inflammatory Bowel Disease (IBD) is associated with increased systemic levels of reactive oxygen species. Systemic oxidative stress has been associated with reduced levels of plasma thiols. Less invasive tests capable of reflecting and predicting IBD activity are increasingly sought after. We sought to systematically review the evidence inherent in serum thiol levels as a marker of Crohn's Disease and Ulcerative Colitis activity (PROSPERO: CRD42021255521). METHODS: The highest quality documents for systematic reviews standards were used as reference. Articles were searched on Medline via PubMed, VHL, LILACS, WOS, EMBASE, SCOPUS, COCHRANE, CINAHL, OVID, CTGOV, WHO/ICTRP, OPENGREY, BDTD and CAPES, between August, 03 and September, 03 on 2021. Descriptors were defined according to the Medical Subject Heading. Of the 11 articles selected for full reading, 8 were included in the review. It was not possible to perform a pooled analysis of the studies, as there were no combinable studies between subjects with active IBD and controls/inactive disease. RESULTS: Findings from the individual studies included in this review suggest an association between disease activity and systemic oxidation, as measured by serum thiol levels, however, there are limitations that preclude weighting the study results in a meta-analysis. CONCLUSIONS: We recommend conducting better-designed and controlled studies, that include individuals of both phenotypes and at different stages of IBD, involving a larger number of participants, using the standardization of the technique for measuring serum thiols, to confirm whether thiols can be a good parameter for monitoring the clinical course of these intestinal diseases and the degree of clinical applicability.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Colitis Ulcerosa/complicaciones , Enfermedad de Crohn/complicaciones , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/complicaciones , Compuestos de SulfhidriloRESUMEN
The carboxylic chemical group is a ubiquitous moiety present in amino acids, a ligand for transition metals, a colloidal stabilizer, and a weak acidic ion-exchanger in polymeric resins and given this property, it is attractive for responsive materials or nanopore-based gating applications. As the number of uses increases, subtle requirements are imposed on this molecular group when anchored to various platforms for the functioning of an integrated chemical system. In this context, silica stands as an inert and multipurpose platform that enables the anchoring of multiple chemical entities combined through several orthogonal synthesis methods on the interface. Surface chemical modification relies on the use of organoalkoxysilanes that must meet the demand of tuned chemical properties; this, in turn, urges for innovative approaches for having an improved, but simple, organic toolbox. Starting from commonly available molecular precursors, several approaches have emerged: hydrosilylation, click thiol-ene additions, the use of carbodiimides or the reaction between cyclic anhydrides and anchored amines. In this review, we analyze the importance of the COOH groups in the area of materials science and the commercial availability of COOH-based silanes and present new approaches for obtaining COOH-based organoalkoxide precursors. Undoubtedly, this will attract widespread interest for the ultimate design of highly integrated chemical platforms.