Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38925283

RESUMEN

One of the top ecological priorities is to find sensitive indicators for pollution monitoring. This study focuses on the bioconcentration and responses (condition index, survival, oxygen consumption, heart rates, and oxidative stress and neurotoxic effect biomarkers) of mussels from the Volga River basin, Dreissena polymorpha and Dreissena bugensis, to long-term exposure to toxic chemicals such as tributyltin (TBT, 25 and 100 ng/L) and copper (Cu, 100 and 1000 µg/L). We found that TBT was present in the tissues of zebra and quagga mussels in comparable amounts, whereas the bioconcentration factor of Cu varied depending on its concentration in water. Differences in responses between the two species were revealed. When exposed to high Cu concentrations or a Cu-TBT mixture, quagga mussels had a lower survival rate and a longer heart rate recovery time than zebra mussels. TBT treatment caused neurotoxicity (decreased acetylcholinesterase activity) and oxidative stress (increased levels of thiobarbituric acid reactive substances) in both species. TBT and Cu levels in mussel tissues correlated positively with the condition index, but correlated with the level of acetylcholinesterase in the mussel gills. The principal component analysis revealed three main components: the first consists of linear combinations of 14 variables reflecting TBT water pollution, TBT and Cu levels in mussel tissues, and biochemical indicators; the second includes Cu water concentration, cardiac tolerance, and mussel size; and the third combines weight, metabolic rate, and heart rates. Quagga mussels are less tolerable to contaminants than zebra mussels, so they may be used as a sensitive indicator.


Asunto(s)
Biomarcadores , Cobre , Dreissena , Estrés Oxidativo , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Dreissena/efectos de los fármacos , Dreissena/metabolismo , Biomarcadores/metabolismo , Cobre/toxicidad , Compuestos de Trialquiltina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Branquias/metabolismo , Branquias/efectos de los fármacos , Acetilcolinesterasa/metabolismo
2.
Toxicology ; 505: 153844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38801937

RESUMEN

Tributyltin chloride (TBTC) is a ubiquitous environmental pollutant with various adverse effects on human health. Exosomes are cell - derived signaling and substance transport vesicles. This investigation aimed to explore whether exosomes could impact the toxic effects caused by TBTC via their transport function. Cytotoxicity, DNA and chromosome damage caused by TBTC on MCF-7 cells were analyzed with CCK-8, flow cytometry, comet assay and micronucleus tests, respectively. Exosomal characterization and quantitative analysis were performed with ultracentrifugation, transmission electron microscope (TEM) and bicinchoninic acid (BCA) methods. TBTC content in exosomes was detected with Liquid Chromatography-Mass Spectrometry (LC-MS). The impacts of exosomal secretion on the toxic effects of TBTC were analyzed. Our data indicated that TBTC caused significant cytotoxicity, DNA and chromosome damage effects on MCF-7 cells, and a significantly increased exosomal secretion. Importantly, TBTC could be transported out of MCF-7 cells by exosomes. Further, when exosomal secretion was blocked with GW4869, the toxic effects of TBTC were significantly exacerbated. We concluded that TBTC promoted exosomal secretion, which in turn transported TBTC out of the source cells to alleviate its toxic effects. This investigation provided a novel insight into the role and mechanism of exosomal release under TBTC stress.


Asunto(s)
Daño del ADN , Exosomas , Compuestos de Trialquiltina , Humanos , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Compuestos de Trialquiltina/toxicidad , Células MCF-7 , Daño del ADN/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Supervivencia Celular/efectos de los fármacos
3.
Auton Neurosci ; 253: 103176, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669866

RESUMEN

Tributyltin (TBT) is a biocide used in the formulation of antifouling paints and it is highly harmful. Despite the ban, the compound persists in the environment, contaminating marine foodstuffs and household products. Therefore, considering the route of exposure to the contaminant, the gastrointestinal tract (GIT) acts as an important barrier against harmful substances and is a potential biomarker for understanding the consequences of these agents. This work aimed to evaluate histological and neuronal alterations in the duodenum of male Wistar rats that received 20 ng/g TBT and 600 ng/g via gavage for 30 consecutive days. After the experimental period, the animals were euthanized, and the duodenum was intended for neuronal histochemistry (total and metabolically active populations) and histological routine (morphometry and histopathology). The results showed more severe changes in neuronal density and intestinal morphometry in rats exposed to 20 ng/g, such as total neuronal density decrease and reduction of intestinal layers. In rats exposed to 600 ng/g of TBT, it was possible to observe only an increase in intraepithelial lymphocytes. We conclude that TBT can be more harmful to intestinal homeostasis when consumed in lower concentrations.


Asunto(s)
Duodeno , Plasticidad Neuronal , Ratas Wistar , Compuestos de Trialquiltina , Animales , Compuestos de Trialquiltina/toxicidad , Masculino , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Duodeno/efectos de los fármacos , Duodeno/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/patología
4.
Chemosphere ; 357: 142085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642770

RESUMEN

Tributyltin (TBT) is one of the most harmful contaminants ever released into the aquatic environment. Despite being banned, it is still present at many locations throughout the world. Its degradation in sediment mainly occurs through microbial biodegradation, a process that remains unclear. This study therefore aimed at better understanding TBT biodegradation in estuarine sediment and the microbial community associated with it. Microcosm experiments were set up, embracing a range of environmental control parameters. Major community shifts were recorded, mainly attributed to the change in oxygen status. The highest percentage of degradation (36,8%) occurred at 4 °C in anaerobic conditions. These results are encouraging for the in-situ bioremediation of TBT contaminated muddy sediment in temperate ports worldwide. However, with TBT able to persist in the coastal environment for decades when undisturbed in anoxic sediment, further research is needed to fully understand the mechanisms that triggered this biodegradation observed in the microcosms.


Asunto(s)
Biodegradación Ambiental , Estuarios , Sedimentos Geológicos , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Compuestos de Trialquiltina/metabolismo , Compuestos de Trialquiltina/toxicidad , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Bacterias/metabolismo , Microbiota/efectos de los fármacos
5.
Environ Pollut ; 349: 123963, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621455

RESUMEN

Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.


Asunto(s)
Lactancia , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Ratas Wistar , Glándula Tiroides , Compuestos de Trialquiltina , Animales , Femenino , Compuestos de Trialquiltina/toxicidad , Ratas , Embarazo , Masculino , Glándula Tiroides/efectos de los fármacos , Lactancia/efectos de los fármacos , Animales Recién Nacidos , Disruptores Endocrinos/toxicidad , Leche/química , Leche/metabolismo
6.
Reprod Toxicol ; 126: 108600, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670349

RESUMEN

Tributyltin (TBT), an organotin endocrine-disrupting substance, is recognized as one of the important toxic environmental pollutants. The present study was carried out to investigate the toxic effects of TBT on behavior and the ovary of adult zebrafish with a focus on oxidative stress markers and oocyte maturation. Adult zebrafish were exposed to three different concentrations (125, 250, and 500 ng/L of water) of TBT for 28 days. TBT exposure produced a concentration-dependent negative effect on the body weight and behavior (anxiety-like symptoms) of adult zebrafish. Alterations in the activity of superoxide dismutase (SOD) and catalase (CAT), the total antioxidant capacity of ovarian tissue by the highest exposure level of TBT resulted in lipid peroxidation as indicated by increased malondialdehyde (MDA) level. The numbers of early-vitellogenic oocytes were significantly increased in zebrafish exposed to TBT as low as 125 ng/L. However, the numbers and size of fully-grown (mature) oocytes were significantly reduced in the highest exposure group only. Correlation between the MDA level and pre-vitellogenic oocytes in the 500 ng/L group indicated that lipid peroxidation prevented the maturation of pre-vitellogenic oocytes. TBT exposure produced significant histological changes in the ovary as evidenced by disturbed maturation of oocytes. In conclusion, TBT adversely affected the maturation of oocytes in zebrafish ovary through oxidative stress-mediated mechanisms.


Asunto(s)
Conducta Animal , Catalasa , Peroxidación de Lípido , Malondialdehído , Oocitos , Ovario , Estrés Oxidativo , Superóxido Dismutasa , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Pez Cebra , Animales , Compuestos de Trialquiltina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Superóxido Dismutasa/metabolismo , Conducta Animal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Malondialdehído/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo , Disruptores Endocrinos/toxicidad
7.
Environ Res ; 252(Pt 1): 118811, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555090

RESUMEN

Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 µg/L, 1 µg/L, and 2 µg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.


Asunto(s)
Sistema Cardiovascular , Estrés Oxidativo , Compuestos de Trialquiltina , Pez Cebra , Animales , Pez Cebra/embriología , Compuestos de Trialquiltina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos
8.
Environ Sci Pollut Res Int ; 31(10): 14938-14948, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286928

RESUMEN

Tributyltin (TBT) is widely used in various commercial applications due to its biocidal properties. Toxicological and genotoxicological data on TBT exposure to amphibians is insufficient. Our study aimed to determine the acute toxicity and genotoxic potential of TBT in Fejervarya limnocharis tadpoles. Furthermore, oxidative stress was also investigated in TBT-treated tadpoles. Tadpoles of Gosner stage (26-30) were screened and subjected to increasing concentrations of TBT (0, 3, 7, 11, 15, 19, 23 µg/L) for determining the LC50 values for 24 h, 48 h, 72 h, and 96 h. LC50 values of TBT for 24 h, 48 h, 72 h, and 96 h were found to be 19.45, 15.07, 13.12, and 11.84 µg/L respectively. Based on the 96 h LC50 value (11.84 µg/L), tadpoles were exposed to different sub-lethal concentrations of TBT for the evaluation of its genotoxic potential and effects on oxidative balance. The role of TBT on survivability, growth, and time to metamorphosis was also assessed. TBT exposure significantly altered the life history traits measured, increased mortality, and delayed the time taken to metamorphosis. Results indicated significant induction of micronucleus (MN, p < 0.001) and other erythrocytic nuclear aberrations (ENA, p < 0.01) in the TBT-treated groups. Significant alterations in comet parameters and oxidative balance were also observed in the treated groups. The present study findings might add to the cause of the gradual population decline seen in the amphibians. This study also demonstrates the alteration of the life-history traits, oxidative balance, and DNA damage upon TBT exposure which can have long-term consequences for the anuran amphibian F. limnocharis.


Asunto(s)
Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Anuros , Metamorfosis Biológica , Compuestos de Trialquiltina/toxicidad , Larva , Estrés Oxidativo , Daño del ADN , Contaminantes Químicos del Agua/toxicidad
9.
Environ Sci Technol ; 57(28): 10201-10210, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37406193

RESUMEN

This study aimed to investigate the transgenerational effects of tributyltin exposure on rat neurodevelopment in male offspring and the potential mechanisms. Neonatal female rats were exposed to the environmental level of tributyltin and then mated with nonexposed males after sexual maturity to produce the F1 generation. The F1 generation (with primordial germ cell exposure) was mated with nonexposed males to produce nonexposed offspring (the F2 and F3 generations). Neurodevelopmental indicators and behavior were observed for the F1, F2, and F3 generations during postnatal days 1-25 and 35-56, respectively. We found premature eye-opening and delayed visual positioning in newborn F1 rats and anxiety and cognitive deficits in prepubertal F1 male rats. These neurodevelopmental impacts were also observed in F2 and F3 males. Additionally, F1-F3 males exhibited increased serotonin and dopamine levels and a loose arrangement of neurons in the hippocampus. We also observed a reduction in the expression of genes involved in intercellular adhesion and increased DNA methylation of the Dsc3 promoter in F1-F3 males. We concluded that tributyltin exposure led to transgenerational effects on neurodevelopment via epigenetic reprogramming in male offspring. These findings provide insights into the risks of neurodevelopmental disorders in offspring from parents exposed to tributyltin.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Compuestos de Trialquiltina , Ratas , Animales , Masculino , Femenino , Humanos , Reproducción , Metilación de ADN , Compuestos de Trialquiltina/toxicidad , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/psicología , Epigénesis Genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37385517

RESUMEN

Tributyltin (TBT), an antifouling biocide frequently detected in aquatic systems, is generally considered to be an environmental obesogen. However, alterations in lipid metabolism in aquatic animals that are exposed to TBT are scarcely known. This study examined the effects of in vitro exposure to TBT on hepatic lipid homeostasis in the lined seahorse (Hippocampus erectus). Primary seahorse hepatocyte cultures were established for the first time. TBT exposure (100 and 500 nM for 24 h) significantly promoted lipid accumulation in seahorse hepatocytes and drastically reduced the number of active intracellular lysosomes. Furthermore, exposure to TBT significantly upregulated the gene expression of lipogenic enzymes and transcription factors but downregulated that of genes involved in the catabolism of lipid droplets in seahorse hepatocytes. These results indicate that TBT disrupts hepatic lipid homeostasis by simultaneously promoting lipid synthesis and inhibiting lipid droplet breakdown in seahorses. The present study extends our understanding of the utilization of primary hepatocytes from marine animals for toxicological research, and the molecular evidence of the effects of TBT on hepatic lipid homeostasis in teleost fishes.


Asunto(s)
Smegmamorpha , Compuestos de Trialquiltina , Animales , Hepatocitos/metabolismo , Compuestos de Trialquiltina/toxicidad , Expresión Génica , Lípidos , Smegmamorpha/genética
11.
Arch Toxicol ; 97(6): 1649-1658, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142754

RESUMEN

Organotin chemicals (butyltins and phenyltins) are the most widely used organometallic chemicals worldwide and are used in industrial applications, such as biocides and anti-fouling paints. Tributyltin (TBT) and more recently, dibutyltin (DBT) and triphenyltin (TPT) have been reported to stimulate adipogenic differentiation. Although these chemicals co-exist in the environment, their effect in combination remains unknown. We first investigated the adipogenic effect of eight organotin chemicals (monobutyltin (MBT), DBT, TBT, tetrabutyltin (TeBT), monophenyltin (MPT), diphenyltin (DPT), TPT, and tin chloride (SnCl4)) in the 3T3-L1 preadipocyte cell line in single exposures at two doses (10 and 50 ng/ml). Only three out of the eight organotins induced adipogenic differentiation with TBT eliciting the strongest adipogenic differentiation (in a dose-dependent manner) followed by TPT and DBT, as demonstrated by lipid accumulation and gene expression. We then hypothesized that, in combination (TBT, DBT, and TPT), adipogenic effects will be exacerbated compared to single exposures. However, at the higher dose (50 ng/ml), TBT-induced differentiation was reduced by TPT and DBT when in dual or triple combination. We tested whether TPT or DBT would interfere with adipogenic differentiation stimulated by a peroxisome proliferator-activated receptor (PPARγ) agonist (rosiglitazone) or a glucocorticoid receptor agonist (dexamethasone). Both DBT50 and TPT50 reduced rosiglitazone-, but not dexamethasone-stimulated adipogenic differentiation. In conclusion, DBT and TPT interfere with TBT's adipogenic differentiation possibly via PPARγ signaling. These findings highlight the antagonistic effects among organotins and the need to understand the effects and mechanism of action of complex organotin mixtures on adipogenic outcomes.


Asunto(s)
PPAR gamma , Compuestos de Trialquiltina , Animales , Ratones , Rosiglitazona , PPAR gamma/metabolismo , Células 3T3-L1 , Compuestos de Trialquiltina/toxicidad , Diferenciación Celular
12.
Ecotoxicol Environ Saf ; 256: 114894, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37059015

RESUMEN

Tributyltin (TBT) is a typical organic pollutant that persists in aquatic sediments due to its wide usage as an antifouling fungicide during the past few decades. Despite increased awareness of the serious negative consequences of TBT on aquatic species, studies on the effects of TBT exposure on cephalopod embryonic development and juvenile physiological performance are scarce. To investigate the lasting effects of TBT toxicity on Sepia pharaonis from embryo to hatchling, embryos (gastrula stage, 3-5 h post fertilization) were exposed to four levels of TBT until hatching: 0 (control), 30 (environmental level), 60, and 120 ng/L. Subsequently, juvenile growth performance endpoints and behavioral alterations were assessed over 15 days post-hatching. Egg hatchability was significantly reduced and embryonic development (i.e., premature hatching) was accelerated in response to 30 ng/L TBT exposure. Meanwhile, TBT-induced alterations in embryonic morphology primarily included yolk-sac lysis, embryonic malformations, and uneven pigment distributions. During the pre-middle stage of embryonic development, the eggshell serves as an effective barrier to safeguard the embryo from exposure to 30-60 ng/L TBT, according to patterns of TBT accumulation and distribution in the egg compartment. However, even environmental relevant levels of TBT (30 ng/L) exposure during embryonic development had a negative impact on juvenile behavior and growth, including slowing growth, shortening eating times, causing more irregular movements, and increasing inking times. These findings indicate that after TBT exposure, negative long-lasting effects on S. pharaonis development from embryo to hatchling persist, suggesting that long-lasting toxic effects endure from S. pharaonis embryos to hatchlings.


Asunto(s)
Sepia , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Decapodiformes , Bioacumulación , Compuestos de Trialquiltina/toxicidad , Contaminantes Químicos del Agua/toxicidad
13.
Ecotoxicol Environ Saf ; 255: 114725, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924558

RESUMEN

Tributyltin chloride (TBTCL) is a widely used fungicide and heat stabilizer in compositions of PVC. TBTCL has been detected in human bodies and potentially causes harmful effects on humans' thyroid, cardiovascular and other organs. As one of the first examples of endocrine disruptors, the toxicity effects of TBTCL on the male reproduction system have aroused concerns. However, the potential cellular mechanisms are not fully explored. In the current study, by using Sertoli cells, a critical regulator of spermatogenesis as a cell model, we showed that with 200 nM exposure for 24 h, TBTCL causes apoptosis and cell cycle arrest. RNA sequencing analyses suggested that TBTCL probably activates endoplasmic reticulum (ER) stress, and disrupts autophagy. Biochemical analysis showed that TBTCL indeed induces ER stress and the dysregulation of autophagy. Interestingly, activation of ER stress and inhibition of autophagy is responsible for TBTCL-induced apoptosis and cell cycle arrest. Our results thus uncovered a novel insight into the cellular mechanisms for TBTCL-induced toxicology in Sertoli cells.


Asunto(s)
Células de Sertoli , Compuestos de Trialquiltina , Masculino , Humanos , Compuestos de Trialquiltina/toxicidad , Glándula Tiroides , Espermatogénesis , Apoptosis , Estrés del Retículo Endoplásmico , Autofagia
14.
J Toxicol Sci ; 48(3): 161-168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858641

RESUMEN

Tributyltin (TBT) is an environmental chemical, which was used as an antifouling agent for ships. Although its use has been banned, it is still persistently present in ocean sediments. Although TBT reportedly causes various toxicity in mammals, few studies on the mechanisms of biological response against TBT toxicity exist. The well-established Keap1-Nrf2 pathway is activated as a cytoprotective mechanism under stressful conditions. The relationship between TBT and the Keap1-Nrf2 pathway remains unclear. In the present study, we evaluated the effect of TBT on the Keap1-Nrf2 pathway. TBT reduced Keap1 protein expression in Neuro2a cells, a mouse neuroblastoma cell line, after 6 hr without altering mRNA expression levels. TBT also promoted the nuclear translocation of Nrf2, a transcription factor for antioxidant proteins, after 12 hr and augmented the expression of heme oxygenase 1, a downstream protein of Nrf2. Furthermore, TBT decreased Keap1 levels in mouse embryonic fibroblast (MEF) cells, with the knockout of Atg5, which is essential for macroautophagy, as well as in wild-type MEF cells. These results suggest that TBT activates the Keap1-Nrf2 pathway via the reduction in the Keap1 protein level in a macroautophagy-independent manner. The Keap1-Nrf2 pathway is activated by conformational changes in Keap1 induced by reactive oxygen species or electrophiles. Furthermore, any unutilized Keap1 protein is degraded by macroautophagy. Understanding the novel mechanism governing the macroautophagy-independent reduction in Keap1 by TBT may provide insights into the unresolved biological response mechanism against TBT toxicity and the activation mechanism of the Keap1-Nrf2 pathway.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Macroautofagia , Factor 2 Relacionado con NF-E2 , Compuestos de Trialquiltina , Animales , Ratones , Fibroblastos , Compuestos de Trialquiltina/toxicidad
15.
PLoS One ; 18(2): e0280777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745593

RESUMEN

Tri-Butyl Tin (TBT) remains as a legacy pollutant in the benthic environments. Although the toxic impacts and endocrine disruption caused by TBT to gastropod molluscs have been established, the changes in energy reserves allocated to maintenance, growth, reproduction and survival of European oysters Ostrea edulis, a target species of concerted benthic habitat restoration projects, have not been explored. This study was designed to evaluate the effect of TBT chloride (TBTCl) on potential ions and relevant metabolomic pathways and its association with changes in physiological, biochemical and reproductive parameters in O. edulis exposed to environmental relevant concentrations of TBTCl. Oysters were exposed to TBTCl 20 ng/L (n = 30), 200 ng/L (n = 30) and 2000 ng/L (n = 30) for nine weeks. At the end of the exposure, gametogenic stage, sex, energy reserve content and metabolomic profiling analysis were conducted to elucidate the metabolic alterations that occur in individuals exposed to those compounds. Metabolite analysis showed significant changes in the digestive gland biochemistry in oysters exposed to TBTCl, decreasing tissue ATP concentrations through a combination of the disruption of the TCA cycle and other important molecular pathways involved in homeostasis, mitochondrial metabolism and antioxidant response. TBTCl exposure increased mortality and caused changes in the gametogenesis with cycle arrest in stages G0 and G1. Sex determination was affected by TBTCl exposure, increasing the proportion of oysters identified as males in O. edulis treated at 20ng/l TBTCl, and with an increased proportion of inactive stages in oysters treated with 2000 ng/l TBTCl. The presence and persistence of environmental pollutants, such as TBT, could represent an additional threat to the declining O. edulis populations and related taxa around the world, by increasing mortality, changing reproductive maturation, and disrupting metabolism. Our findings identify the need to consider additional factors (e.g. legacy pollution) when identifying coastal locations for shellfish restoration.


Asunto(s)
Ostrea , Compuestos de Trialquiltina , Humanos , Masculino , Animales , Ostrea/fisiología , Ecosistema , Compuestos de Trialquiltina/toxicidad , Metabolismo Energético
16.
Artículo en Inglés | MEDLINE | ID: mdl-36427667

RESUMEN

Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.


Asunto(s)
Crassostrea , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Compuestos de Trialquiltina/toxicidad , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Contaminantes Químicos del Agua/metabolismo
17.
Environ Sci Pollut Res Int ; 30(7): 17828-17838, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36201083

RESUMEN

Widespread human activity has resulted in the presence of different pollutants in the aquatic environment that does not exist in isolation. The study of the effects of contamination of aquatic organisms is of great significance. To assess the individual and combined toxicity of cadmium (Cd) and tributyltin (TBT) to aquatic organisms, juvenile grass carp (Ctenopharyngodon idella) were exposed to Cd (2.97 mg/L), TBT (7.5 µg/L), and their mixture MIX. The biological response was evaluated by nuclear magnetic resonance (NMR) analysis of plasma metabolites. Plasma samples at 1, 2, 4, 8, 16, 32, and 48 days post-exposure were analyzed using detection by NMR technique. The typical correlation analysis (CCA) analysis revealed that TBT had the greatest effect on plasma metabolism, followed by MIX and Cd. The interference pathway to grass carp was similar to that of TBT and MIX. Both Cd and TBT exposure alone or in combination can lead to metabolic abnormalities in TCA cycle-related pathways and interfere with energy metabolism. These results provide more detailed information for the metabolic study of pollutants and data for assessing the health risks of Cd, TBT, and MIX at the metabolic level.


Asunto(s)
Carpas , Contaminantes Ambientales , Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Humanos , Cadmio/toxicidad , Larva , Compuestos de Trialquiltina/toxicidad , Contaminantes Químicos del Agua/toxicidad
18.
Arch Toxicol ; 97(2): 547-559, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36319700

RESUMEN

Tributyltin (TBT) is known as an endocrine-disrupting chemical. This study investigated the effects and possible mechanisms of TBT exposure on inducing human articular chondrocyte senescence in vitro at the human-relevant concentrations of 0.01-0.5 µM and mouse articular cartilage aging in vivo at the doses of 5 and 25 µg/kg/day, which were 5 times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively. TBT significantly increased the senescence-associated ß-galactosidase activity and the protein expression levels of senescence markers p16, p53, and p21 in chondrocytes. TBT induced the protein phosphorylation of both p38 and JNK mitogen-activated protein kinases in which the JNK signaling was a main pathway to be involved in TBT-induced chondrocyte senescence. The phosphorylation of both ataxia-telangiectasia mutated (ATM) and histone protein H2AX (termed γH2AX) was also significantly increased in TBT-treated chondrocytes. ATM inhibitor significantly inhibited the protein expression levels of γH2AX, phosphorylated p38, phosphorylated JNK, p16, p53, and p21. TBT significantly stimulated the mRNA expression of senescence-associated secretory phenotype (SASP)-related factors, including IL-1ß, TGF-ß, TNF-α, ICAM-1, CCL2, and MMP13, and the protein expression of GATA4 and phosphorylated NF-κB-p65 in chondrocytes. Furthermore, TBT by oral gavage for 4 weeks in mice significantly enhanced the articular cartilage aging and abrasion. The protein expression of phosphorylated p38, phosphorylated JNK, GATA4, and phosphorylated NF-κB-p65, and the mRNA expression of SASP-related factors were enhanced in the mouse cartilages. These results suggest that TBT exposure can trigger human chondrocyte senescence in vitro and accelerating mouse articular cartilage aging in vivo.


Asunto(s)
Cartílago Articular , Senescencia Celular , Condrocitos , Compuestos de Trialquiltina , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Compuestos de Trialquiltina/toxicidad
19.
Aquat Toxicol ; 251: 106287, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36067546

RESUMEN

The fish circadian rhythm system might be an emerging target of tributyltin (TBT), however, the mechanism by which TBT interferes with the circadian rhythm is poorly understood. Therefore, in the present study, zebrafish were used to assess the effects of TBT at environmental concentrations (1 and 10 ng/L) on locomotor activity rhythm. Furthermore, we focused on the visual system to explore the potential mechanism involved. After 90 d of exposure, TBT disturbed the locomotor activity rhythms in zebrafish, which manifested as: (1) low activities and lethargy during the arousing period; (2) inability to fall asleep quickly and peacefully during the period of latency to sleep; and (3) no regular "waves" of locomotor activities during the active period. After TBT exposure, the histological structure of the eyes significantly changed, the boundary between layers became blurred, and the melanin concentrations significantly decreased. Using KEGG and GSEA pathway analyses, the differentially expressed genes in the eyes screened by transcriptomics were significantly enriched in the tyrosine metabolism pathway and retinol metabolism pathway. Furthermore, a decrease in melanin and disruption of retinoic acid were found after TBT exposure, which would affect the reception of phototransduction, and then interfere with the circadian rhythm in fish. The disruption of the circadian rhythm of fish by aquatic pollutants would decrease their ecological adaptability, which should be considered in future research.


Asunto(s)
Compuestos de Trialquiltina , Contaminantes Químicos del Agua , Animales , Locomoción , Melaninas/metabolismo , Tretinoina/metabolismo , Compuestos de Trialquiltina/toxicidad , Vitamina A/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
20.
Toxicol Appl Pharmacol ; 453: 116209, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998708

RESUMEN

Organotins, a chemical family with over 30 congeners to which humans are directly exposed to through food consumption, are a chemical class widely used as stabilizers in polyvinyl chloride, and biocides in antifouling products. Aside from tributyltin (TBT), toxicological information on other organotin congeners, such as triphenyltin (TPT), remains scarce. Our previous work has demonstrated that TBT can interfere with cholesterol trafficking in steroidogenic cells. Given their structural similarities, we hypothesized that TPT, similar to TBT, disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. To test this, human and ovine primary ovarian theca cells were isolated, purified and exposed to TPT at environmentally relevant doses (1 or 10 ng/ml) in pre-luteinized (48 h exposure) or luteinizing cells (72 h exposure). Intracellular cholesterol levels, progesterone, and testosterone secretion and gene expression of nuclear receptors, cholesterol transporters, and steroidogenic enzymes were evaluated. In ovine cells, TPT upregulated StAR, ABCA1, and SREBF1 mRNA and ABCA1 protein in both pre-luteinized and luteinized stages. TPT did not alter intracellular cholesterol or testosterone synthesis, but upregulated progesterone production. Inhibitor and shRNA knockdown approaches were then used to evaluate the role of retinoid X receptor (RXR) and liver X receptor (LXR) on TPT's effects. TPT upregulated ABCA1 and StAR expression was blocked by both LXR and RXR antagonists. TPT's effect on ABCA1 expression was reduced in LXRß and RXRß knockdown theca cells. Similar findings were obtained with primary human theca cells. No synergistic effect of TBT and TPT was observed. In conclusion, at an environmentally relevant dose, TPT upregulates theca cell cholesterol transporter ABCA1 expression via RXR and LXR pathways. Similar effects of TPT on human and sheep theca cells supports its conserved mechanism across mammalian theca cells.


Asunto(s)
Progesterona , Compuestos de Trialquiltina , Animales , Colesterol/metabolismo , Femenino , Humanos , Receptores X del Hígado , Mamíferos/metabolismo , Compuestos Orgánicos de Estaño , Progesterona/metabolismo , Receptores X Retinoide , Ovinos , Testosterona/metabolismo , Compuestos de Trialquiltina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA