Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
J Integr Neurosci ; 23(6): 122, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38940090

RESUMEN

BACKGROUND: Rheum tanguticum root, cataloged as "Daehwang" in the Korean Pharmacopeia, is rich in various anthraquinones known for their anti-inflammatory and antioxidant properties. Formulations containing Daehwang are traditionally employed for treating neurological conditions. This study aimed to substantiate the antiepileptic and neuroprotective efficacy of R. tanguticum root extract (RTE) against trimethyltin (TMT)-induced epileptic seizures and hippocampal neurodegeneration. METHODS: The constituents of RTE were identified by ultra-performance liquid chromatography (UPLC). Experimental animals were grouped into the following five categories: control, TMT, and three TMT+RTE groups with dosages of 10, 30, and 100 mg/kg. Seizure severity was assessed daily for comparison between the groups. Brain tissue samples were examined to determine the extent of neurodegeneration and neuroinflammation using histological and molecular biology techniques. Network pharmacology analysis involved extracting herbal targets for Daehwang and disease targets for epilepsy from multiple databases. A protein-protein interaction network was built using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and pivotal targets were determined by topological analysis. Enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool to elucidate the underlying mechanisms. RESULTS: The RTE formulation was found to contain sennoside A, sennoside B, chrysophanol, emodin, physcion, (+)-catechin, and quercetin-3-O-glucuronoid. RTE effectively inhibited TMT-induced seizures at 10, 30, and 100 mg/kg dosages and attenuated hippocampal neuronal decay and neuroinflammation at 30 and 100 mg/kg dosages. Furthermore, RTE significantly reduced mRNA levels of tumor necrosis factor (TNF-α), glial fibrillary acidic protein (GFAP), and c-fos in hippocampal tissues. Network analysis revealed TNF, Interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Protein c-fos (FOS), RAC-alpha serine/threonine-protein kinase (AKT1), and Mammalian target of rapamycin (mTOR) as the core targets. Enrichment analysis demonstrated significant involvement of R. tanguticum components in neurodegeneration (p = 4.35 × 10-5) and TNF signaling pathway (p = 9.94 × 10-5). CONCLUSIONS: The in vivo and in silico analyses performed in this study suggests that RTE can potentially modulate TMT-induced epileptic seizures and neurodegeneration. Therefore, R. tanguticum root is a promising herbal treatment option for antiepileptic and neuroprotective applications.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia , Hipocampo , Fármacos Neuroprotectores , Extractos Vegetales , Raíces de Plantas , Rheum , Compuestos de Trimetilestaño , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Rheum/química , Raíces de Plantas/química , Masculino , Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación por Computador , Farmacología en Red , Mapas de Interacción de Proteínas , Ratas
2.
Neuropathology ; 44(1): 21-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37288771

RESUMEN

The endogenous regenerative capacity of the brain is quite weak; however, a regenerative reaction, the production of new neurons (neurogenesis), has been reported to occur in brain lesions. In addition, leukocytes are well known to infiltrate brain lesions. Therefore, leukocytes would also have a link with regenerative neurogenesis; however, their role has not been fully elucidated. In this study, we investigated leukocyte infiltration and its influence on brain tissue regeneration in a trimethyltin (TMT)-injected mouse model of hippocampal regeneration. Immunohistochemically, CD3-positive T lymphocytes were found in the hippocampal lesion of TMT-injected mice. Prednisolone (PSL) treatment inhibited T lymphocyte infiltration and increased neuronal nuclei (NeuN)-positive mature neurons and doublecortin (DCX)-positive immature neurons in the hippocampus. Investigation of bromodeoxyuridine (BrdU)-labeled newborn cells revealed the percentage of BrdU/NeuN- and BrdU/DCX-positive cells increased by PSL treatment. These results indicate that infiltrated T lymphocytes prevent brain tissue regeneration by inhibiting hippocampal neurogenesis.


Asunto(s)
Células-Madre Neurales , Linfocitos T , Compuestos de Trimetilestaño , Ratones , Animales , Bromodesoxiuridina , Hipocampo/patología , Neurogénesis/fisiología
3.
Ecotoxicol Environ Saf ; 267: 115628, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890259

RESUMEN

Trimethyltin chloride (TMT) is a highly toxic organotin compound often used in plastic heat stabilizers, chemical pesticides, and wood preservatives. TMT accumulates mainly through the environment and food chain. Exposure to organotin compounds is associated with disorders of glucolipid metabolism and obesity. The mechanism by which TMT damages pancreatic tissue is unclear. For this purpose, a subacute exposure model of TMT was designed for this experiment to study the mechanism of damage by TMT on islet. The fasting blood glucose and blood lipid content of mice exposed to TMT were significantly increased. Histopathological and ultrastructural observation and analysis showed that the TMT-exposed group had inflammatory cell infiltration and necrosis. Then, mouse pancreatic islet tumour cells (MIN-6) were treated with TMT. Autophagy levels were detected by fluorescence microscopy. Real-time quantitative polymerase chain reaction and Western blotting were used for verification. A large amount of autophagy occurred at a low concentration of TMT but stagnated at a high concentration. Excessive autophagy activates apoptosis when exposed to low levels of TMT. With the increase in TMT concentration, the expression of necrosis-related genes increased. Taken together, different concentrations of TMT induced apoptosis and necrosis through autophagy disturbance. TMT impairs pancreatic (islet ß cell) function.


Asunto(s)
Compuestos Orgánicos de Estaño , Compuestos de Trimetilestaño , Animales , Ratones , Apoptosis , Necrosis/inducido químicamente , Compuestos de Trimetilestaño/toxicidad , Autofagia , Compuestos Orgánicos de Estaño/toxicidad
4.
Neurotoxicology ; 99: 162-176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838251

RESUMEN

Trimethyltin chloride (TMT) is a potent neurotoxin widely used as a constituent of polyvinyl chloride plastic in the industrial and agricultural fields. However, the underlying mechanisms by which TMT leads to neurotoxicity remain elusive. In the present study, we constructed a dose and time dependent neurotoxic mouse model of TMT exposure to explore the molecular mechanisms involved in TMT-induced neurological damage. Based on this model, the cognitive ability of TMT exposed mice was assessed by the Morris water maze test and a passive avoidance task. The ultrastructure of hippocampus was analyzed by the transmission electron microscope. Subsequently, proteomics integrated with bioinformatics and experimental verification were employed to reveal potential mechanisms of TMT-induced neurotoxicity. Gene ontology (GO) and pathway enrichment analysis were done by using Metascape and GeneCards database respectively. Our results demonstrated that TMT-exposed mice exhibited cognitive disorder, and mitochondrial respiratory chain abnormality of the hippocampus. Proteomics data showed that a total of 7303 proteins were identified in hippocampus of mice of which 224 ones displayed a 1.5-fold increase or decrease in TMT exposed mice compared with controls. Further analysis indicated that these proteins were mainly involved in tricarboxylic acid (TCA) cycle and respiratory electron transport, proteasome degradation, and multiple metabolic pathways as well as inflammatory signaling pathways. Some proteins, including succinate-CoA ligase subunit (Suclg1), NADH dehydrogenase subunit 5 (Nd5), NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2 (Ndufa4l2) and cytochrome c oxidase assembly factor 7 (Coa7), which were closely related to mitochondrial respiratory electron transport, showed TMT dose and time dependent changes in the hippocampus of mice. Moreover, apoptotic molecules Bax and cleaved caspase-3 were up-regulated, while anti-apoptotic Bcl-2 was down-regulated compared with controls. In conclusion, our findings suggest that impairment of mitochondrial respiratory chain transport and promotion of apoptosis are the potential mechanisms of TMT induced hippocampus toxicity in mice.


Asunto(s)
Síndromes de Neurotoxicidad , Compuestos de Trimetilestaño , Ratones , Animales , Proteómica , NADH Deshidrogenasa/metabolismo , Compuestos de Trimetilestaño/toxicidad , Compuestos de Trimetilestaño/metabolismo , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Hipocampo/metabolismo
5.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175959

RESUMEN

We studied the neuroprotective properties of the non-competitive NMDA receptor antagonist memantine, in combination with a positive allosteric modulator of metabotropic glutamate receptors of Group III, VU 0422288. The treatment was started 48 h after the injection of neurotoxic agent trimethyltin (TMT) at 7.5 mg/kg. Three weeks after TMT injection, functional and morphological changes in a rat hippocampus were evaluated, including the expression level of genes characterizing glutamate transmission and neuroinflammation, animal behavior, and hippocampal cell morphology. Significant neuronal cell death occurred in the CA3 and CA4 regions, and to a lesser extent, in the CA1 and CA2 regions. The death of neurons in the CA1 field was significantly reduced in animals with a combined use of memantine and VU 0422288. In the hippocampus of these animals, the level of expression of genes characterizing glutamatergic synaptic transmission (Grin2b, Gria1, EAAT2) did not differ from the level in control animals, as well as the expression of genes characterizing neuroinflammation (IL1b, TGF beta 1, Aif1, and GFAP). However, the expression of genes characterizing neuroinflammation was markedly increased in the hippocampus of animals treated with memantine or VU 0422288 alone after TMT. The results of immunohistochemical studies confirmed a significant activation of microglia in the hippocampus three weeks after TMT injection. In contrast to the hilus, microglia in the CA1 region had an increase in rod-like cells. Moreover, in the CA1 field of the hippocampus of the animals of the MEM + VU group, the amount of such microglia was close to the control. Thus, the short-term modulation of glutamatergic synaptic transmission by memantine and subsequent activation of Group III mGluR significantly affected the dynamics of neurodegeneration in the hippocampus.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Compuestos de Trimetilestaño , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacología , Enfermedades Neuroinflamatorias , Hipocampo/metabolismo , Compuestos de Trimetilestaño/farmacología
6.
Reprod Toxicol ; 119: 108395, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37164060

RESUMEN

Exposure to toxic substances during postnatal period is one of the major factors causing retinal developmental defects. The developmental toxicity of trimethyltin chloride (TMT), a byproduct of an organotin compound widely used in agriculture and industrial fields, has been reported; however, the effect on the mammalian retina during postnatal development and the mechanism have not been elucidated to date. We exposed 0.75 and 1.5 mg/kg of TMT to neonatal ICR mice (1:1 ratio of male and female) up to postnatal day 14 and performed analysis of the retina: histopathology, apoptosis, electrophysiological function, glutamate concentration, gene expression, and fluorescence immunostaining. Exposure to TMT caused delayed eye opening, eye growth defect and thinning of retinal layer. In addition, apoptosis occurred in the retina along with b-wave and spiking activity changes in the micro-electroretinogram. These changes were accompanied by an increase in the concentration of glutamate, upregulation of astrocyte-related genes, and increased expression of glial excitatory amino acid transporter (EAAT) 1 and 2. Conversely, EAAT 3, 4, and 5, mainly located in the neurons, were decreased. Our results are the first to prove postnatal retinal developmental neurotoxicity of TMT at the mammalian model and analyze the molecular, functional as well as morphological aspects to elucidate possible mechanisms: glutamate toxicity with EAAT expression changes. These mechanisms may suggest not only a strategy to treat but also a clue to prevent postnatal retina developmental toxicity of toxic substances.


Asunto(s)
Ácido Glutámico , Compuestos de Trimetilestaño , Animales , Ratones , Masculino , Femenino , Ratones Endogámicos ICR , Compuestos de Trimetilestaño/toxicidad , Neuronas/metabolismo , Proteínas de Transporte de Membrana , Mamíferos/metabolismo
7.
Toxicology ; 486: 153432, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696940

RESUMEN

Neuroinflammation is one of the important mechanisms of trimethyltin chloride (TMT) central neurotoxicity. Artemisinin (ARS) is a well-known antimalarial drug that also has significant anti-inflammatory effects. Prokineticin 2 (PK2) is a small molecule secreted protein that is widely expressed in the nervous system and plays a key role in the development of neuroinflammation. However, it remains unclear whether ARS can ameliorate neuroinflammation caused by TMT and whether PK2/PKRs signaling pathway plays a part in it. In this research, male Balb/c mice were administered TMT (2.8 mg/kg, i.p.) followed by immunohistochemistry to assess the expression of PK2, PKR1, and PKR2 proteins in the hippocampus. Network pharmacology was used to predict the intersection targets of ARS, central nervous system(CNS) injury and TMT. The neurobehavior of mice was evaluated by behavioral scores. Histopathological damage of the hippocampus was evaluated by HE, Nissl and Electron microscopy. Western blotting was used to identify the expression of synapse-related proteins (PSD95, SYN1, Synaptophysin), PK system-related proteins (PK2, PKR1, PKR2), and inflammation-related proteins (TNF-α, NF-κB p65). Immunohistochemistry showed that TMT resulted in elevated PK2 and PKR2 protein expression in the CA2 and CA3 regions of the hippocampus in mice, while PKR1 protein was not significantly altered. Network pharmacology showed that PK2 could interact with the intersectional targets of ARS, CNS injury, and TMT. ARS remarkably attenuated TMT-induced seizures and hippocampal histological damage. Further studies demonstrated that ARS treatment attenuated TMT-induced hippocampal ultrastructural damage, possibly by increasing the number of rough endoplasmic reticulum and mitochondria as well as upregulating the levels of synapse-associated proteins (PSD95, SYN1, Synaptophysin). Western blotting results revealed that ARS downregulated TMT-induced TNF-α and NF-κB p65 protein levels. In addition, ARS also decreased TMT-induced protein expression of PK2 and PKR2 in the mouse hippocampus, but had no significant effect on PKR1 protein expression. Our results suggested that ARS ameliorated TMT-induced abnormal neural behavior and hippocampal injury, which may be achieved by regulating PK2/PKRs inflammatory pathway and ameliorating synaptic injury. Therefore, we suggest that PK2/PKRs pathway may be involved in TMT neurotoxicity and ARS may be a promising drug that can relieve TMT neurotoxicity.


Asunto(s)
Artemisininas , Neuropéptidos , Compuestos de Trimetilestaño , Ratones , Animales , Masculino , Sinaptofisina , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Hipocampo , Compuestos de Trimetilestaño/toxicidad , Artemisininas/farmacología , Artemisininas/metabolismo
8.
Bull Exp Biol Med ; 173(5): 660-664, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36214987

RESUMEN

Ultrastructural studies of the hippocampus and the prefrontal cortex of rats were performed 7, 30, and 50 days after their damage by neurotoxicant trimethyltin chloride (TMT). Significant damage to neurons was observed in both brain structures. In the hippocampus, a large number of autophagosomes (0.9±0.1 per µm2) appeared in the soma of neurons, dendrites, and axons in 7 days after intoxication. In addition, we observed the appearance of hyperchromic neurons with abnormal structure of mitochondria. In the prefrontal cortex, damaged neurons also contained autophagosomes, but their number was significantly lower (0.3±0.1 per µm2). The number of autophagosomes decreased with increasing the time after TMT administration: 30 days after injection, the content of autophagosomes in the hippocampus was 0.10±0.01 per µm2, while in the prefrontal cortex, autophagosomes were no longer found. We hypothesized that autophagy in the hippocampus was not effective enough to prevent neuronal death caused by the neurotoxicant.


Asunto(s)
Compuestos de Trimetilestaño , Animales , Autofagia , Neuronas , Corteza Prefrontal , Ratas , Compuestos de Trimetilestaño/toxicidad
9.
Toxicol Pathol ; 50(6): 754-762, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36125102

RESUMEN

As regulators of homeostasis, astrocytes undergo morphological changes after injury to limit the insult in central nervous system (CNS). Trimethyltin (TMT) is a known neurotoxicant that induces reactive astrogliosis in rat CNS. To evaluate the degree of reactive astrogliosis, the assessment relies on manual counting or semiquantitative scoring. We hypothesized that deep learning algorithm could be used to identify the grade of reactive astrogliosis in immunoperoxidase-stained sections in a quantitative manner. The astrocyte algorithm was created using a commercial supervised deep learning platform and the used training set consisted of 940 astrocytes manually annotated from hippocampus and cortex. Glial fibrillary acidic protein-labeled brain sections of rat TMT model were analyzed for astrocytes with the trained algorithm. Algorithm was able to count the number of individual cells, cell areas, and circumferences. The astrocyte algorithm identified astrocytes with varying sizes from immunostained sections with high confidence. Algorithm analysis data revealed a novel morphometric marker based on cell area and circumference. This marker correlated with the time-dependent progression of the neurotoxic profile of TMT. This study highlights the potential of using novel deep learning-based image analysis tools in neurotoxicity and pharmacology studies.


Asunto(s)
Aprendizaje Profundo , Compuestos de Trimetilestaño , Animales , Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis , Hipocampo/metabolismo , Ratas , Compuestos de Trimetilestaño/toxicidad
10.
Appl Biochem Biotechnol ; 194(10): 4930-4945, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674922

RESUMEN

The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.


Asunto(s)
Compuestos de Alquilmercurio , Antineoplásicos , Artemisininas , Neoplasias de la Mama , Carbanilidas , Compuestos de Etilmercurio , Compuestos Heterocíclicos , Metformina , Nanopartículas , Compuestos de Trimetilestaño , Antineoplásicos/química , Apoptosis , Artemisininas/farmacología , Artemisininas/uso terapéutico , Compuestos de Benzalconio/farmacología , Compuestos de Benzalconio/uso terapéutico , Benzoflavonas/farmacología , Benzoflavonas/uso terapéutico , Neoplasias de la Mama/metabolismo , Carbanilidas/farmacología , Carbanilidas/uso terapéutico , Caspasa 3/genética , Caspasa 7 , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D1/farmacología , Compuestos de Etilmercurio/farmacología , Compuestos de Etilmercurio/uso terapéutico , Femenino , Compuestos Heterocíclicos/farmacología , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Compuestos de Metacolina , Nanopartículas/química , Oximas/farmacología , Oximas/uso terapéutico , Plasmalógenos/farmacología , Plasmalógenos/uso terapéutico , Compuestos de Sulfonilurea/farmacología , Compuestos de Sulfonilurea/uso terapéutico , Survivin/farmacología , Survivin/uso terapéutico , Compuestos de Trimetilestaño/farmacología , Proteína X Asociada a bcl-2
11.
J Neuroinflammation ; 19(1): 143, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690816

RESUMEN

BACKGROUND: Trimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice. METHODS: CD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after killing the mouse. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assay (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20. RESULTS: Adoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time-lapse imaging in a Treg/microglia co-culture system. CONCLUSIONS: These data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.


Asunto(s)
Fármacos Neuroprotectores , Compuestos de Trimetilestaño , Animales , Hipocampo/metabolismo , Ratones , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Linfocitos T Reguladores , Compuestos de Trimetilestaño/metabolismo , Compuestos de Trimetilestaño/toxicidad
12.
J Neuroinflammation ; 19(1): 142, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690821

RESUMEN

BACKGROUND: It has been demonstrated that reactive astrocytes can be polarized into pro-inflammatory A1 phenotype or anti-inflammatory A2 phenotype under neurotoxic and neurodegenerative conditions. Microglia have been suggested to play a critical role in astrocyte phenotype polarization by releasing pro- and anti-inflammatory mediators. In this study, we examined whether trimethyltin (TMT) insult can induce astrocyte polarization in the dentate gyrus of mice, and whether protein kinase Cδ (PKCδ) plays a role in TMT-induced astrocyte phenotype polarization. METHODS: Male C57BL/6 N mice received TMT (2.6 mg/kg, i.p.), and temporal changes in the mRNA expression of A1 and A2 phenotype markers were evaluated in the hippocampus. In addition, temporal and spatial changes in the protein expression of C3, S100A10, Iba-1, and p-PKCδ were examined in the dentate gyrus. Rottlerin (5 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of A1 and A2 transcripts, p-PKCδ, Iba-1, C3, S100A10, and C1q was evaluated 6 days after TMT treatment. RESULTS: TMT treatment significantly increased the mRNA expression of A1 and A2 phenotype markers, and the increased expression of A1 markers remained longer than that of A2 markers. The immunoreactivity of the representative A1 phenotype marker, C3 and A2 phenotype marker, S100A10 peaked 6 days after TMT insult in the dentate gyrus. While C3 was expressed evenly throughout the dentate gyrus, S100A10 was highly expressed in the hilus and inner molecular layer. In addition, TMT insult induced microglial p-PKCδ expression. Treatment with rottlerin, a PKCδ inhibitor, decreased Iba-1 and C3 expression, but did not affect S100A10 expression, suggesting that PKCδ inhibition attenuates microglial activation and A1 astrocyte phenotype polarization. Consistently, rottlerin significantly reduced the expression of C1q and tumor necrosis factor-α (TNFα), which has been suggested to be released by activated microglia and induce A1 astrocyte polarization. CONCLUSION: We demonstrated the temporal and spatial profiles of astrocyte polarization after TMT insult in the dentate gyrus of mice. Taken together, our results suggest that PKCδ plays a role in inducing A1 astrocyte polarization by promoting microglial activation and consequently increasing the expression of pro-inflammatory mediators after TMT insult.


Asunto(s)
Astrocitos , Complemento C1q , Acetofenonas , Animales , Astrocitos/metabolismo , Benzopiranos , Complemento C1q/metabolismo , Giro Dentado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Compuestos de Trimetilestaño
13.
Neurochem Res ; 47(9): 2780-2792, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35737203

RESUMEN

Trimethyltin (TMT) has been used as a cytotoxin to neurons rather than glial cells in the mammalian hippocampus. The systemic administration of TMT led to declined fluorescence of ZnAF-2 DA staining as a marker of intact mossy fibers and increased fluorescence of Fluoro-Jade B staining as a marker of degenerated neurons during the initial 2 to 5 days after the administration with later ameliorations within 30 days in the hippocampal dentate gyrus (DG) and CA3 region in mice. On immunoblotting analysis, both GABABR1 and GABABR2 subunit levels increased during 15 to 30 days after TMT along with significant decreases in glutamatergic GluA1 and GluA2/3 receptor subunit levels during 2 to 7 days in the DG, but not in other hippocampal regions such as CA1 and CA3 regions. Immunohistochemical analysis revealed the constitutive and inducible expression of GABABR2 subunit in cells immunoreactive to an astrocytic marker as well as neuronal markers in the DG with the absence of neither GABABR1a nor GABABR1b subunit from cells positive to an astrocytic marker. These results suggest that both GABABR1 and GABABR2 subunits may be up-regulated in cells other than neurons and astroglia in the DG at a late stage of TMT intoxication in mice.


Asunto(s)
Compuestos de Trimetilestaño , Animales , Giro Dentado/metabolismo , Hipocampo/metabolismo , Mamíferos , Ratones , Receptores de GABA-B , Compuestos de Trimetilestaño/toxicidad , Ácido gamma-Aminobutírico/metabolismo
14.
J Ethnopharmacol ; 296: 115451, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35724744

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Patients with dementia are diagnosed with deficiency patterns and interior patterns in traditional Chinese medicine due to decreased physical strength, mental atrophy including cognitive function, and decreased motor function in the gastrointestinal tract. Since "greater yin symptom" in Shanghanlun has been interpreted as interior, deficiency, and cold pattern in traditional Chinese medicine, it is necessary to determine whether Geijigadaehwang-tang (GDT) has therapeutic effects on neurodegenerative diseases and the underlying mechanism if it has such effects. AIMS OF THE STUDY: Trimethyltin (TMT), a neurotoxic organotin compound, has been used to induce several neurodegenerative diseases, including epilepsy and Alzheimer's disease. This study aimed to evaluate the therapeutic efficacy of GDT for TMT-induced hippocampal neurodegeneration and seizures and to determine the mechanisms involved at the molecular level. MATERIALS AND METHODS: The main components of GDT were analyzed using ultra-performance liquid chromatography. TMT was used to induce neurotoxicity in microglial BV-2 cells and C57BL6 mice. GDT was administered at various doses to determine its neuroprotective and seizure inhibition effects. The inhibitory effects of GDT on TMT-induced apoptosis, inflammatory pathways, and oxidative stress pathways were determined in the mouse hippocampal tissues. RESULTS: GDT contained emodin, chrysophanol, albiflorin, paeoniflorin, 6-gingerol, and liquiritin apioside. In microglial BV-2 cells treated with TMT, GDT showed dose-dependent neuroprotective effects. Oral administration of GDT five times for 2.5 days before and after TMT injection inhibited seizures at doses of 180 and 540 mg/kg and inhibited neuronal death in the hippocampus. In hippocampal tissues extracted from mice, GDT inhibited the protein expression of ionized calcium binding adaptor molecule 1, glial fibrillary acidic protein, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3, and phosphorylated nuclear factor (NF)-κB/total-NFκB ratio. Additionally, GDT inhibited the messenger RNA levels of tumor necrosis factor-α, inducible nitric oxide synthase, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interleukin-1ß, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1. CONCLUSION: This study's results imply that GDT might have neuroprotective potential in neurodegenerative diseases through neuronal death inhibition and anti-inflammatory and antioxidant mechanisms.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Hipocampo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Compuestos de Trimetilestaño
15.
Artículo en Chino | MEDLINE | ID: mdl-35545594

RESUMEN

Objective: Objective to investigate the health changes of patients with severe trimethyltin chloride (TMT) poisoning in four years. Methods: Six patients with severe TMT poisoning treated in the First Affiliated Hospital of Gannan Medical College in August 2016 were numbered 1, 2, 3, 4, 5 and 6 respectively. The patients were followed up 0.5, 2 and 4 years after poisoning and compared and analyzed. The follow-up contents include: symptom degree, score of simple mental intelligence examination scale (MMSE) and modified Rankin Scale (MRS) , cranial magnetic resonance imaging (MRI) , EEG, etc. Results: The symptoms of dizziness, headache, chest tightness, palpitation, nausea and vomiting decreased gradually in 6 patients. The symptoms of speech disorder and memory decline in No.1, 2 and 3 patients gradually increased, and the scores of MMSE and Mrs gradually decreased; Patients No.4, 5 and 6 had improved speech disorder, but their memory decreased, MMSE and Mrs scores were still flat, and mild cognitive impairment. The brain atrophy of No.1, 2 and 3 patients was aggravated, which showed obvious atrophy of hippocampus, temporal lobe, insular lobe and cerebellum and enlargement of ventricle; There was no significant change in brain atrophy in No.4, 5 and 6 patients. Conclusion: The neurotoxic symptoms in the later stage of severe TMT poisoning are still serious, and the neurotoxic time is long.


Asunto(s)
Compuestos de Trimetilestaño , Atrofia , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética
16.
J Mol Neurosci ; 72(8): 1609-1621, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543800

RESUMEN

Sinomenine is the main bioactive ingredient of the medicinal plant Sinomenium acutum with neuroprotective potential. This study was designed to assess beneficial effect of sinomenine in alleviation of trimethyltin (TMT)-induced cognitive dysfunction. TMT was administered i.p. (8 mg/kg, once) and sinomenine was daily given p.o. 1 h after TMT for 3 weeks at doses of 25 or 100 mg/kg. Cognitive performance was assessed in various behavioral tests. In addition, oxidative stress- and inflammation-associated factors were measured and histochemical evaluation of the hippocampus was conducted. Sinomenine at a dose of 100 mg/kg significantly and partially increased discrimination index in novel object recognition (NOR), improved alternation in short-term Y maze, increased step-through latency in passive avoidance paradigm, and also reduced probe trial errors and latency in the Barnes maze task. Moreover, sinomenine somewhat prevented inappropriate hippocampal changes of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, nitrite, superoxide dismutase (SOD), tumor necrosis factor α (TNFα), interleukin 6 (IL 6), acetylcholinesterase (AChE) activity, beta secretase 1 (BACE 1) activity, and mitochondrial membrane potential (MMP) with no significant effect on glutathione (GSH), catalase, glutathione reductase, glutathione peroxidase, and myeloperoxidase (MPO). In addition, lower reactivity (IRA) for glial fibrillary acidic protein (GFAP) as an index of astrocyte activity was observed and loss of CA1 pyramidal neurons was attenuated following sinomenine treatment. This study demonstrated that sinomenine could lessen TMT-induced cognitive dysfunction which is partly due to its attenuation of hippocampal oxidative stress and neuroinflammation.


Asunto(s)
Disfunción Cognitiva , Fármacos Neuroprotectores , Acetilcolinesterasa/metabolismo , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Glutatión/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto , Morfinanos , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Ratas , Ratas Wistar , Compuestos de Trimetilestaño
17.
Food Funct ; 13(3): 1535-1550, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35072194

RESUMEN

Trimethyltin chloride (TMT) is acknowledged to have potent neurotoxicity. Chlorogenic acid (CGA), the most abundant polyphenol in the human diet, is well-known for its neuroprotective activity. This investigation was performed to determine the effects and mechanisms of CGA on TMT-induced neurobehavioral dysfunctions. Mice received oral administrations of CGA (30 mg kg-1) for 11 days, in which they were intraperitoneally injected with TMT (2.7 mg kg-1) once on the 8th day. The daily intake of CGA significantly alleviated TMT-induced epilepsy-like seizure and cognition impairment, ameliorating hippocampal neuronal degeneration and neuroinflammation. Oral gavage of CGA potentially exerted neuroprotective effects through JNK/c-Jun and TLR4/NFκB pathways. Microbiome analysis revealed that daily consumption of CGA raised the relative abundance of Lactobacillus in TMT-treated mice. SCFAs, the gut microbial metabolites associated with neuroprotection, were increased in the mouse hippocampus following CGA treatment. TMT-induced neurotransmitter disorders were regulated by oral gavage of CGA, especially DL-kynurenine and acetylcholine chloride. Additionally, neurotransmitters in the mouse hippocampus were found to be highly associated with the gut microbiota. Our findings provided research evidence for the neuroprotective effect of CGA on TMT-induced neurobehavioral dysfunctions.


Asunto(s)
Ácido Clorogénico/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Administración Oral , Animales , Ácido Clorogénico/administración & dosificación , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/administración & dosificación , Compuestos de Trimetilestaño
18.
Biofactors ; 48(2): 481-497, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34570919

RESUMEN

Trimethyltin chloride (TMT) is a stabilizer for polyvinyl chloride plastics that causes serious health hazards in nontarget organisms. Melatonin (MT) exhibits powerful protective effects in cardiac diseases. As a new environmental pollutant, TMT-induced cardiotoxicity and the protective effects of MT remain unclear. To explore this, the mice were treated with TMT (2.8 mg/kg) and/or MT (10 mg/kg) for 7 days. Firstly, the histopathological and ultrastructural evaluation showed that TMT induced cardiac damage, tumescent rupture and nuclear pyknosis. Moreover, TMT elevated the expressions of pyroptosis genes NLRP3, ASC and Cas1 and inflammation factors IL-6, IL-17 and TNFα. Secondly, TMT reduced antioxidant enzymes (GSH, CAT and T-AOC) via decreasing the expression of genes associated with the Keap1-Nrf2/ARE pathway to increase oxidative stress. Thirdly, TMT decreased the expression of genes associated with the ARE-driven drug metabolizing enzymes (DMEs), including Akr7a3, Akr1b8, and Akr1b10. Besides, TMT upregulated the mRNA expression of nuclear Xenobiotic metabolism on cytochrome P450s enzymes via increasing the expression of CAR, PXP, and AHR genes. Furthermore, MT treatment mitigated the aforementioned adverse changes induced by TMT. Overall, these results demonstrated that TMT caused pyroptosis and inflammation to aggravate cardiac damage via inducing excessive oxidative stress, imbalance of DMEs homeostasis, and nuclear Xenobiotic metabolism disorder, which could be alleviated by MT.


Asunto(s)
Melatonina , Factor 2 Relacionado con NF-E2 , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Melatonina/farmacología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Piroptosis , Compuestos de Trimetilestaño , Xenobióticos/toxicidad
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-935791

RESUMEN

Objective: Objective to investigate the health changes of patients with severe trimethyltin chloride (TMT) poisoning in four years. Methods: Six patients with severe TMT poisoning treated in the First Affiliated Hospital of Gannan Medical College in August 2016 were numbered 1, 2, 3, 4, 5 and 6 respectively. The patients were followed up 0.5, 2 and 4 years after poisoning and compared and analyzed. The follow-up contents include: symptom degree, score of simple mental intelligence examination scale (MMSE) and modified Rankin Scale (MRS) , cranial magnetic resonance imaging (MRI) , EEG, etc. Results: The symptoms of dizziness, headache, chest tightness, palpitation, nausea and vomiting decreased gradually in 6 patients. The symptoms of speech disorder and memory decline in No.1, 2 and 3 patients gradually increased, and the scores of MMSE and Mrs gradually decreased; Patients No.4, 5 and 6 had improved speech disorder, but their memory decreased, MMSE and Mrs scores were still flat, and mild cognitive impairment. The brain atrophy of No.1, 2 and 3 patients was aggravated, which showed obvious atrophy of hippocampus, temporal lobe, insular lobe and cerebellum and enlargement of ventricle; There was no significant change in brain atrophy in No.4, 5 and 6 patients. Conclusion: The neurotoxic symptoms in the later stage of severe TMT poisoning are still serious, and the neurotoxic time is long.


Asunto(s)
Humanos , Atrofia , Estudios de Seguimiento , Imagen por Resonancia Magnética , Compuestos de Trimetilestaño
20.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948107

RESUMEN

Oxidative stress (OS) is one of the causative factors in the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD) and cognitive dysfunction. In the present study, we investigated the effects of hydrogen (H2) gas inhalation in trimethyltin (TMT)-induced neurotoxicity and cognitive dysfunction in the C57BL/6 mice. First, mice were divided into the following groups: mice without TMT injection (NC), TMT-only injection group (TMT only), TMT injection + lithium chloride-treated group as a positive control (PC), and TMT injection + 2% H2 inhalation-treated group (H2). The TMT injection groups were administered a single dosage of intraperitoneal TMT injection (2.6 mg/kg body weight) and the H2 group was treated with 2% H2 for 30 min once a day for four weeks. Additionally, a behavioral test was performed with Y-maze to test the cognitive abilities of the mice. Furthermore, multiple OS- and AD-related biomarkers such as reactive oxygen species (ROS), nitric oxide (NO), calcium (Ca2+), malondialdehyde (MDA), glutathione peroxidase (GPx), catalase, inflammatory cytokines, apolipoprotein E (Apo-E), amyloid ß (Aß)-40, phospho-tau (p-tau), Bcl-2, and Bcl-2- associated X (Bax) were investigated in the blood and brain. Our results demonstrated that TMT exposure alters seizure and spatial recognition memory. However, after H2 treatment, memory deficits were ameliorated. H2 treatment also decreased AD-related biomarkers, such as Apo-E, Aß-40, p-tau, and Bax and OS markers such as ROS, NO, Ca2+, and MDA in both serum and brain. In contrast, catalase and GPx activities were significantly increased in the TMT-only group and decreased after H2 gas treatment in serum and brain. In addition, inflammatory cytokines such as granulocyte colony-stimulating factors (G-CSF), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) were found to be significantly decreased after H2 treatment in both serum and brain lysates. In contrast, Bcl-2 and vascular endothelial growth factor (VEGF) expression levels were found to be enhanced after H2 treatment. Taken together, our results demonstrated that 2% H2 gas inhalation in TMT-treated mice exhibits memory enhancing activity and decreases the AD, OS, and inflammatory-related markers. Therefore, H2 might be a candidate for repairing neurodegenerative diseases with cognitive dysfunction. However, further mechanistic studies are needed to fully clarify the effects of H2 inhalation on TMT-induced neurotoxicity and cognitive dysfunction.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad , Compuestos de Trimetilestaño/efectos adversos , Administración por Inhalación , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Compuestos de Trimetilestaño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA