Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.283
Filtrar
1.
Elife ; 122024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690987

RESUMEN

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Asunto(s)
Condrocitos , Microtia Congénita , Proteínas Quinasas Dependientes de AMP Cíclico , Transducción de Señal , Animales , Condrocitos/metabolismo , Microtia Congénita/genética , Microtia Congénita/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Condrogénesis/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética
2.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727293

RESUMEN

BACKGROUND: Since cytokine receptor-like factor 1 (CRLF1) has been implicated in tissue regeneration, we hypothesized that CRLF1 released by mesenchymal stem cells can promote the repair of osteochondral defects. METHODS: The degree of a femoral osteochondral defect repair in rabbits after intra-articular injections of bone marrow-derived mesenchymal stem cells (BMSCs) that were transduced with empty adeno-associated virus (AAV) or AAV containing CRLF1 was determined by morphological, histological, and micro computer tomography (CT) analyses. The effects of CRLF1 on chondrogenic differentiation of BMSCs or catabolic events of interleukin-1beta-treated chondrocyte cell line TC28a2 were determined by alcian blue staining, gene expression levels of cartilage and catabolic marker genes using real-time PCR analysis, and immunoblot analysis of Smad2/3 and STAT3 signaling. RESULTS: Intra-articular injections of BMSCs overexpressing CRLF1 markedly improved repair of a rabbit femoral osteochondral defect. Overexpression of CRLF1 in BMSCs resulted in the release of a homodimeric CRLF1 complex that stimulated chondrogenic differentiation of BMSCs via enhancing Smad2/3 signaling, whereas the suppression of CRLF1 expression inhibited chondrogenic differentiation. In addition, CRLF1 inhibited catabolic events in TC28a2 cells cultured in an inflammatory environment, while a heterodimeric complex of CRLF1 and cardiotrophin-like Cytokine (CLC) stimulated catabolic events via STAT3 activation. CONCLUSION: A homodimeric CRLF1 complex released by BMSCs enhanced the repair of osteochondral defects via the inhibition of catabolic events in chondrocytes and the stimulation of chondrogenic differentiation of precursor cells.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Células Madre Mesenquimatosas , Animales , Conejos , Células Madre Mesenquimatosas/metabolismo , Condrogénesis/genética , Condrocitos/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Citocinas/genética , Fémur/patología , Transducción de Señal , Línea Celular , Trasplante de Células Madre Mesenquimatosas
3.
Cell Mol Biol Lett ; 29(1): 56, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643083

RESUMEN

During growth phase, antlers exhibit a very rapid rate of chondrogenesis. The antler is formed from its growth center reserve mesenchyme (RM) cells, which have been found to be the derivatives of paired related homeobox 1 (Prrx1)-positive periosteal cells. However, the underlying mechanism that drives rapid chondrogenesis is not known. Herein, the miRNA expression profiles and chromatin states of three tissue layers (RM, precartilage, and cartilage) at different stages of differentiation within the antler growth center were analyzed by RNA-sequencing and ATAC-sequencing. We found that miR-140-3p was the miRNA that exhibited the greatest degree of upregulation in the rapidly growing antler, increasing from the RM to the cartilage layer. We also showed that Prrx1 was a key upstream regulator of miR-140-3p, which firmly confirmed by Prrx1 CUT&Tag sequencing of RM cells. Through multiple approaches (three-dimensional chondrogenic culture and xenogeneic antler model), we demonstrated that Prrx1 and miR-140-3p functioned as reciprocal negative feedback in the antler growth center, and downregulating PRRX1/upregulating miR-140-3p promoted rapid chondrogenesis of RM cells and xenogeneic antler. Thus, we conclude that the reciprocal negative feedback between Prrx1 and miR-140-3p is essential for balancing mesenchymal proliferation and chondrogenic differentiation in the regenerating antler. We further propose that the mechanism underlying chondrogenesis in the regenerating antler would provide a reference for helping understand the regulation of human cartilage regeneration and repair.


Asunto(s)
Cuernos de Venado , Proteínas de Homeodominio , MicroARNs , Animales , Cartílago/metabolismo , Diferenciación Celular/genética , Condrogénesis/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
4.
J Bone Miner Res ; 39(4): 498-512, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38477756

RESUMEN

Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.


Patients with CHARGE syndrome exhibit skeletal defects. CHARGE syndrome is primarily caused by mutations in the chromatin remodeler-coding gene CHD7. To investigate the poorly characterized role of CHD7 in cartilage and bone development, here, we examine the craniofacial and bone anomalies in a zebrafish chd7-/- mutant model. We find that zebrafish mutant larvae exhibit striking dysmorphism of craniofacial structures and spinal deformities. Notably, we find a significant reduction in osteoblast, chondrocyte, and collagen matrix markers. This work provides important insights to improve our understanding of the role of chd7 in skeletal development.


Asunto(s)
Cartílago , ADN Helicasas , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Cartílago/metabolismo , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patología , Condrocitos/metabolismo , Condrogénesis/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Cráneo/metabolismo , Pez Cebra/metabolismo , Pez Cebra/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Cell Rep ; 43(3): 113873, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427557

RESUMEN

Craniofacial microsomia (CFM) is a congenital defect that usually results from aberrant development of embryonic pharyngeal arches. However, the molecular basis of CFM pathogenesis is largely unknown. Here, we employ the zebrafish model to investigate mechanisms of CFM pathogenesis. In early embryos, tet2 and tet3 are essential for pharyngeal cartilage development. Single-cell RNA sequencing reveals that loss of Tet2/3 impairs chondrocyte differentiation due to insufficient BMP signaling. Moreover, biochemical and genetic evidence reveals that the sequence-specific 5mC/5hmC-binding protein, Sall4, binds the promoter of bmp4 to activate bmp4 expression and control pharyngeal cartilage development. Mechanistically, Sall4 directs co-phase separation of Tet2/3 with Sall4 to form condensates that mediate 5mC oxidation on the bmp4 promoter, thereby promoting bmp4 expression and enabling sufficient BMP signaling. These findings suggest the TET-BMP-Sall4 regulatory axis is critical for pharyngeal cartilage development. Collectively, our study provides insights into understanding craniofacial development and CFM pathogenesis.


Asunto(s)
Cartílago , Pez Cebra , Animales , Pez Cebra/metabolismo , Cartílago/metabolismo , Diferenciación Celular/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Condrogénesis/genética
6.
In Vitro Cell Dev Biol Anim ; 60(4): 343-353, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504085

RESUMEN

MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of ß-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and ß-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/ß-catenin signaling through BTRC.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , MicroARNs , Vía de Señalización Wnt , Animales , Conejos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Condrogénesis/genética , Vía de Señalización Wnt/genética , Condrocitos/metabolismo , Condrocitos/citología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Apoptosis/genética , Supervivencia Celular , beta Catenina/metabolismo , beta Catenina/genética , Secuencia de Bases , Regulación de la Expresión Génica
7.
FEBS Lett ; 598(8): 935-944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553249

RESUMEN

Chondrocyte differentiation is crucial for cartilage formation. However, the complex processes and mechanisms coordinating chondrocyte proliferation and differentiation remain incompletely understood. Here, we report a novel function of the adaptor protein Gulp1 in chondrocyte differentiation. Gulp1 expression is upregulated during chondrogenic differentiation. Gulp1 knockdown in chondrogenic ATDC5 cells reduces the expression of chondrogenic and hypertrophic marker genes during differentiation. Furthermore, Gulp1 knockdown impairs cell growth arrest during chondrocyte differentiation and reduces the expression of the cyclin-dependent kinase inhibitor p21. The activation of the TGF-ß/SMAD2/3 pathway, which is associated with p21 expression in chondrocytes, is impaired in Gulp1 knockdown cells. Collectively, these results demonstrate that Gulp1 contributes to cell growth arrest and chondrocyte differentiation by modulating the TGF-ß/SMAD2/3 pathway.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular , Proliferación Celular , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Técnicas de Silenciamiento del Gen , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína smad3/metabolismo , Proteína smad3/genética , Factor de Crecimiento Transformador beta/metabolismo
8.
Elife ; 132024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483448

RESUMEN

Genome-wide association studies (GWAS) identified thousands of genetic variants linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS variants influence complex morphological traits and can, in certain cases, simultaneously confer normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus on rs6740960, a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies has been associated both with normal-range variation in jaw shape and with an increased risk of non-syndromic orofacial clefting. Using in vitro derived embryonic cell types relevant for human facial morphogenesis, we show that this SNP resides in an enhancer that regulates chondrocytic expression of PKDCC - a gene encoding a tyrosine kinase involved in chondrogenesis and skeletal development. In agreement, we demonstrate that the rs6740960 SNP is sufficient to confer chondrocyte-specific differences in PKDCC expression. By deploying dense landmark morphometric analysis of skull elements in mice, we show that changes in Pkdcc dosage are associated with quantitative changes in the maxilla, mandible, and palatine bone shape that are concordant with the facial phenotypes and disease predisposition seen in humans. We further demonstrate that the frequency of the rs6740960 variant strongly deviated among different human populations, and that the activity of its cognate enhancer diverged in hominids. Our study provides a mechanistic explanation of how a common SNP can mediate normal-range and disease-associated morphological variation, with implications for the evolution of human facial features.


Asunto(s)
Condrogénesis , Estudio de Asociación del Genoma Completo , Animales , Humanos , Ratones , Condrogénesis/genética , Cara , Cabeza , Cráneo
9.
FASEB J ; 38(4): e23484, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407380

RESUMEN

The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.


Asunto(s)
Condrogénesis , Redes Reguladoras de Genes , Humanos , Condrogénesis/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Condrocitos , Diferenciación Celular/genética
10.
Biochem Biophys Res Commun ; 701: 149583, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330731

RESUMEN

Endochondral ossification is a developmental process in the skeletal system and bone marrow of vertebrates. During endochondral ossification, primitive cartilaginous anlages derived from mesenchymal stem cells (MSCs) undergo vascular invasion and ossification. In vitro regeneration of endochondral ossification is beneficial for research on the skeletal system and bone marrow development as well as their clinical aspects. However, to achieve the regeneration of endochondral ossification, a stem cell-based artificial cartilage (cartilage organoid, Cart-Org) that possesses an endochondral ossification phenotype is required. Here, we modified a conventional 3D culture method to create stem cell-based Cart-Org by mixing it with a basement membrane extract (BME) and further characterized its chondrogenic and ossification properties. BME enlarged and matured the bone marrow MSC-based Cart-Orgs without any shape abnormalities. Histological analysis using Alcian blue staining showed that the production of cartilaginous extracellular matrices was enhanced in Cart-Org treated with BME. Transcriptome analysis using RNA sequencing revealed that BME altered the gene expression pattern of Cart-Org to a dominant chondrogenic state. BME triggered the activation of the SMAD pathway and inhibition of the NK-κB pathway, which resulted in the upregulation of SOX9, COL2A1, and ACAN in Cart-Org. BME also facilitated the upregulation of genes associated with hypertrophic chondrocytes (IHH, PTH1R, and COL10A1) and ossification (SP7, ALPL, and MMP13). Our findings indicate that BME promotes cartilaginous maturation and further ossification of bone marrow MSC-based Cart-Org, suggesting that Cart-Org treated with BME possesses the phenotype of endochondral ossification.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Osteogénesis/genética , Médula Ósea , Membrana Basal , Cartílago/metabolismo , Condrocitos/metabolismo , Fenotipo , Condrogénesis/genética , Organoides , Diferenciación Celular
11.
Sci Rep ; 14(1): 2696, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302538

RESUMEN

Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.


Asunto(s)
Benzoatos , Cartílago Articular , Osteoartritis , Células Madre Pluripotentes , Retinoides , Humanos , Condrocitos/metabolismo , Tretinoina/farmacología , Condrogénesis/genética , Diferenciación Celular , Cartílago Articular/metabolismo , Colágeno/metabolismo , Osteoartritis/metabolismo
12.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409269

RESUMEN

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Asunto(s)
Cartílago , Condrogénesis , Animales , Ratones , Proteína con Dedos de Zinc GLI1/genética , Condrogénesis/genética , Condrocitos , Osteogénesis , Diferenciación Celular
13.
Mol Biol Rep ; 51(1): 274, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305850

RESUMEN

BACKGROUND: Spondyloepimetaphyseal dysplasia with joint laxity type 3 (SEMDJL3) is a rare skeletal dysplasia associated with EXOC6B, a component of the exocyst complex, involved in vesicle tethering and exocytosis at the plasma membrane. So far, EXOC6B and the pathomechanisms underlying SEMDJL3 remain obscure. METHODS AND RESULTS: Exoc6b was detected largely at the perinuclear regions and the primary cilia base in ATDC5 prechondrocytes. Its shRNA lentiviral knockdown impeded primary ciliogenesis. In Exoc6b silenced prechondrocytes, Hedgehog signaling was attenuated, including when stimulated with Smoothened agonist. Exoc6b knockdown deregulated the mRNA and protein levels of Col2a1, a marker of chondrocyte proliferation at 7- and 14-days following differentiation. It led to the upregulation of Ihh another marker of proliferative chondrocytes. The levels of Col10a1, a marker of chondrocyte hypertrophy was enhanced at 14 days of differentiation. Congruently, Axin2, a canonical Wnt pathway modulator that inhibits chondrocyte hypertrophy was repressed. The expression of Mmp13 and Adamts4 that are terminal chondrocyte hypertrophy markers involved in extracellular matrix (ECM) remodelling were downregulated at 7 and 14 days of chondrogenesis. Bglap that encodes for the most abundant non-collagenous bone matrix constituent and promotes ECM calcification was suppressed at 14 days of chondrocyte differentiation. ECM mineralization was assessed by Alizarin Red staining. Gene expression and ciliogenesis were investigated by reverse transcription quantitative real-time PCR, immunoblotting, and immunocytochemistry. CONCLUSIONS: These findings provide initial insights into the potential role of Exoc6b in primary ciliogenesis and chondrogenic differentiation, contributing towards a preliminary understanding of the molecular pathomechanisms underlying SEMDJL3.


Asunto(s)
Condrogénesis , Proteínas Hedgehog , Inestabilidad de la Articulación , Osteocondrodisplasias , Diferenciación Celular/genética , Células Cultivadas , Condrogénesis/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hipertrofia , Vía de Señalización Wnt
14.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256011

RESUMEN

The aim of this work is to study the effect of platelet factors on the differentiation of mesenchymal stem cells (MSCs) to hyaline cartilage chondrocytes in a three-dimensional environment. MSCs were cultured in a microgel environment with a chondrogenic medium. The microgel consisted of microspheres that combine gelatin and platelet-rich plasma (PRP). The gelatin/PRP microdroplets were produced by emulsion. The gelatin containing the microdroplets was enzymatically gelled, retaining PRP and, just before seeding the cells, platelets were activated by adding calcium chloride so that platelet growth factors were released into the culture media but not before. Platelet activation was analyzed before activation to rule out the possibility that the gelatin cross-linking process itself activated the platelets. The gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in a differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. In summary, the gelatin microspheres effectively encapsulated platelets that secreted and released factors that significantly contributed to cellular chondrogenic differentiation. At the same time, the microgel constituted a 3D medium that provided the cells with adherent surfaces and the possibility of three-dimensional cell-cell contact.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Microgeles , Plasma Rico en Plaquetas , Gelatina , Condrogénesis/genética
15.
Int J Biol Macromol ; 256(Pt 2): 128453, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016613

RESUMEN

Osteoarthritis (OA) is the most prevalent age-related and degenerative joint disease with limited treatment options. Previous studies have identified the therapeutic effects of mesenchymal stem cells (MSCs) therapy. Nevertheless, chronic inflammation impedes MSCs therapeutic effect. There have been reports suggesting that circular RNAs (circRNAs) are involved in OA and chondrogenesis. The combination of MSCs and circRNAs in therapies appears to be a promising option. In this study, we identified circIRAK3 as a significant regulator in cartilage degeneration and chondrogenesis through high-throughput sequencing analyses. We observed increased circIRAK3 in OA cartilage and during MSCs chondrogenesis. Knockdown of circIRAK3 resulted in excessive apoptosis, inhibited proliferation, and degradation of chondrocytes, along with the inhibition of MSCs chondrogenesis. Mechanistically, circIRAK3 bound to HNRNP U and competitively prevented its binding to IL-1ß, TNFα, and IL6 mRNA, thereby promoting mRNA degradation. Notably, circIRAK3 expression in plasma increased with higher OARSI scores. Intra-articular injection of adeno-associated virus-circIRAK3 delayed cartilage degeneration and reduced inflammation in DMM mouse model. Our study highlights a compensatory regulation network of circIRAK3 in chondrocytes in response to inflammation. CircIRAK3 has the potential to serve as a new therapeutic target for OA. Furthermore, therapies targeting circIRAK3 combined with MSCs hold promise.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Citocinas/genética , Citocinas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Osteoartritis/genética , Osteoartritis/terapia , Osteoartritis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Circular/metabolismo , Retroalimentación , Condrogénesis/genética , Inflamación/genética , Inflamación/metabolismo , Condrocitos
16.
J Dent Res ; 103(1): 31-41, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37968792

RESUMEN

Recapitulation of the natural healing process is receiving increasing recognition as a strategy to induce robust tissue regeneration. Endochondral ossification has been recognized as an essential reparative approach in natural jawbone defect healing. However, such an approach has been overlooked in the recent development of cell-based therapeutics for jawbone repair. Therefore, this study aimed to explore a bioinspired stem cell-based strategy for jawbone repair by mimicking the mesenchymal condensation of progenitor cells during the early endochondral ossification process. For this purpose, passage 3 of jawbone periosteum-derived cells (jb-PDCs) was cultured in our previously reported nonadherent microwells (200 µm in diameter, 148 µm in depth, and 100 µm space in between) and self-assembled into spheroids with a diameter of 96.4 ± 5.8 µm after 48 h. Compared to monolayer culture, the jb-PDC spheroids showed a significant reduction of stemness marker expression evidenced by flow cytometry. Furthermore, a significant upregulation of chondrogenic transcription factor SOX9 in both gene and protein levels was observed in the jb-PDC spheroids after 48 h of chondrogenic induction. RNA sequencing and Western blotting analysis further suggested that the enhanced SOX9-mediated chondrogenic differentiation in jb-PDC spheroids was attributed to the activation of the p38 MAPK pathway. Impressively, inhibition of p38 kinase activity significantly attenuated chondrogenic differentiation jb-PDC spheroids, evidenced by a significant decline of SOX9 in both gene and protein levels. Strikingly, the jb-PDC spheroids implanted in 6- to 8-wk-old male C57BL/6 mice with critical-size jawbone defects (1.8 mm in diameter) showed an evident contribution to cartilaginous callus formation after 1 wk, evidenced by histological analysis. Furthermore, micro-computed tomography analysis showed that the jb-PDC spheroids significantly accelerated bone healing after 2 wk in the absence of exogenous growth factors. In sum, the presented findings represent the successful development of cell-based therapeutics to reengineer the endochondral bone repair process and illustrate the potential application to improve bone repair and regeneration in the craniofacial skeleton.


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Masculino , Microtomografía por Rayos X , Ratones Endogámicos C57BL , Osteogénesis/genética , Cartílago/metabolismo , Diferenciación Celular , Condrogénesis/genética
17.
Cell Rep ; 42(12): 113502, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38032796

RESUMEN

Optogenetics is a rapidly advancing technology combining photochemical, optical, and synthetic biology to control cellular behavior. Together, sensitive light-responsive optogenetic tools and human pluripotent stem cell differentiation models have the potential to fine-tune differentiation and unpick the processes by which cell specification and tissue patterning are controlled by morphogens. We used an optogenetic bone morphogenetic protein (BMP) signaling system (optoBMP) to drive chondrogenic differentiation of human embryonic stem cells (hESCs). We engineered light-sensitive hESCs through CRISPR-Cas9-mediated integration of the optoBMP system into the AAVS1 locus. The activation of optoBMP with blue light, in lieu of BMP growth factors, resulted in the activation of BMP signaling mechanisms and upregulation of a chondrogenic phenotype, with significant transcriptional differences compared to cells in the dark. Furthermore, cells differentiated with light could form chondrogenic pellets consisting of a hyaline-like cartilaginous matrix. Our findings indicate the applicability of optogenetics for understanding human development and tissue engineering.


Asunto(s)
Optogenética , Células Madre Pluripotentes , Humanos , Condrocitos , Diferenciación Celular/genética , Cartílago/metabolismo , Condrogénesis/genética , Proteína Morfogenética Ósea 2/metabolismo , Células Cultivadas
18.
Adv Gerontol ; 36(3): 383-390, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37782646

RESUMEN

Osteoarthritis is a widespread age-related disease, that has no effective targeted therapy. In this regard, bioengineering methods are being actively developed that can stimulate the restoration of cartilage tissue. These methods include chondrogenic differentiation of stem cells, which is stimulated by various biomolecules, including short peptides and polypeptide complexes. It was studied the effect of the cartilage polypeptide complex (CPC) and AED peptide on gene expression and protein synthesis of chondrogenic differentiation - SOX9, aggrecan, type II collagen and COMP - in human mesenchymal stem cell (MSC) during replicative aging. AED peptide at the concentration of 200 ng/ml activates gene expression and protein synthesis during aging of MSCs. CPC has the same effect in the concentration 2000 ng/ml. These data indicate the stimulating effect of studied peptides on regulation of chondrogenesis and open up prospects for further investigation of their effectiveness in osteoarthritis models.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Humanos , Condrogénesis/genética , Diferenciación Celular/genética , Osteoartritis/terapia , Péptidos/farmacología , Péptidos/metabolismo , Envejecimiento , Células Cultivadas
19.
Development ; 150(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882667

RESUMEN

A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.


Asunto(s)
Cartílago Articular , Animales , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Células Madre , Diferenciación Celular/genética , Línea Celular , Modelos Animales de Enfermedad , Condrogénesis/genética
20.
J Orthop Surg Res ; 18(1): 751, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794464

RESUMEN

BACKGROUND: GEM (GTP-binding protein overexpressed in skeletal muscle) is one of the atypical small GTPase subfamily members recently identified as a regulator of cell differentiation. Abnormal chondrogenesis coupled with an imbalance in the turnover of cartilaginous matrix formation is highly relevant to the onset and progression of osteoarthritis (OA). However, how GEM regulates chondrogenic differentiation remains unexplored. METHODS: Cartilage tissues were obtained from OA patients and graded according to the ORASI and ICRS grading systems. The expression alteration of GEM was detected in the Grade 4 cartilage compared to Grade 0 and verified in OA mimic culture systems. Next, to investigate the specific function of GEM during these processes, we generated a Gem knockdown (Gem-Kd) system by transfecting siRNA targeting Gem into ATDC5 cells. Acan, Col2a1, Sox9, and Wnt target genes of Gem-Kd ATDC5 cells were detected during induction. The transcriptomic sequencing analysis was performed to investigate the mechanism of GEM regulation. Wnt signaling pathways were verified by real-time PCR and immunoblot analysis. Finally, a rescue model generated by treating Gem-KD ATDC5 cells with a Wnt signaling agonist was established to validate the mechanism identified by RNA sequencing analysis. RESULTS: A decreased expression of GEM in OA patients' cartilage tissues and OA mimic chondrocytes was observed. While during chondrogenesis differentiation and cartilage matrix formation, the expression of GEM was increased. Gem silencing suppressed chondrogenic differentiation and the expressions of Acan, Col2a1, and Sox9. RNA sequencing analysis revealed that Wnt signaling was downregulated in Gem-Kd cells. Decreased expression of Wnt signaling associated genes and the total ß-CATENIN in the nucleus and cytoplasm were observed. The exogenous Wnt activation exhibited reversed effect on Gem loss-of-function cells. CONCLUSION: These findings collectively validated that GEM functions as a novel regulator mediating chondrogenic differentiation and cartilage matrix formation through Wnt/ß-catenin signaling.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Condrogénesis/genética , Cartílago/metabolismo , Condrocitos/metabolismo , Diferenciación Celular/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...