Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasite ; 30: 8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010449

RESUMEN

African animal trypanosomoses are vector-borne diseases that cause enormous livestock losses in sub-Saharan Africa, with drastic socio-economic impacts. Vector control in the context of an area-wide integrated pest management program with a sterile insect technique component requires the production of high-quality sterile male tsetse flies. In our study, we evaluated the effect of irradiation on the fecundity of Glossina palpalis gambiensis to identify the optimal dose that will induce maximum sterility while maintaining biological performance as much as possible. In addition, male mating performance was evaluated in semi-field cages. The irradiation doses used were 90, 100, 110, 120, 130, 140, and 150 Gy, and untreated males were used as the control. The results showed that pupal production and emergence rates were higher in batches of females that had mated with fertile males than in those that had mated with irradiated males with any experimental dose. A dose of 120 Gy administered to male flies induced 97-99% sterility after mating with virgin females. For the semi-field cage experiments, males irradiated with 120 Gy showed good sexual competitiveness as compared to fertile males and those irradiated with 140 Gy, considering the level of filling of spermatheca and the number of pairs formed. The optimal radiation dose of 120 Gy found in this study is slightly different from the traditional dose of 110 Gy that has been used in several eradication programmes in the past. The potential reasons for this difference are discussed, and an argument is made for the inclusion of reliable dosimetry systems in these types of studies.


Title: Le rayonnement gamma pour Glossina palpalis gambiensis revisité : effet sur la fertilité et la compétitivité sexuelle. Abstract: Les trypanosomoses animales africaines sont des maladies à transmission vectorielle qui causent d'énormes pertes de bétail en Afrique subsaharienne, avec des impacts socio-économiques importants. La lutte antivectorielle dans le cadre d'un programme de lutte intégrée contre les ravageurs à l'échelle d'une zone avec une composante de technique d'insectes stériles nécessite la production de glossines mâles stériles de haute qualité. Dans notre étude, nous avons évalué l'effet de l'irradiation sur la fécondité de Glossina palpalis gambiensis afin d'identifier la dose optimale qui induira une stérilité maximale tout en maintenant au maximum les performances biologiques. De plus, les performances d'accouplement des mâles ont été évaluées en cages de semi-terrain. Les doses d'irradiation utilisées étaient de 90, 100, 110, 120, 130, 140 et 150 Gy, et des mâles non traités ont été utilisés comme contrôle. Les résultats ont montré que les taux de production et d'émergence de pupes étaient plus élevés dans les lots de femelles qui s'étaient accouplées avec des mâles fertiles que dans les lots de celles accouplées avec des mâles irradiés, avec n'importe quelle dose expérimentale. Une dose de 120 Gy administrée à des mouches mâles a induit une stérilité de 97 à 99 % après accouplement avec des femelles vierges. Pour les expériences en cages de semi-terrain, les mâles irradiés à 120 Gy ont montré une bonne compétitivité sexuelle par rapport aux mâles fertiles et à ceux irradiés à 140 Gy, en considérant le niveau de remplissage de leur spermathèque et le nombre de couples formés. La dose de rayonnement optimale de 120 Gy trouvée dans cette étude est légèrement différente de la dose traditionnelle de 110 Gy qui a été utilisée dans plusieurs programmes d'éradication dans le passé. Les raisons potentielles de cette différence sont discutées et un argument est avancé pour l'inclusion de systèmes de dosimétrie fiables dans ce type d'études.


Asunto(s)
Infertilidad , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Femenino , Masculino , Conducta Sexual Animal/efectos de la radiación , Reproducción , Fertilidad
2.
Parasit Vectors ; 16(1): 102, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922826

RESUMEN

BACKGROUND: Aedes aegypti is a vector that transmits various viral diseases, including dengue and Zika. The radiation-based sterile insect technique (SIT) has a limited effect on mosquito control because of the difficulty in irradiating males without reducing their mating competitiveness. In this study, the insect sex pheromone heptacosane was applied to Ae. aegypti males to investigate whether it could enhance the mating competitiveness of irradiated males. METHODS: Heptacosane was smeared on the abdomens of Ae. aegypti males that were allowed to mate with untreated virgin females. The insemination rate was used to assess the attractiveness of heptacosane-treated males to females. The pupae were irradiated with different doses of X-rays and γ-rays, and the emergence, survival time, egg number, and hatch rate were detected to find the optimal dose of X-ray and γ-ray radiation. The males irradiated at the optimal dose were smeared with heptacosane, released in different ratios with untreated males, and mated with females. The effect of heptacosane on the mating competitiveness of irradiated mosquitoes was then evaluated by the hatch rate, induced sterility, and mating competitiveness index. RESULTS: Applying heptacosane to Ae. aegypti males significantly increased the insemination rate of females by 20%. Pupal radiation did not affect egg number but significantly reduced survival time and hatch rate. The emergence of the pupae was not affected by X-ray radiation but was affected by γ-ray radiation. Pupae exposed to 60 Gy X-rays and 40 Gy γ-rays were selected for subsequent experiments. After 60 Gy X-ray irradiation or 40 Gy γ-ray irradiation, the average hatch rate was less than 0.1%, and the average survival time was more than 15 days. Moreover, at the same release ratio, the hatch rate of the irradiated group perfumed with heptacosane was lower than that of the group without heptacosane. Conversely, the male sterility and male mating competitiveness index were significantly increased due to the use of heptacosane. CONCLUSIONS: The sex pheromone heptacosane enhanced the interaction between Ae. aegypti males and females. Perfuming males irradiated by X-rays or γ-rays with heptacosane led to a significant increase in mating competitiveness. This study provided a new idea for improving the application effect of SIT.


Asunto(s)
Aedes , Infertilidad Masculina , Atractivos Sexuales , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Humanos , Masculino , Aedes/efectos de la radiación , Atractivos Sexuales/farmacología , Mosquitos Vectores/efectos de la radiación , Reproducción , Pupa/efectos de la radiación , Conducta Sexual Animal/efectos de la radiación
3.
Parasite ; 30: 5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36762942

RESUMEN

Balancing process efficiency and adult sterile male biological quality is one of the challenges in the success of the sterile insect technique (SIT) against insect pest populations. For the SIT against mosquitoes, many stress factors need to be taken into consideration when producing sterile males that require high biological quality to remain competitive once released in the field. Pressures of mass rearing, sex sorting, irradiation treatments, packing, transport and release including handling procedures for each step, add to the overall stress budget of the sterile male post-release. Optimizing the irradiation step to achieve maximum sterility while keeping off-target somatic damage to a minimum can significantly improve male mating competitiveness. It is therefore worth examining various protocols that have been found to be effective in other insect species, such as dose fractionation. A fully sterilizing dose of 70 Gy was administered to Aedes aegypti males as one acute dose or fractionated into either two equal doses of 35 Gy, or one low dose of 10 Gy followed by a second dose of 60 Gy. The two doses were separated by either 1- or 2-day intervals. Longevity, flight ability, and mating competitiveness tests were performed to identify beneficial effects of the various treatments. Positive effects of fractionating dose were seen in terms of male longevity and mating competitiveness. Although applying split doses generally improved male quality parameters, the benefits may not outweigh the added labor in SIT programmes for the management of mosquito vectors.


Title: Fractionnement de la dose d'irradiation chez les moustiques Aedes aegypti adultes. Abstract: Équilibrer l'efficacité du processus et la qualité biologique des mâles adultes stériles est l'un des défis du succès de la technique des insectes stériles (TIS) contre les populations d'insectes nuisibles. Pour la TIS contre les moustiques, de nombreux facteurs de stress sont à prendre en compte lors de la production de mâles stériles qui nécessitent une haute qualité biologique pour rester compétitifs une fois relâchés au champ. Les pressions de l'élevage en masse, du triage par sexe, des traitements d'irradiation, de l'emballage, du transport et de la libération, y compris les procédures de manipulation pour chaque étape, s'ajoutent au budget de stress global du mâle stérile après la libération. L'optimisation de l'étape d'irradiation pour atteindre une stérilité maximale tout en minimisant les dommages somatiques hors cible peut améliorer considérablement la compétitivité de l'accouplement des mâles et il est donc important d'examiner divers protocoles qui se sont révélés efficaces chez d'autres espèces d'insectes, comme le fractionnement de dose. Une dose entièrement stérilisante de 70 Gy a été administrée aux mâles Aedes aegypti en une dose unique ou fractionnée en deux doses égales de 35 Gy, ou une faible dose de 10 Gy suivie d'une seconde dose de 60 Gy. Les deux doses étaient séparées par des intervalles de 1 ou 2 jours. Des tests de longévité, d'aptitude au vol et de compétitivité à l'accouplement ont été réalisés pour identifier les effets bénéfiques des différents traitements. Des effets positifs de la dose de fractionnement ont été observés en termes de longévité des mâles et de compétitivité à l'accouplement. Bien que l'application de doses fractionnées améliore généralement les paramètres de qualité des mâles, les avantages peuvent ne pas compenser le travail supplémentaire dans les programmes TIS pour la gestion des moustiques vecteurs.


Asunto(s)
Aedes , Animales , Masculino , Aedes/efectos de la radiación , Reproducción , Mosquitos Vectores , Insectos , Dosis de Radiación , Conducta Sexual Animal/efectos de la radiación , Control de Mosquitos/métodos
4.
Sci Rep ; 11(1): 20182, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642368

RESUMEN

The Sterile Insect Technique (SIT) is a successful autocidal control method that uses ionizing radiation to sterilize insects. However, irradiation in normal atmospheric conditions can be damaging for males, because irradiation generates substantial biological oxidative stress that, combined with domestication and mass-rearing conditions, may reduce sterile male sexual competitiveness and quality. In this study, biological oxidative stress and antioxidant capacity were experimentally manipulated in Anastrepha suspensa using a combination of low-oxygen conditions and transgenic overexpression of mitochondrial superoxide dismutase (SOD2) to evaluate their role in the sexual behavior and quality of irradiated males. Our results showed that SOD2 overexpression enhances irradiated insect quality and improves male competitiveness in leks. However, the improvements in mating performance were modest, as normoxia-irradiated SOD2 males exhibited only a 22% improvement in mating success compared to normoxia-irradiated wild type males. Additionally, SOD2 overexpression did not synergistically improve the mating success of males irradiated in either hypoxia or severe hypoxia. Short-term hypoxic and severe-hypoxic conditioning hormesis, per se, increased antioxidant capacity and enhanced sexual competitiveness of irradiated males relative to non-irradiated males in leks. Our study provides valuable new information that antioxidant enzymes, particularly SOD2, have potential to improve the quality and lekking performance of sterile males used in SIT programs.


Asunto(s)
Infertilidad Masculina/etiología , Control de Insectos/métodos , Oxígeno/metabolismo , Superóxido Dismutasa/genética , Tephritidae/fisiología , Animales , Animales Modificados Genéticamente , Hormesis , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Mutación , Estrés Oxidativo , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de la radiación , Superóxido Dismutasa/metabolismo , Tephritidae/enzimología , Tephritidae/efectos de la radiación
5.
Int J Radiat Biol ; 97(4): 564-570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33471571

RESUMEN

PURPOSE: Ionizing radiation is well known to have drastic impacts on major life history features including survivorship, growth, fertility, and longevity. What is much less appreciated is how radiation stress can cause changes to more subtle traits, such as those associated with sexual signaling, an underappreciated but vital aspect of insect reproduction. In the House Cricket (Acheta domesticus) cuticular hydrocarbons are vital for sex and species recognition, as well as a possible indicator of stress, making them crucial for successful mating and reproduction. MATERIALS AND METHODS: Here, we analyze the impacts of ionizing radiation on the cuticular hydrocarbons of male crickets and its subsequent impacts on mating success. We exposed juvenile (14-day, 4th instar) male crickets to a broad range of radiation doses (2 Gy - 2 Gy). RESULTS: We detected significant changes in individual cuticular hydrocarbons across a broad range of doses in mature male crickets using gas-liquid chromatography. Specifically, dose was identified as a significant contributing factor to hydrocarbon increases p < .0001. Mating success was significantly reduced in 12 Gy (p < .0001), 10 Gy (0.0001), and 7 Gy (0.0060) groups compared to non-irradiated controls. CONCLUSION: Insect chemical communication can be species specific, and functionally specialized. Here, we show that radiation can alter the chemical signals used to attract mates in a large bodied insect and this may be a contributing factor to the described reduction in male mating success. Further research should be conducted to further analyze the various modes of communication employed by male crickets to attract mates i.e. acoustic signaling, and how this may also contribute to the reduction in mating success seen in irradiated males.


Asunto(s)
Gryllidae , Hidrocarburos/metabolismo , Conducta Sexual Animal/efectos de la radiación , Animales , Femenino , Masculino
6.
Bull Entomol Res ; 111(1): 82-90, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32744203

RESUMEN

The Mediterranean fruit fly Ceratitis capitata is a globally invasive pest, often controlled with the sterile insect technique (SIT). For the SIT, mass-rearing of the target insect followed by irradiation are imperatives. Sterile males are often less able to inhibit female remating and transfer less number of sperm, and even irradiation could affect male reproductive organs, with consequences for their ability to inhibit female remating. On the other hand, male age could affect their ability to modulate female response after mating. Here, we evaluated the quality of the genetic sexing strain Vienna-8-tsl mass-reared in Bioplanta San Juan, Argentina, under laboratory conditions, with regard to: (i) the ability of sterile males irradiated at 100 or 140 Gy to inhibit female remating, in the same day and at 24 h of first copulation; (ii) the ability of 3, 4 or 5 day-old sterile males to inhibit female remating at 24 h of first copulation, and (iii) the effect of a reduction in irradiation doses on the number of sperm stored by females and reproductive organ size in virgin males. Sterile males were better able than wild males to inhibit female remating in the same day of first copulation and as able as wild males 1 day after first copulation. Male age did not affect their ability to inhibit female receptivity. Number of sperm stored by females, testes size and ectodermal accessory glands size were not affected by male identity, while sterile 100 Gy males had larger mesodermal accessory glands than control lab males. A reduction in irradiation dose does not impact any variable measured, except for percentage of sperm-depleted females: females mated with sterile 100 Gy males had lower probabilities to store sperm. The results showed here are very encouraging for tsl Vienna 8 strain reared in Argentina and are discussed in comparison with previous studies in C. capitata female remating with dissimilar results.


Asunto(s)
Ceratitis capitata/efectos de la radiación , Control de Insectos/métodos , Control Biológico de Vectores/métodos , Conducta Sexual Animal/efectos de la radiación , Espermatozoides/efectos de la radiación , Animales , Argentina , Femenino , Genitales/crecimiento & desarrollo , Genitales/efectos de la radiación , Masculino , Tamaño de los Órganos/efectos de la radiación , Dosis de Radiación , Espermatozoides/fisiología
7.
Trends Parasitol ; 36(11): 877-880, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33036938

RESUMEN

Adequate sexual competitiveness of sterile males is a prerequisite for genetic control methods, including the sterile insect technique. During the past decade several semi-field and open-field trials demonstrated that irradiated male mosquitoes can be competitive.


Asunto(s)
Culicidae/fisiología , Infertilidad Masculina , Control de Mosquitos/métodos , Conducta Sexual Animal/efectos de la radiación , Animales , Culicidae/efectos de la radiación , Masculino , Radiación Ionizante
8.
Mol Cell Endocrinol ; 512: 110854, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32422399

RESUMEN

Many seasonally-breeding species use daylength to time reproduction. Light-induced release of progonadal hormones involves a complex cascade of responses both inside and outside the brain. In this study, we used induction of early growth response 1 (Egr-1), the protein product of an immediate early gene, to evaluate the time course of such responses in male white-throated sparrows (Zonotrichia albicollis) exposed to a single long day. Induction of Egr-1 in the pars tuberalis began ∼11 h after dawn. This response was followed ∼6 h later by dramatic induction in the tuberal hypothalamus, including in the ependymal cells lining the third ventricle. At approximately the same time, Egr-1 was induced in dopaminergic and vasoactive intestinal peptide neurons in the tuberal hypothalamus and in dopaminergic neurons of the premammillary nucleus. We noted no induction in gonadotropin-releasing hormone (GnRH) neurons until 2 h after dawn the following morning. Overall, our results indicate that Egr-1 responses in GnRH neurons occur rather late during photostimulation, compared with responses in other cell populations, and that such induction may reflect new synthesis related to GnRH depletion rather than stimulation by light cues.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Hipotálamo/metabolismo , Fotoperiodo , Conducta Sexual Animal , Gorriones/metabolismo , Animales , Regulación de la Expresión Génica/efectos de la radiación , Hipotálamo/efectos de la radiación , Luz , Masculino , Estaciones del Año , Conducta Sexual Animal/efectos de la radiación , Pájaros Cantores/metabolismo , Gorriones/fisiología , Factores de Tiempo , Distribución Tisular/efectos de la radiación
9.
J Photochem Photobiol B ; 205: 111815, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32092662

RESUMEN

Larvae of the black soldier fly (BSF) Hermetia illucens (L.) (Diptera: Stratiomyidae) are promising organisms to be used for organic waste bioconversion. Breeding BSF indoors has been suggested as a cost-effective approach for countries with long winters or low sunlight levels through the year. As the BSF mating is visually mediated, artificial illumination conditions are critical to a successful indoor breeding system. In this study, we tested four different types of artificial light sources for their effects on BSF mating success. They included: (1) a halogen lamp; (2) a combination of a white light-emitting diode (LED) lamp and a fluorescent ultra violet lamp; (3) a metal halide lamp, and (4) a specially designed light-emitting diode (BSFLED) lamp, whose design was based on the specific BSF adult visual spectral sensitivity. We determined the spectra of four artificial light sources, compared their spectral composition in relation to the BSF-visible spectrum, and compared their effects on the mating success of two different BSF colonies. BSFLED was the most energy efficient light source in spectral composition and led to the highest mating success in terms of the percentage of inseminated females and fertile clutches. Thus, BSFLED is the most suitable light source tested in our experiment for breeding BSF indoors. The colony effect and possible light flickering effect on BSF mating success were also detected. The implications of these findings are discussed.


Asunto(s)
Dípteros/efectos de la radiación , Luz , Reproducción/efectos de la radiación , Animales , Dípteros/fisiología , Femenino , Masculino , Conducta Sexual Animal/efectos de la radiación , Espermatozoides/efectos de la radiación
10.
Malar J ; 19(1): 44, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973756

RESUMEN

BACKGROUND: With the fight against malaria reportedly stalling there is an urgent demand for alternative and sustainable control measures. As the sterile insect technique (SIT) edges closer to becoming a viable complementary tool in mosquito control, it will be necessary to find standardized techniques of assessing male quality throughout the production system and post-irradiation handling. Flight ability is known to be a direct marker of insect quality. A new version of the reference International Atomic Energy Agency/Food and Agricultural Organization (IAEA/FAO) flight test device (FTD), modified to measure the flight ability and in turn quality of male Anopheles arabiensis within a 2-h period via a series of verification experiments is presented. METHODS: Anopheles arabiensis juveniles were mass reared in a rack and tray system. 7500 male pupae were sexed under a stereomicroscope (2500 per treatment). Stress treatments included irradiation (with 50, 90, 120 or 160 Gy, using a Gammacell 220), chilling (at 0, 4, 8 and 10 °C) and compaction weight (5, 15, 25, and 50 g). Controls did not undergo any stress treatment. Three days post-emergence, adult males were subjected to either chilling or compaction (or were previously irradiated at pupal stage), after which two repeats (100 males) from each treatment and control group were placed in a FTD to measure flight ability. Additionally, one male was caged with 10 virgin females for 4 days to assess mating capacity (five repeats). Survival was monitored daily for a period of 15 days on remaining adults (two repeats). RESULTS: Flight ability results accurately predicted male quality following irradiation, with the first significant difference occurring at an irradiation dose of 90 Gy, a result which was reflected in both survival and insemination rates. A weight of 5 g or more significantly reduced flight ability and insemination rate, with survival appearing less sensitive and not significantly impacted until a weight of 15 g was imposed. Flight ability was significantly reduced after treatments at 4 °C with the insemination rate more sensitive to chilling with survival again less sensitive (8 and 0 °C, respectively). CONCLUSIONS: The reported results conclude that the output of a short flight ability test, adapted from the previously tested Aedes FTD, is an accurate indicator of male mosquito quality and could be a useful tool for the development of the SIT against An. arabiensis.


Asunto(s)
Anopheles/fisiología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Animales , Anopheles/efectos de la radiación , Frío , Relación Dosis-Respuesta en la Radiación , Femenino , Vuelo Animal/efectos de la radiación , Rayos gamma , Malaria/transmisión , Masculino , Mosquitos Vectores/efectos de la radiación , Conducta Sexual Animal/efectos de la radiación , Factores de Tiempo
11.
Environ Pollut ; 259: 113883, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31931411

RESUMEN

Artificial Light At Night (ALAN) is an emerging pollution, that dramatically keeps on increasing worldwide due to urbanisation and transport infrastructure development. In 2016, it nearly affected 23% of the Earth's surface. To date, all terrestrial and aquatic ecosystems have been affected. The disruption of natural light cycles due to ALAN is particularly expected for nocturnal species, which require dark periods to forage, move, and reproduce. Apart from chiropterans, amphibians contain the largest proportion of nocturnal species among vertebrates exhibiting an unfavourable conservation status in most parts of the world and living in ALAN polluted areas. Despite the growing number of studies on this subject, our knowledge on the direct influence of nocturnal lighting on amphibians is still scarce. To better understand the consequences of ALAN on the breeding component of amphibian fitness, we experimentally exposed male breeding common toads (Bufo bufo) to ecologically relevant light intensities of 0.01 (control), 0.1 or 5 lux for 12 days. At mating, exposed males took longer than controls to form an amplexus, i.e. to pair with a female, and broke amplexus before egg laying, while controls never did. These behavioural changes were associated with fitness alteration. The fertilisation rate of 5 lux-exposed males was reduced by 25%. Salivary testosterone, which is usually correlated with reproductive behaviours, was not altered by ALAN. Our study demonstrates that ALAN can affect the breeding behaviour of anuran species and reduce one component of their fitness. Given the growing importance of ALAN, more work is needed to understand its long-term consequences on the behaviour and physiology of individuals. It appears essential to identify deleterious effects for animal populations and propose appropriate management solutions in an increasingly brighter world.


Asunto(s)
Bufo bufo , Luz , Conducta Sexual Animal , Animales , Bufo bufo/fisiología , Ecosistema , Femenino , Masculino , Fotoperiodo , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de la radiación
12.
J Insect Sci ; 19(5)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505620

RESUMEN

Recently, aerial delivery of sterilized adult tsetse flies has been developed based on the release of chilled adult sterile males. The long-distance transport of irradiated male tsetse pupae for chilled adult release systems requires exposure of the mature pupae to irradiation and to low temperatures for both the pupae and adults. The effect of these treatments on mating of adult Glossina palpalis gambiensis (Vanderplank, Diptera: Glossinidae) males was investigated. Male G. p. gambiensis pupae were stored at 10°C for 5 d and irradiated with 110 Gy within the first 24 h of cold storage. In addition, to simulate a chilled adult release environment, 6-d-old adult males were stored at 5.1 ± 0.4°C for 6 or 30 h. Mating performance was compared to untreated controls in walk-in field cages. A significantly lower proportion of males that had been irradiated and stored at low temperature succeeded in securing a mating compared to untreated males. Premating time, copulation duration and spermathecal fill were similar. Insemination levels were slightly lower for adult males stored at low temperature for 30 h compared to 6 h or control. Although the mating behavior of the males was affected by the treatments given, the data presented confirm the suitability of using long-distance transport of chilled and irradiated male G. p. gambiensis pupae followed by releasing the emerged adult male flies using a chilled adult release system. However, the data indicate that the chilling duration of the adults should be minimized.


Asunto(s)
Frío , Moscas Tse-Tse/fisiología , Moscas Tse-Tse/efectos de la radiación , Animales , Femenino , Masculino , Control Biológico de Vectores/métodos , Conducta Sexual Animal/efectos de la radiación , Factores de Tiempo , Transportes
13.
Naturwissenschaften ; 106(7-8): 46, 2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31280391

RESUMEN

Ecological light pollution alters an environment's light cycle, potentially affecting photoperiod-controlled behavior. Anurans, for example, generally breed nocturnally, and the influence of light pollution on their natural history may therefore be especially strong. In this study, we tested this hypothesis by measuring male calling behavior of anuran communities in natural wetlands in southern Brazil exposed or not exposed to street lights. We recorded seasonal and diel calling activity and calling response to a light pulse. The peak calling season differed between continuously lit and unlit locations with most species in illuminated wetlands shortening their calling season and calling earlier in the year. In unlit breeding sites, Boana pulchella, Pseudis minuta, and Pseudopaludicola falcipes confined their calling activity to well-defined hours of the night, but in continuously lit areas, these species called more continuously through the night. A 2-minute light pulse inhibited calling, but only in unlit wetlands. After a light pulse, frogs quickly resumed calling-suggesting acclimatization to brief artificial light exposure. Our field experiment presents a convincing example of ecological light pollution showing that artificial light alters the seasonal and diel calling time of some South American wetland anurans. It also documents their acclimatization to brief lighting when being continuously exposed to light.


Asunto(s)
Anuros/fisiología , Contaminación Ambiental , Luz , Conducta Sexual Animal/efectos de la radiación , Vocalización Animal/efectos de la radiación , Animales , Brasil , Masculino , Fotoperiodo , Humedales
14.
Theriogenology ; 131: 133-139, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30959439

RESUMEN

Ten dromedary mature males were used to study the effects of short artificial lighting and low temperature on the reproductive behavior, testicular size, semen quality and hormone during the non-rutting season and subsequent rutting season. Bulls were allocated into two groups: the first group were subjected to natural daylight and temperature and used as a control. The second group was housed individually in light and temperature controlled rooms in which artificial light (300 lux) was used for 10 h/d, and the temperature was 25.28 ±â€¯0.21 °C. The trial was initiated in mid-June and continued for 10 weeks in the non-rutting season. The reproductive parameters of all animals in the control and room groups were evaluated once every two weeks. The reproductive parameters of all animals in the control and room groups were re-evaluated during the rutting season of the same year. A significant (P < 0.05) increase in the morphometry of the testes, scrotum, libido, and reaction time score, as well as serum melatonin and testosterone levels, was observed in the treatment non-rutting season (TNRS) group compared to in the control non-rutting season (CNRS) group. The testicular volume, reaction time score, serum melatonin, and testosterone were significantly (P < 0.05) higher in the treatment rutting season (TRS) group than in the control non-rutting season (CRS) group. Improvement in the semen parameters were observed in the TNRS and TRS groups compared to in the CRS group. In conclusion, these results demonstrate that short artificial lighting and low temperature can induce rutting out of season and improve the reproductive parameters of dromedary males during the subsequent rutting season.


Asunto(s)
Camelus/fisiología , Frío , Vivienda para Animales , Iluminación , Reproducción/efectos de la radiación , Animales , Cruzamiento/métodos , Camelus/anatomía & histología , Masculino , Melatonina/metabolismo , Fotoperiodo , Reproducción/fisiología , Escroto/anatomía & histología , Escroto/efectos de la radiación , Conducta Sexual Animal/efectos de la radiación , Testículo/anatomía & histología , Testículo/efectos de la radiación
15.
PLoS One ; 14(2): e0212520, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30779779

RESUMEN

The sterile insect technique (SIT) may offer a means to control the transmission of mosquito borne diseases. SIT involves the release of male insects that have been sterilized by exposure to ionizing radiation. We determined the effects of different doses of radiation on the survival and reproductive capacity of local strains of Aedes aegypti and Ae. albopictus in southern Mexico. The survival of irradiated pupae was invariably greater than 90% and did not differ significantly in either sex for either species. Irradiation had no significant adverse effects on the flight ability (capacity to fly out of a test device) of male mosquitoes, which consistently exceeded 91% in Ae. aegypti and 96% in Ae. albopictus. The average number of eggs laid per female was significantly reduced in Ae. aegypti at doses of 15 and 30 Gy and no eggs were laid by females that had been exposed to 50 Gy. Similarly, in Ae. albopictus, egg production was reduced at doses of 15 and 25 Gy and was eliminated at 35 Gy. In Ae. aegypti, fertility in males was eliminated at 70 Gy and was eliminated at 30 Gy in females, whereas in Ae. albopictus, the fertility of males that mated with untreated females was almost zero (0.1%) in the 50 Gy treatment and female fertility was eliminated at 35 Gy. Irradiation treatments resulted in reduced ovary length and fewer follicles in both species. The adult median survival time of both species was reduced by irradiation in a dose-dependent manner. However, sterilizing doses of 35 Gy and 50 Gy resulted in little reduction in survival times of males of Ae. albopictus and Ae. aegypti, respectively, indicating that these doses should be suitable for future evaluations of SIT-based control of these species. The results of the present study will be applied to studies of male sexual competitiveness and to stepwise evaluations of the sterile insect technique for population suppression of these vectors in Mexico.


Asunto(s)
Aedes/efectos de la radiación , Fertilidad/efectos de la radiación , Control de Mosquitos/métodos , Animales , Infertilidad , Insectos , Masculino , México , Mosquitos Vectores , Dosis de Radiación , Radiación Ionizante , Dosificación Radioterapéutica , Conducta Sexual Animal/efectos de la radiación , Esterilización Reproductiva/métodos
16.
Sci Total Environ ; 661: 553-562, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30682608

RESUMEN

Mobile phones can be found almost everywhere across the globe, upholding a direct point-to-point connection between the device and the broadcast tower. The emission of radiofrequency electromagnetic fields (RF-EMF) puts the surrounding environment inevitably into contact with this radiation. We have therefore exposed honey bee queen larvae to the radiation of a common mobile phone device (GSM band at 900 MHz) during all stages of their pre-adult development including pupation. After 14 days of exposure, hatching of adult queens was assessed and mating success after further 11 days, respectively. Moreover, full colonies were established of five of the untreated and four of the treated queens to contrast population dynamics. We found that mobile phone radiation had significantly reduced the hatching ratio but not the mating success. If treated queens had successfully mated, colony development was not adversely affected. We provide evidence that mobile phone radiation may alter pupal development, once succeeded this point, no further impairment has manifested in adulthood. Our results are discussed against the background of long-lasting consequences for colony performance and the possible implication on periodic colony losses.


Asunto(s)
Abejas/efectos de la radiación , Ondas de Radio/efectos adversos , Conducta Sexual Animal/efectos de la radiación , Animales , Abejas/crecimiento & desarrollo , Abejas/fisiología , Teléfono Celular , Larva/crecimiento & desarrollo , Larva/fisiología , Larva/efectos de la radiación , Reproducción/efectos de la radiación
17.
Animal ; 13(8): 1658-1665, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30621806

RESUMEN

The exposure of adult, female, Mediterranean goats during anoestrus to males with induced sexual activity via photostimulation, induces a very high percentage of ovulations. The present work examines the ability of photostimulated bucks to improve the male effect-induced reproductive response of young does over that induced by non-stimulated bucks. A 2×2 factorial experiment was designed, consisting of doe age and buck photoperiod treatments. During seasonal anoestrus, 41 does aged 7 (n=19) or 10 (n=22) months were subjected to the male effect on 10 April; half of each group was exposed to males rendered sexually active by prior exposure to 3 months of long days (16 h of light/day) from 31 October (PHOTO bucks), and half to males maintained under the natural photoperiod (CONTROL bucks). Oestrous activity was recorded daily by direct visual observation of the marks left by male-worn marking harnesses over the 32 days following the bringing of the sexes together (introduction). Doe body weight and body condition were determined weekly. Ovulation was detected by measuring plasma progesterone concentrations twice per week over the 3 weeks after introduction. The ovulation rate was assessed by transrectal ultrasonography. Fecundity, fertility, prolificacy and productivity were also determined. The interaction doe age × buck photoperiod treatment had no effect on any outcome. The percentage of females showing ovulation or oestrus was higher in the does exposed to PHOTO bucks (85% v. 43% for those exposed to CONTROL bucks) they also showed higher fertility (75% v. 43%) and productivity (1.05±0.17 v. 0.57±0.16 kids born per doe serviced) (all P values at least P<0.05). The 10-month-old group showed higher percentage of females showing ovulation, oestrus, fertility and productivity than the 7-month-old does after the male effect (females showing ovulation: 82% v. 42%; showing oestrus: 73% v. 42%; fertility: 73% v. 42% and productivity: 1.09±0.17 v. 0.47±0.14 goat kids born per doe serviced; respectively, all P values at least P<0.05). The present results show that the use of photostimulated males improves the reproductive performance of 7- and 10-month-old does, and may contribute towards increasing their productivity and lifetime reproductive performance.


Asunto(s)
Cabras/fisiología , Ovulación/fisiología , Fotoperiodo , Estaciones del Año , Conducta Sexual Animal/efectos de la radiación , Animales , Peso Corporal , Estro , Femenino , Fertilidad , Masculino , Progesterona/sangre , Reproducción/fisiología , Conducta Sexual Animal/fisiología
18.
J Econ Entomol ; 112(1): 156-163, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30321388

RESUMEN

Azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), is a field-to-storage pest of legumes and its females produce sex pheromone components with two isomers: (2Z,6E)-7-ethyl-3,11-dimethyl-2,6,10-dodecatrienal (2Z-homofarnesal) and (2E,6E)-7-ethyl-3,11-dimethyl-2,6,10-dodecatrienal (2E-homofarnesal). Two-day-old virgin adults were treated with different doses (0, 200, 300, 400, 500, and 600 Gy) of gamma radiation and the effects on adult survivorship, fecundity, sterility, and pheromone production were studied. The longevity of both sexes and female fecundity were dose dependently affected by the gamma irradiation revealing that the fecundity was more reduced when the female adults were irradiated. Adults of both sexes were totally sterilized by the doses of gamma radiation tested in this study as depicted by the null hatchability of the laid eggs. The results from analyses by gas chromatography-mass spectrometry for solid phase micro-extraction revealed that both of the female sex pheromone components were significantly reduced by 300 Gy. Though significantly less, there was release of some amount of pheromone components by the irradiated female azuki bean beetles revealing the possibility of pheromonal attraction of males to the irradiated females. It is a pre-requisite for the successful sterile insect technology that the sterility of azuki bean beetle is induced without the total disruption of the calling behavior.


Asunto(s)
Escarabajos/efectos de la radiación , Atractivos Sexuales/metabolismo , Animales , Escarabajos/metabolismo , Femenino , Fertilidad/efectos de la radiación , Rayos gamma , Longevidad , Masculino , Conducta Sexual Animal/efectos de la radiación
19.
Parasit Vectors ; 11(1): 641, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558681

RESUMEN

BACKGROUND: The sterile insect technique (SIT) aims at suppressing or decreasing insect pest populations by introducing sterile insects into wild populations. SIT requires the mass-production of insects and their sterilization through, for example, radiation. However, both mass-rearing and radiation can affect the life history traits of insects making them less competitive than their wild counterparts. In the malaria mosquito Anopheles arabiensis, some progress has been made to improve the mating competitiveness of mass-reared irradiated males. However, to date, no study has explored the relative effects of colonization and irradiation on important reproductive traits in this species. Such data may help to focus research efforts more precisely to improve current techniques. METHODS: Two strains of An. arabiensis originating from the same locality were used: one reared in the laboratory for five generations and the second collected as late larval instars in the field prior to experimentation. Pupae were irradiated with 95 Gy and some adult reproductive traits, including insemination rate, fecundity, oviposition behavior, fertility and male survivorship, were assessed in different mating combinations. RESULTS: Our study revealed the different effects of mosquito strain and irradiation on reproductive processes. The insemination rate was higher in field (67.3%) than in laboratory (54.9%) females and was negatively affected by both female and male irradiation (un-irradiated vs irradiated: 70.2 vs 51.3% in females; 67.7 vs 53.7% in males). Irradiated females did not produce eggs and egg prevalence was lower in the field strain (75.4%) than in the laboratory strain (83.9%). The hatching rate was higher in the field strain (88.7%) than in the laboratory strain (70.6%) as well as in un-irradiated mosquitoes (96.5%) than in irradiated ones (49%). Larval viability was higher in the field strain (96.2%) than in the laboratory strain (78.5%) and in un-irradiated mosquitoes (97.6%) than irradiated ones (52%). Finally, field males lived longer than laboratory males (25.1 vs 20.5 days, respectively). CONCLUSIONS: Our results revealed that both irradiation and colonization alter reproductive traits. However, different developmental stages are not equally affected. It is necessary to consider as many fitness traits as possible to evaluate the efficacy of the sterile insect technique.


Asunto(s)
Anopheles/fisiología , Anopheles/efectos de la radiación , Control de Mosquitos/métodos , Animales , Femenino , Masculino , Mosquitos Vectores/fisiología , Mosquitos Vectores/efectos de la radiación , Oviposición/efectos de la radiación , Pupa/fisiología , Pupa/efectos de la radiación , Radiación , Reproducción/efectos de la radiación , Conducta Sexual Animal/efectos de la radiación
20.
BMC Microbiol ; 18(Suppl 1): 145, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470188

RESUMEN

BACKGROUND: Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host's nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography - mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies. RESULTS: All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays. CONCLUSIONS: While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.


Asunto(s)
Antibacterianos/farmacología , Hidrocarburos/análisis , Proteínas de Insectos/química , Microbiota/efectos de los fármacos , Conducta Sexual Animal , Moscas Tse-Tse/fisiología , Ampicilina/farmacología , Animales , Femenino , Proteínas de Insectos/efectos de la radiación , Masculino , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/efectos de la radiación , Simbiosis/efectos de los fármacos , Tetraciclina/farmacología , Moscas Tse-Tse/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...