Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
J Nanobiotechnology ; 22(1): 191, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637832

RESUMEN

BACKGROUND: Exosomes assume a pivotal role as essential mediators of intercellular communication within tumor microenvironments. Within this context, long noncoding RNAs (LncRNAs) have been observed to be preferentially sorted into exosomes, thus exerting regulatory control over the initiation and progression of cancer through diverse mechanisms. RESULTS: Exosomes were successfully isolated from cholangiocarcinoma (CCA) CTCs organoid and healthy human serum. Notably, the LncRNA titin-antisense RNA1 (TTN-AS1) exhibited a conspicuous up-regulation within CCA CTCs organoid derived exosomes. Furthermore, a significant elevation of TTN-AS1 expression was observed in tumor tissues, as well as in blood and serum exosomes from patients afflicted with CCA. Importantly, this hightened TTN-AS1 expression in serum exosomes of CCA patients manifested a strong correlation with both lymph node metastasis and TNM staging. Remarkably, both CCA CTCs organoid-derived exosomes and CCA cells-derived exosomes featuring pronounced TTN-AS1 expression demonstrated the capability to the proliferation and migratory potential of CCA cells. Validation of these outcomes was conducted in vivo experiments. CONCLUSIONS: In conclusion, our study elucidating that CCA CTCs-derived exosomes possess the capacity to bolster the metastasis tendencies of CCA cells by transporting TTN-AS1. These observations underscore the potential of TTN-AS1 within CTCs-derived exosomes to serve as a promising biomarker for the diagnosis and therapeutic management of CCA.


Asunto(s)
Colangiocarcinoma , Exosomas , MicroARNs , Células Neoplásicas Circulantes , ARN Bacteriano , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exosomas/metabolismo , Conectina/genética , Conectina/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Proliferación Celular , Movimiento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
2.
J Am Coll Cardiol ; 83(17): 1640-1651, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38658103

RESUMEN

BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.


Asunto(s)
Cardiomiopatía Dilatada , Genotipo , Penetrancia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Conectina/genética , Electrocardiografía , Estudios de Seguimiento , España/epidemiología , Estudios Retrospectivos
3.
Sci Rep ; 14(1): 5313, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438525

RESUMEN

The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.


Asunto(s)
Cardiomiopatías , Humanos , Conectina/genética , Cardiomiopatías/genética , Intervención Educativa Precoz , Asesoramiento Genético , Pruebas Genéticas
4.
Neuromuscul Disord ; 37: 1-5, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430701

RESUMEN

This report describes a novel TTN -related phenotype in two brothers, both affected by a childhood onset, very slowly progressive myopathy with cores, associated with dilated cardiomyopathy only in their late disease stages. Clinical exome sequencing documented in both siblings the heterozygous c.2089A>T and c.19426+2T>A variants in TTN. The c.2089A>T, classified in ClinVar as possibly pathogenic, introduces a premature stop codon in exon 14, whereas the c.19426+2T>A affects TTN alternative splicing. The unfeasibility of segregation studies prevented us from establishing the inheritance mode of the muscle disease in this family, although the lack of any reported muscle or heart symptoms in both parents might support an autosomal recessive transmission. In this view, the occurrence of cardiomyopathy in both probands might be related to the c.2089A>T truncating variant in exon 14, and the childhood onset, slowly progressive myopathy to the c.19426+2T>A splicing variant, possibly allowing translation of an almost full length TTN protein.


Asunto(s)
Cardiomiopatía Dilatada , Enfermedades Musculares , Masculino , Humanos , Niño , Conectina/genética , Enfermedades Musculares/genética , Fenotipo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Codón sin Sentido , Mutación
6.
J Mol Cell Cardiol ; 190: 13-23, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462126

RESUMEN

Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.


Asunto(s)
Calcio , Proteínas Portadoras , Conectina , Contracción Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas Portadoras/metabolismo , Calcio/metabolismo , Sarcómeros/metabolismo , Modelos Cardiovasculares , Simulación por Computador , Animales , Corazón/fisiopatología , Corazón/fisiología
7.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429495

RESUMEN

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética
8.
PLoS One ; 19(2): e0296802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381767

RESUMEN

OBJECTIVE: To generate a mouse model carrying TTNtv Y4370* simulating the newly discovered human heterozygous nonsense TTNtv c.13254T>G (p.Tyr4418Ter) to supplement and improve the functional evidence of pathogenic mutation TTNtv c.13254T>G on the pathogenic type of dilated cardiomyopathy. METHODS: We generated 4 mice carrying TTNtv p. Y4370* through CRISPR/Cas-mediated genome engineering. Monthly serological detection, bimonthly echocardiography, and histology evaluation were carried out to observe and compare alterations of cardiac structure and function between 4 TTN+/- mice and 4 wild-type (WT) mice. RESULTS: For the two-month-old TTN+/- mice, serum glutamic-oxalacetic transaminase (AST), lactic dehydrogenase (LDH), and creatine kinase (CK) were significantly increased, the diastolic Left Ventricular Systolic Anterior Wall (LVAW), and the LV mass markedly rose, with the left ventricular volume displaying an increasing trend and Ejection Fraction (EF) and Fractional Shortening (FS) showing a decreasing trend. Besides, the histological evaluation showed that cardiac fibrosis level and positive rate of cardiac mast cell of TTN+/- mice were obviously increased compared with WT mice. CONCLUSIONS: TTNtv Y4370* could lead to cardiac structure and function alterations in mice, supplementing the evidence of TTNtv c.13254T>G pathogenicity in human.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Animales , Humanos , Lactante , Ratones , Cardiomiopatías/genética , Conectina/genética , Corazón , Mutación
9.
Skelet Muscle ; 14(1): 2, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229112

RESUMEN

BACKGROUND: Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome measures that may exhibit variability within and between participants, rendering their use as sole measures of drug efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacodynamic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome measures of efficacy in DMD. METHOD: Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Somalogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog plasma samples. RESULTS: Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensitive to lower levels of expressed microdystrophin when compared to CK. CONCLUSION: The measurement of objective PD biomarkers such as titin may provide additional confidence in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03368742.


Asunto(s)
Distrofia Muscular de Duchenne , Proteómica , Humanos , Ratones , Animales , Perros , Conectina/genética , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Biomarcadores , Creatina Quinasa , Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo
10.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226618

RESUMEN

Titin (TTN) is one of the largest and most complex proteins expressed in humans, and truncation variants are the most prevalent genetic lesion identified in individuals with dilated cardiomyopathy (DCM) or other disorders of impaired cardiac contractility. Two reports in this issue of the JCI shed light on a potential mechanism involving truncated TTN sarcomere integration and the potential for disruption of sarcomere structural integrity. Kellermayer, Tordai, and colleagues confirmed the presence of truncated TTN protein in human DCM samples. McAfee and authors developed a patient-specific TTN antibody to study truncated TTN subcellular localization and to explore its functional consequences. A "poison peptide" mechanism emerges that inspires alternative therapeutic approaches while opening new lines for inquiry, such as the role of haploinsufficiency of full-length TTN protein, mechanisms explaining sarcomere dysfunction, and explanations for variable penetrance.


Asunto(s)
Cardiomiopatía Dilatada , Sarcómeros , Humanos , Conectina/genética , Conectina/metabolismo , Sarcómeros/metabolismo , Cardiomiopatía Dilatada/metabolismo , Penetrancia , Mutación
11.
Circulation ; 149(16): 1285-1297, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38235591

RESUMEN

BACKGROUND: TTN truncation variants (TTNtvs) are the most common genetic lesion identified in individuals with dilated cardiomyopathy, a disease with high morbidity and mortality rates. TTNtvs reduce normal TTN (titin) protein levels, produce truncated proteins, and impair sarcomere content and function. Therapeutics targeting TTNtvs have been elusive because of the immense size of TTN, the rarity of specific TTNtvs, and incomplete knowledge of TTNtv pathogenicity. METHODS: We adapted CRISPR activation using dCas9-VPR to functionally interrogate TTNtv pathogenicity and develop a therapeutic in human cardiomyocytes and 3-dimensional cardiac microtissues engineered from induced pluripotent stem cell models harboring a dilated cardiomyopathy-associated TTNtv. We performed guide RNA screening with custom TTN reporter assays, agarose gel electrophoresis to quantify TTN protein levels and isoforms, and RNA sequencing to identify molecular consequences of TTN activation. Cardiomyocyte epigenetic assays were also used to nominate DNA regulatory elements to enable cardiomyocyte-specific TTN activation. RESULTS: CRISPR activation of TTN using single guide RNAs targeting either the TTN promoter or regulatory elements in spatial proximity to the TTN promoter through 3-dimensional chromatin interactions rescued TTN protein deficits disturbed by TTNtvs. Increasing TTN protein levels normalized sarcomere content and contractile function despite increasing truncated TTN protein. In addition to TTN transcripts, CRISPR activation also increased levels of myofibril assembly-related and sarcomere-related transcripts. CONCLUSIONS: TTN CRISPR activation rescued TTNtv-related functional deficits despite increasing truncated TTN levels, which provides evidence to support haploinsufficiency as a relevant genetic mechanism underlying heterozygous TTNtvs. CRISPR activation could be developed as a therapeutic to treat a large proportion of TTNtvs.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/terapia , Cardiomiopatía Dilatada/patología , Conectina/genética , Haploinsuficiencia/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ARN Guía de Sistemas CRISPR-Cas , Miocitos Cardíacos/metabolismo
12.
Leg Med (Tokyo) ; 68: 102380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38237273

RESUMEN

The diagnosis of cardiomyopathy often relies on the subjective judgment of pathologists due to the variety of morphologic changes in the condition and its low specificity. This uncertainty can contribute to unexplained sudden cardiac deaths (USCD). To enhance the accuracy of hereditary cardiomyopathy diagnosis in forensic medicine, we proposed a combination of molecular autopsy and pathologic autopsy. By analyzing 16 deceased patients suspected of cardiomyopathy, using whole exome sequencing (WES) in molecular autopsy, and applying a combined diagnostic strategy, the study found pathogenic or likely pathogenic variants in 6 cases. Out of the 16 cases, cardiomyopathy was confirmed in 3, while 3 exhibited conditions consistent with it. Data for 4 cases was inconclusive, and cardiomyopathy was ruled out in 6. Notably, a novel variant of the TTN gene was identified. This research suggests that a grading diagnostic strategy, combining molecular and pathological evidence, can improve the accuracy of forensic cardiomyopathy diagnosis. This approach provides a practical model and strategy for precise forensic cause-of-death determination, addressing the limitations of relying solely on morphologic assessments in cardiomyopathy cases, and integrating genetic information for a more comprehensive diagnosis.


Asunto(s)
Autopsia , Cardiomiopatías , Humanos , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/diagnóstico , Autopsia/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Patologia Forense/métodos , Secuenciación del Exoma , Conectina/genética , Muerte Súbita Cardíaca/patología , Anciano , Medicina Legal/métodos , Adulto Joven , Causas de Muerte
13.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962957

RESUMEN

Heterozygous (HET) truncating variant mutations in the TTN gene (TTNtvs), encoding the giant titin protein, are the most common genetic cause of dilated cardiomyopathy (DCM). However, the molecular mechanisms by which TTNtv mutations induce DCM are controversial. Here, we studied 127 clinically identified DCM human cardiac samples with next-generation sequencing (NGS), high-resolution gel electrophoresis, Western blot analysis, and super-resolution microscopy in order to dissect the structural and functional consequences of TTNtv mutations. The occurrence of TTNtv was found to be 15% in the DCM cohort. Truncated titin proteins matching, by molecular weight, the gene sequence predictions were detected in the majority of the TTNtv+ samples. Full-length titin was reduced in TTNtv+ compared with TTNtv- samples. Proteomics analysis of washed myofibrils and stimulated emission depletion (STED) super-resolution microscopy of myocardial sarcomeres labeled with sequence-specific anti-titin antibodies revealed that truncated titin was structurally integrated into the sarcomere. Sarcomere length-dependent anti-titin epitope position, shape, and intensity analyses pointed at possible structural defects in the I/A junction and the M-band of TTNtv+ sarcomeres, which probably contribute, possibly via faulty mechanosensor function, to the development of manifest DCM.


Asunto(s)
Cardiomiopatía Dilatada , Conectina , Humanos , Cardiomiopatía Dilatada/genética , Conectina/genética , Conectina/metabolismo , Corazón , Sarcómeros/genética , Sarcómeros/metabolismo
15.
J Card Fail ; 30(1): 51-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37230314

RESUMEN

BACKGROUND: Truncating variants in titin (TTNtv) are the most prevalent genetic etiology of dilated cardiomyopathy (DCM). Although TTNtv has been associated with atrial fibrillation, it remains unknown whether and how left atrial (LA) function differs between patients with DCM with and without TTNtv. We aimed to determine and compare LA function in patients with DCM with and without TTNtv and to evaluate whether and how left ventricular (LV) function affects the LA using computational modeling. METHODS AND RESULTS: Patients with DCM from the Maastricht DCM registry that underwent genetic testing and cardiovascular magnetic resonance (CMR) were included in the current study. Subsequent computational modeling (CircAdapt model) was performed to identify potential LV and LA myocardial hemodynamic substrates. In total, 377 patients with DCM (n = 42 with TTNtv, n = 335 without a genetic variant) were included (median age 55 years, interquartile range [IQR] 46-62 years, 62% men). Patients with TTNtv had a larger LA volume and decreased LA strain compared with patients without a genetic variant (LA volume index 60 mLm-2 [IQR 49-83] vs 51 mLm-2 [IQR 42-64]; LA reservoir strain 24% [IQR 10-29] vs 28% [IQR 20-34]; LA booster strain 9% [IQR 4-14] vs 14% [IQR 10-17], respectively; all P < .01). Computational modeling suggests that while the observed LV dysfunction partially explains the observed LA dysfunction in the patients with TTNtv, both intrinsic LV and LA dysfunction are present in patients with and without a TTNtv. CONCLUSIONS: Patients with DCM with TTNtv have more severe LA dysfunction compared with patients without a genetic variant. Insights from computational modeling suggest that both intrinsic LV and LA dysfunction are present in patients with DCM with and without TTNtv.


Asunto(s)
Fibrilación Atrial , Cardiomiopatías , Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibrilación Atrial/complicaciones , Función del Atrio Izquierdo , Cardiomiopatías/complicaciones , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/complicaciones , Conectina/genética , Atrios Cardíacos , Insuficiencia Cardíaca/complicaciones
16.
Pacing Clin Electrophysiol ; 47(2): 253-255, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37221934

RESUMEN

Heart block is rare in pediatrics with many possible causes. An association between complete heart block (CHB) and pathogenic titin (TTN) mutations have not been previously described. We report a 9-year-old female with history of leukodystrophy and family history of atrial fibrillation who presented with syncope and conduction abnormalities, including CHB. She underwent pacemaker implantation and genetic testing demonstrated a pathogenic TTN mutation likely responsible for her cardiac findings. Our case suggests an association between TTN mutations and conduction disease and emphasizes broadening gene testing in assessing these patients, especially when a family history is present.


Asunto(s)
Arritmias Cardíacas , Bloqueo Cardíaco , Humanos , Niño , Femenino , Conectina/genética , Trastorno del Sistema de Conducción Cardíaco , Mutación/genética
18.
J Med Genet ; 61(4): 356-362, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050027

RESUMEN

BACKGROUND: Pathogenic variants in TTN cause a spectrum of autosomal dominant and recessive cardiovascular, skeletal muscle and cardioskeletal disease with symptom onset across the lifespan. The aim of this study was to characterise the genotypes and phenotypes in a cohort of TTN+paediatric patients. METHODS: Retrospective chart review was performed at four academic medical centres. Patients with pathogenic or truncating variant(s) in TTN and paediatric-onset cardiovascular and/or neuromuscular disease were eligible. RESULTS: 31 patients from 29 families were included. Seventeen patients had skeletal muscle disease, often with proximal weakness and joint contractures, with average symptom onset of 2.2 years. Creatine kinase levels were normal or mildly elevated; electrodiagnostic studies (9/11) and muscle biopsies (11/11) were myopathic. Variants were most commonly identified in the A-band (14/32) or I-band (13/32). Most variants were predicted to be frameshift truncating, nonsense or splice-site (25/32). Seventeen patients had cardiovascular disease (14 isolated cardiovascular, three cardioskeletal) with average symptom onset of 12.9 years. Twelve had dilated cardiomyopathy (four undergoing heart transplant), two presented with ventricular fibrillation arrest, one had restrictive cardiomyopathy and two had other types of arrhythmias. Variants commonly localised to the A-band (8/15) or I-band (6/15) and were predominately frameshift truncating, nonsense or splice-site (14/15). CONCLUSION: Our cohort demonstrates the genotype-phenotype spectrum of paediatric-onset titinopathies identified in clinical practice and highlights the risk of life-threatening cardiovascular complications. We show the difficulties of obtaining a molecular diagnosis, particularly in neuromuscular patients, and bring awareness to the complexities of genetic counselling in this population.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Niño , Estudios Retrospectivos , Conectina/genética , Cardiomiopatía Dilatada/genética , Músculo Esquelético/patología , Fenotipo , Arritmias Cardíacas/patología
19.
JACC Heart Fail ; 12(4): 740-753, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37999665

RESUMEN

BACKGROUND: Genetic variants in titin (TTN) are associated with dilated cardiomyopathy (DCM) and skeletal myopathy. However, the skeletal muscle phenotype in individuals carrying heterozygous truncating TTN variants (TTNtv), the leading cause of DCM, is understudied. OBJECTIVES: This study aimed to assess the skeletal muscle phenotype associated with TTNtv. METHODS: Participants with TTNtv were included in a cross-sectional study. Skeletal muscle fat fraction was evaluated by magnetic resonance imaging (compared with healthy controls and controls with non-TTNtv DCM). Muscle strength was evaluated by dynamometry and muscle biopsy specimens were analyzed. RESULTS: Twenty-five TTNtv participants (11 women, mean age 51 ± 15 years, left ventricular ejection fraction 45% ± 10%) were included (19 had DCM). Compared to healthy controls (n = 25), fat fraction was higher in calf (12.5% vs 9.9%, P = 0.013), thigh (12.2% vs 9.3%, P = 0.004), and paraspinal muscles (18.8% vs 13.9%, P = 0.008) of TTNtv participants. Linear mixed effects modelling found higher fat fractions in TTNtv participants compared to healthy controls (2.5%; 95% CI: 1.4-3.7; P < 0.001) and controls with non-TTNtv genetic DCM (n = 7) (1.5%; 95% CI: 0.2-2.8; P = 0.025). Muscle strength was within 1 SD of normal values. Biopsy specimens from 21 participants found myopathic features in 13 (62%), including central nuclei. Electron microscopy showed well-ordered Z-lines and T-tubuli but uneven and discontinuous M-lines and excessive glycogen depositions flanked by autophagosomes, lysosomes, and abnormal mitochondria with mitophagy. CONCLUSIONS: Mild skeletal muscle involvement was prevalent in patients with TTNtv. The phenotype was characterized by an increased muscle fat fraction and excessive accumulation of glycogen, possibly due to reduced autophagic flux. These findings indicate an impact of TTNtv beyond the heart.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Conectina/genética , Estudios Transversales , Glucógeno , Insuficiencia Cardíaca/genética , Músculo Esquelético/diagnóstico por imagen , Volumen Sistólico , Función Ventricular Izquierda
20.
J Med Genet ; 61(4): 369-377, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-37935568

RESUMEN

BACKGROUND: Titinopathies are caused by mutations in the titin gene (TTN). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission. Until now, only few CNVs in TTN have been reported without clear genotype-phenotype associations. METHODS: Our study includes eight families with dominant titinopathies. We performed next-generation sequencing or comparative genomic hybridisation array analyses and found CNVs in the TTN gene. We characterised these CNVs by RNA sequencing (RNAseq) analyses in six patients' muscles and performed genotype-phenotype inheritance association study by combining the clinical and biological data of these eight families. RESULTS: Seven deletion-type CNVs in the TTN gene were identified among these families. Genotype and RNAseq results showed that five deletions do not alter the reading frame and one is out-of-reading frame. The main phenotype identified was distal myopathy associated with contractures. The analysis of morphological, clinical and genetic data and imaging let us draw new genotype-phenotype associations of titinopathies. CONCLUSION: Identifying TTN CNVs will further increase diagnostic sensitivity in these complex neuromuscular pathologies. Our cohort of patients enabled us to identify new deletion-type CNVs in the TTN gene, with unexpected autosomal dominant transmission. This is valuable in establishing new genotype-phenotype associations of titinopathies, mainly distal myopathy in most of the patients.


Asunto(s)
Miopatías Distales , Humanos , Conectina/genética , Miopatías Distales/genética , Variaciones en el Número de Copia de ADN/genética , Músculo Esquelético/patología , Mutación/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...