Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 584(7822): 646-651, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32494015

RESUMEN

Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation1, apoptotic cell clearance2 and human oocyte development3. Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angström, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


Asunto(s)
Conexinas/química , Conexinas/metabolismo , Microscopía por Crioelectrón , Activación del Canal Iónico , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Adenosina Trifosfato/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Apoptosis , Sitios de Unión/efectos de los fármacos , Carbenoxolona/química , Carbenoxolona/metabolismo , Carbenoxolona/farmacología , Caspasa 7/metabolismo , Línea Celular , Conexinas/ultraestructura , Uniones Comunicantes , Glicosilación , Humanos , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Sf9
2.
Nat Struct Mol Biol ; 27(4): 373-381, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231289

RESUMEN

The plasma membrane adenosine triphosphate (ATP) release channel pannexin 1 (PANX1) has been implicated in many physiological and pathophysiological processes associated with purinergic signaling, including cancer progression, apoptotic cell clearance, inflammation, blood pressure regulation, oocyte development, epilepsy and neuropathic pain. Here we present near-atomic-resolution structures of human and frog PANX1 determined by cryo-electron microscopy that revealed a heptameric channel architecture. Compatible with ATP permeation, the transmembrane pore and cytoplasmic vestibule were exceptionally wide. An extracellular tryptophan ring located at the outer pore created a constriction site, potentially functioning as a molecular sieve that restricts the size of permeable substrates. The amino and carboxyl termini, not resolved in the density map, appeared to be structurally dynamic and might contribute to narrowing of the pore during channel gating. In combination with functional characterization, this work elucidates the previously unknown architecture of pannexin channels and establishes a foundation for understanding their unique channel properties.


Asunto(s)
Adenosina Trifosfato/química , Membrana Celular/ultraestructura , Conexinas/ultraestructura , Microscopía por Crioelectrón , Proteínas del Tejido Nervioso/ultraestructura , Adenosina Trifosfato/genética , Animales , Anuros/genética , Membrana Celular/química , Membrana Celular/genética , Conexinas/química , Conexinas/genética , Humanos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Conformación Proteica , Transducción de Señal/genética
3.
Elife ; 92020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32048993

RESUMEN

Pannexins are large-pore forming channels responsible for ATP release under a variety of physiological and pathological conditions. Although predicted to share similar membrane topology with other large-pore forming proteins such as connexins, innexins, and LRRC8, pannexins have minimal sequence similarity to these protein families. Here, we present the cryo-EM structure of a frog pannexin 1 (Panx1) channel at 3.0 Å. We find that Panx1 protomers harbor four transmembrane helices similar in arrangement to other large-pore forming proteins but assemble as a heptameric channel with a unique constriction formed by Trp74 in the first extracellular loop. Mutating Trp74 or the nearby Arg75 disrupt ion selectivity, whereas altering residues in the hydrophobic groove formed by the two extracellular loops abrogates channel inhibition by carbenoxolone. Our structural and functional study establishes the extracellular loops as important structural motifs for ion selectivity and channel inhibition in Panx1.


Asunto(s)
Conexinas/ultraestructura , Proteínas de Xenopus/ultraestructura , Secuencia de Aminoácidos , Animales , Carbenoxolona/farmacología , Conexinas/antagonistas & inhibidores , Conexinas/química , Conexinas/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
Sci Adv ; 6(7): eaax3157, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32095518

RESUMEN

Gap junctions form intercellular conduits with a large pore size whose closed and open states regulate communication between adjacent cells. The structural basis of the mechanism by which gap junctions close, however, remains uncertain. Here, we show the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction proteins in an undocked hemichannel form. In the nanodisc-reconstituted structure of the wild-type INX-6 hemichannel, flat double-layer densities obstruct the channel pore. Comparison of the hemichannel structures of a wild-type INX-6 in detergent and nanodisc-reconstituted amino-terminal deletion mutant reveals that lipid-mediated amino-terminal rearrangement and pore obstruction occur upon nanodisc reconstitution. Together with molecular dynamics simulations and electrophysiology functional assays, our results provide insight into the closure of the INX-6 hemichannel in a lipid bilayer before docking of two hemichannels.


Asunto(s)
Proteínas de Caenorhabditis elegans/ultraestructura , Caenorhabditis elegans/metabolismo , Conexinas/ultraestructura , Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Fosfolípidos/química , Animales , Proteínas de Caenorhabditis elegans/química , Conexinas/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Nanopartículas/química , Oocitos/metabolismo , Xenopus/metabolismo
5.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383853

RESUMEN

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Asunto(s)
Conexina 43/metabolismo , Conexinas/metabolismo , Activación del Canal Iónico , Miocardio/metabolismo , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Conexina 43/ultraestructura , Conexinas/ultraestructura , Susceptibilidad a Enfermedades , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/ultraestructura
6.
Nature ; 564(7736): 372-377, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30542154

RESUMEN

Gap junctions establish direct pathways for cell-to-cell communication through the assembly of twelve connexin subunits that form intercellular channels connecting neighbouring cells. Co-assembly of different connexin isoforms produces channels with unique properties and enables communication across cell types. Here we used single-particle cryo-electron microscopy to investigate the structural basis of connexin co-assembly in native lens gap junction channels composed of connexin 46 and connexin 50 (Cx46/50). We provide the first comparative analysis to connexin 26 (Cx26), which-together with computational studies-elucidates key energetic features governing gap junction permselectivity. Cx46/50 adopts an open-state conformation that is distinct from the Cx26 crystal structure, yet it appears to be stabilized by a conserved set of hydrophobic anchoring residues. 'Hot spots' of genetic mutations linked to hereditary cataract formation map to the core structural-functional elements identified in Cx46/50, suggesting explanations for many of the disease-causing effects.


Asunto(s)
Conexinas/química , Conexinas/ultraestructura , Microscopía por Crioelectrón , Cristalino/citología , Cristalino/ultraestructura , Secuencia de Aminoácidos , Catarata/congénito , Catarata/genética , Conexina 26/química , Conexinas/genética , Uniones Comunicantes/química , Uniones Comunicantes/genética , Uniones Comunicantes/ultraestructura , Humanos , Cristalino/química , Modelos Moleculares , Mutación
7.
Microscopy (Oxf) ; 66(6): 371-379, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036409

RESUMEN

Gap junction channels are essential for mediating intercellular communication in most multicellular organisms. Two gene families encode gap junction channels, innexin and connexin. Although the sequence similarity between these two families based on bioinformatics is not conclusively determined, the gap junction channels encoded by these two gene families are structurally and functionally analogous. We recently reported an atomic structure of an invertebrate innexin gap junction channel using single-particle cryo-electron microscopy. Our findings revealed that connexin and innexin families share several structural properties with regard to their monomeric and oligomeric structures, while simultaneously suggesting a diversity of gap junction channels in nature. This review summarizes cutting-edge progress toward determining an innexin gap junction channel structure, as well as essential tips for preparing cryo-electron microscopy samples for high-resolution structural analysis of an innexin gap junction channel.


Asunto(s)
Conexinas/ultraestructura , Microscopía por Crioelectrón/métodos , Uniones Comunicantes/ultraestructura , Manejo de Especímenes/métodos , Animales , Transporte Biológico , Comunicación Celular , Conexinas/química , Uniones Comunicantes/química , Manejo de Especímenes/instrumentación
8.
Nat Commun ; 8: 14324, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134257

RESUMEN

Pannexin 1 (PANX1) subunits form oligomeric plasma membrane channels that mediate nucleotide release for purinergic signalling, which is involved in diverse physiological processes such as apoptosis, inflammation, blood pressure regulation, and cancer progression and metastasis. Here we explore the mechanistic basis for PANX1 activation by using wild type and engineered concatemeric channels. We find that PANX1 activation involves sequential stepwise sojourns through multiple discrete open states, each with unique channel gating and conductance properties that reflect contributions of the individual subunits of the hexamer. Progressive PANX1 channel opening is directly linked to permeation of ions and large molecules (ATP and fluorescent dyes) and occurs during both irreversible (caspase cleavage-mediated) and reversible (α1 adrenoceptor-mediated) forms of channel activation. This unique, quantized activation process enables fine tuning of PANX1 channel activity and may be a generalized regulatory mechanism for other related multimeric channels.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/metabolismo , Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Multimerización de Proteína/fisiología , Adenosina Trifosfato/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Carbenoxolona/farmacología , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Conexinas/antagonistas & inhibidores , Conexinas/ultraestructura , Colorantes Fluorescentes/farmacocinética , Fluoroquinolonas/farmacología , Células HEK293 , Humanos , Iones/metabolismo , Células Jurkat , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microscopía Electrónica , Naftiridinas/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/ultraestructura , Técnicas de Placa-Clamp , Quinolinas/farmacología , Receptores Adrenérgicos alfa 1/metabolismo
9.
Nat Commun ; 7: 13681, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905396

RESUMEN

Innexins, a large protein family comprising invertebrate gap junction channels, play an essential role in nervous system development and electrical synapse formation. Here we report the cryo-electron microscopy structures of Caenorhabditis elegans innexin-6 (INX-6) gap junction channels at atomic resolution. We find that the arrangements of the transmembrane helices and extracellular loops of the INX-6 monomeric structure are highly similar to those of connexin-26 (Cx26), despite the lack of significant sequence similarity. The INX-6 gap junction channel comprises hexadecameric subunits but reveals the N-terminal pore funnel, consistent with Cx26. The helix-rich cytoplasmic loop and C-terminus are intercalated one-by-one through an octameric hemichannel, forming a dome-like entrance that interacts with N-terminal loops in the pore. These observations suggest that the INX-6 cytoplasmic domains are cooperatively associated with the N-terminal funnel conformation, and an essential linkage of the N-terminal with channel activity is presumably preserved across gap junction families.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestructura , Caenorhabditis elegans/metabolismo , Conexinas/metabolismo , Conexinas/ultraestructura , Microscopía por Crioelectrón , Uniones Comunicantes/metabolismo , Uniones Comunicantes/ultraestructura , Animales , Proteínas de Caenorhabditis elegans/química , Conexinas/química , Modelos Moleculares , Dominios Proteicos , Homología Estructural de Proteína
10.
Ann Rheum Dis ; 74(1): 275-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24225059

RESUMEN

OBJECTIVE: This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. METHODS: Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. RESULTS: Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and ß-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. CONCLUSIONS: This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue.


Asunto(s)
Cartílago Articular/metabolismo , Comunicación Celular , Condrocitos/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Aminoácidos Esenciales/metabolismo , Animales , Cartílago Articular/ultraestructura , Condrocitos/ultraestructura , Conexinas/ultraestructura , Uniones Comunicantes/ultraestructura , Glucosa/metabolismo , Homeostasis , Humanos , Inmunohistoquímica , Inmunoprecipitación , Articulación de la Rodilla , Microscopía Electrónica de Rastreo , Porcinos
11.
Cell Commun Adhes ; 20(1-2): 11-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23469928

RESUMEN

Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.


Asunto(s)
Membrana Celular/ultraestructura , Conexinas/química , Uniones Comunicantes/ultraestructura , Animales , Comunicación Celular , Membrana Celular/metabolismo , Conexinas/metabolismo , Conexinas/ultraestructura , Cristalografía por Rayos X/historia , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Uniones Comunicantes/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Microscopía Electrónica/historia , Modelos Moleculares , Difracción de Rayos X/historia
12.
J Gen Physiol ; 141(2): 243-59, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23319727

RESUMEN

Voltage is an important parameter that regulates the open probability of both intercellular channels (gap junctions) and undocked hemichannels formed by members of the connexin gene family. All connexin channels display two distinct voltage-gating processes, termed loop- or slow-gating and V(j)- or fast-gating, which are intrinsic hemichannel properties. Previous studies have established that the loop-gate permeability barrier is formed by a large conformational change that reduces pore diameter in a region of the channel pore located at the border of the first transmembrane domain and first extracellular loop (TM1/E1), the parahelix (residues 42-51). Here, we use cadmium metal bridge formation to measure conformational changes reported by substituted cysteines at loci demarcating the intracellular (E109 and L108) and extracellular (Q56) entrance of hemichannels formed by the Cx32 chimera (Cx32*43E1). The results indicate that the intracellular pore entrance narrows from ∼15 Što ∼10 Šwith loop-gate but not apparently with V(j)-gate closure. The extracellular entrance does not appear to undergo large conformational changes with either voltage-gating process. The results presented here combined with previous studies suggest that the loop-gate permeability is essentially focal, in that conformational changes in the parahelix but not the intracellular entrance are sufficient to prevent ion flux.


Asunto(s)
Conexinas/química , Conexinas/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Oocitos/química , Oocitos/fisiología , Animales , Células Cultivadas , Conexinas/ultraestructura , Conformación Proteica , Xenopus laevis , Proteína beta1 de Unión Comunicante
13.
J Membr Biol ; 245(5-6): 333-44, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22760604

RESUMEN

Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.


Asunto(s)
Conexinas/metabolismo , Técnica de Fractura por Congelación/métodos , Uniones Comunicantes/metabolismo , Inmunohistoquímica/métodos , Animales , Astrocitos/metabolismo , Astrocitos/ultraestructura , Conexinas/ultraestructura , Uniones Comunicantes/ultraestructura , Humanos , Neuronas/metabolismo , Neuronas/ultraestructura , Oligodendroglía/metabolismo , Oligodendroglía/ultraestructura
14.
Biol Reprod ; 86(5): 153, 1-14, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22321830

RESUMEN

In the ovary, initiation of follicle growth is marked by cuboidalization of flattened granulosa cells (GCs). The regulation and cell biology of this shape change remains poorly understood. We propose that characterization of intercellular junctions and associated proteins is key to identifying as yet unknown regulators of this important transition. As GCs are conventionally described as epithelial cells, this study used mouse ovaries and isolated follicles to investigate epithelial junctional complexes (tight junctions [TJ], adherens junctions [AJ], and desmosomes) and associated molecules, as well as classic epithelial markers, by quantitative PCR and immunofluorescence. These junctions were further characterized using ultrastructural, calcium depletion and biotin tracer studies. Junctions observed by transmission electron microscopy between GCs and between GCs and oocyte were identified as AJs by expression of N-cadherin and nectin 2 and by the lack of TJ and desmosome-associated proteins. Follicles were also permeable to biotin, confirming a lack of functional TJs. Surprisingly, GCs lacked all epithelial markers analyzed, including E-cadherin, cytokeratin 8, and zonula occludens (ZO)-1alpha+. Furthermore, vimentin was expressed by GCs, suggesting a more mesenchymal phenotype. Under calcium-free conditions, small follicles maintained oocyte-GC contact, confirming the importance of calcium-independent nectin at this stage. However, in primary and multilayered follicles, lack of calcium resulted in loss of contact between GCs and oocyte, showing that nectin alone cannot maintain attachment between these two cell types. Lack of classic markers suggests that GCs are not epithelial. Identification of AJs during GC cuboidalization highlights the importance of AJs in regulating initiation of follicle growth.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Conexinas/fisiología , Folículo Ovárico/fisiología , Uniones Adherentes/fisiología , Uniones Adherentes/ultraestructura , Animales , Calcio/fisiología , Moléculas de Adhesión Celular/ultraestructura , Conexinas/ultraestructura , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Femenino , Uniones Comunicantes/fisiología , Uniones Comunicantes/ultraestructura , Ratones , Folículo Ovárico/ultraestructura , Uniones Estrechas/fisiología , Uniones Estrechas/ultraestructura
15.
J Neurosci ; 29(16): 5207-17, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19386917

RESUMEN

In a genetic screen for active zone defective mutants in Caenorhabditis elegans, we isolated a loss-of-function allele of unc-7, a gene encoding an innexin/pannexin family gap junction protein. Innexin UNC-7 regulates the size and distribution of active zones at C. elegans neuromuscular junctions. Loss-of-function mutations in another innexin, UNC-9, cause similar active zone defects as unc-7 mutants. In addition to presumptive gap junction localizations, both UNC-7 and UNC-9 are also localized perisynaptically throughout development and required in presynaptic neurons to regulate active zone differentiation. Our mosaic analyses, electron microscopy, as well as expression studies suggest a novel and likely nonjunctional role of specific innexins in active zone differentiation in addition to gap junction formations.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Diferenciación Celular/fisiología , Proteínas de la Membrana/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/ultraestructura , Diferenciación Celular/genética , Conexinas/genética , Conexinas/fisiología , Conexinas/ultraestructura , Uniones Comunicantes/genética , Uniones Comunicantes/fisiología , Uniones Comunicantes/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Organismos Modificados Genéticamente , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura
16.
J Clin Invest ; 118(8): 2758-70, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18636119

RESUMEN

The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein that belongs to the family of adhesion molecules. In the postnatal heart, it is localized predominantly at the intercalated disc, where its function is not known. Here, we demonstrate that a first degree or complete block of atrioventricular (AV) conduction developed in the absence of CAR in the adult mouse heart and that prolongation of AV conduction occurred in the embryonic heart of the global CAR-KO mouse. In the cardiac-specific CAR-KO (CAR-cKO) mouse, we observed the loss of connexin 45 localization to the cell-cell junctions of the AV node but preservation of connexin 40 and 43 in contracting myocardial cells and connexin 30.2 in the AV node. There was also a marked decrease in beta-catenin and zonula occludens-1 (ZO-1) localization to the intercalated discs of CAR-cKO mouse hearts at 8 weeks before the mice developed cardiomyopathy at 21 weeks of age. We also found that CAR formed a complex with connexin 45 via its PSD-95/DigA/ZO-1-binding (PDZ-binding) motifs. We conclude that CAR expression is required for normal AV-node conduction and cardiac function. Furthermore, localization of connexin 45 at the AV-node cell-cell junction and of beta-catenin and ZO-1 at the ventricular intercalated disc are dependent on CAR.


Asunto(s)
Nodo Atrioventricular/metabolismo , Conexinas/metabolismo , Corazón , Miocardio/metabolismo , Receptores Virales/metabolismo , Animales , Conexinas/ultraestructura , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Electrocardiografía , Embrión de Mamíferos , Técnica del Anticuerpo Fluorescente Directa , Células HeLa , Ventrículos Cardíacos/ultraestructura , Humanos , Ratones , Ratones Noqueados , Miocardio/ultraestructura , Receptores Virales/ultraestructura , Telemetría
17.
Curr Opin Cell Biol ; 19(5): 521-8, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17945477

RESUMEN

Gap junction channels connect the cytoplasms of adjacent cells through the end-to-end docking of single-membrane structures called connexons, formed by a ring of six connexin monomers. Each monomer contains four transmembrane alpha-helices, for a total of 24 alpha-helices in a connexon. The fundamental structure of the connexon pore is probably similar in unpaired connexons and junctional channels, and for channels formed by different connexin isoforms. Nevertheless, variability in results from structurally focused mutagenesis and electrophysiological studies raise uncertainty about the specific assignments of the transmembrane helices. Mapping of human mutations onto a suggested C(alpha) model predicts that mutations that disrupt helix-helix packing impair channel function. An experimentally determined structure at atomic resolution will be essential to confirm and resolve these concepts.


Asunto(s)
Conexinas/ultraestructura , Uniones Comunicantes/ultraestructura , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Comunicación Celular/fisiología , Conexinas/genética , Conexinas/metabolismo , Microscopía por Crioelectrón , Uniones Comunicantes/metabolismo , Humanos , Modelos Moleculares , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
18.
J Biol Chem ; 282(43): 31733-43, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17715132

RESUMEN

Pannexins are newly discovered channel proteins expressed in many different tissues and abundantly in the vertebrate central nervous system. Based on membrane topology, folding and secondary structure prediction, pannexins are proposed to form gap junction-like structures. We show here that Pannexin1 forms a hexameric channel and reaches the cell surface but, unlike connexins, is N-glycosylated. Using site-directed mutagenesis we analyzed three putative N-linked glycosylation sites and examined the effects of each mutation on channel expression. We show for the first time that Pannexin1 is glycosylated at Asn-254 and that this residue is important for plasma membrane targeting. The glycosylation of Pannexin1 at its extracellular surface makes it unlikely that two oligomers could dock to form an intercellular channel. Ultrastructural analysis by electron microscopy confirmed that Pannexin1 junctional areas do not appear as canonical gap junctions. Rather, Pannexin1 channels are distributed throughout the plasma membrane. We propose that N-glycosylation of Pannexin1 could be a significant mechanism for regulating the trafficking of these membrane proteins to the cell surface in different tissues.


Asunto(s)
Membrana Celular/metabolismo , Conexinas/química , Conexinas/metabolismo , Canales Iónicos/ultraestructura , Asparagina/metabolismo , Biotinilación , Línea Celular , Membrana Celular/ultraestructura , Conexinas/genética , Conexinas/ultraestructura , Reactivos de Enlaces Cruzados/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Glicosilación , Humanos , Inmunohistoquímica , Riñón/citología , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Succinimidas/farmacología
19.
Proc Natl Acad Sci U S A ; 104(24): 10034-9, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17551008

RESUMEN

Connexin molecules form intercellular membrane channels facilitating electronic coupling and the passage of small molecules between adjoining cells. Connexin26 (Cx26) is the second smallest member of the gap junction protein family, and mutations in Cx26 cause certain hereditary human diseases such as skin disorders and hearing loss. Here, we report the electron crystallographic structure of a human Cx26 mutant (M34A). Although crystallization trials used hemichannel preparations, the density map revealed that two hemichannels redocked at their extracellular surfaces into full intercellular channels. These orthorhombic crystals contained two sets of symmetry-related intercellular channels within three lipid bilayers. The 3D map shows a prominent density in the pore of each hemichannel. This density contacts the innermost helices of the surrounding connexin subunits at the bottom of the vestibule. The density map suggests that physical blocking may play an important role that underlies gap junction channel regulation. Our structure allows us to suggest that the two docked hemichannels can be independent and may regulate their activity autonomously with a plug in the vestibule.


Asunto(s)
Conexinas/química , Conexinas/fisiología , Uniones Comunicantes/fisiología , Canales Iónicos/química , Conformación Proteica , Vestíbulo del Laberinto/química , Animales , Conexina 26 , Conexinas/genética , Conexinas/ultraestructura , Cristalografía por Rayos X , Uniones Comunicantes/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imagenología Tridimensional , Canales Iónicos/ultraestructura , Membrana Dobles de Lípidos/química , Modelos Biológicos , Modelos Moleculares , Mutación , Estructura Secundaria de Proteína , Spodoptera/citología , Spodoptera/metabolismo , Vestíbulo del Laberinto/ultraestructura , Difracción de Rayos X
20.
Prog Biophys Mol Biol ; 94(1-2): 66-106, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17470374

RESUMEN

The importance of electrical and molecular signaling through connexin (Cx) channels is now widely recognized. The transfer of ions and other small molecules between adjacent cells is regulated by multiple stimuli, including voltage. Indeed, Cx channels typically exhibit complex voltage sensitivity. Most channels are sensitive to the voltage difference between the cell interiors (or transjunctional voltage, V(j)), while other channels are also sensitive to absolute inside-outside voltage (i.e., the membrane potential, V(m)). The first part of this review is focused on the description of the distinct forms of voltage sensitivity and the gating mechanisms that regulate hemichannel activity, both individually and as components of homotypic and heterotypic gap junctions. We then provide an up to date and precise picture of the molecular and structural aspects of how V(j) and V(m) are sensed, and how they, therefore, control channel opening and closing. Mutagenic strategies coupled with structural, biochemical and electrophysical studies are providing significant insights into how distinct forms of voltage dependence are brought about. The emerging picture indicates that Cx channels can undergo transitions between multiple conductance states driven by distinct voltage-gating mechanisms. Each hemichannel may contain a set of two V(j) gates, one fast and one slow, which mediate the transitions between the main open state to the residual state and to the fully closed state, respectively. Eventually, a V(m) gate regulates channel transitions between the open and closed states. Clusters of charged residues within separate domains of the Cx molecule have been identified as integral parts of the V(j) and V(m) sensors. The charges at the first positions of the amino terminal cytoplasmic domain determine the magnitude and polarity of the sensitivity to fast V(j)-gating, as well as contributing to the V(j)-rectifying properties of ion permeation. Additionally, important advances have been made in identifying the conformational rearrangements responsible for fast V(j)-gating transitions to the residual state in the Cx43 channel. These changes involve an intramolecular particle-receptor interaction between the carboxy terminal domain and the cytoplasmic loop.


Asunto(s)
Conexinas/química , Conexinas/ultraestructura , Uniones Comunicantes/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Modelos Químicos , Modelos Moleculares , Comunicación Celular , Simulación por Computador , Campos Electromagnéticos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...