Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.400
Filtrar
1.
Environ Monit Assess ; 196(6): 500, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698203

RESUMEN

The current study delved into an extensive analysis of multi-year observations on PM10 to have trends at various time scales in Delhi, India. High-resolution ground observations from all 37 monitoring stations from 2015 to 2022 were used. This study used non-parametric generalized additive model (GAM) based smooth-trend and Theil-Sen slope estimator techniques to analyze temporal trends and variations. The long-term PM10 concentration, both in its ambient and de-seasonalized forms, exhibited a statistically significant decreasing trend. An average decrease of - 7.57 [95% confidence interval (CI) - 16.51, 0.18] µg m-3 year-1 for ambient PM10 and - 8.45 [95% CI - 11.96, - 5.58] µg m-3 year-1 for de-seasonalized PM10 mass concentration was observed. Breaking it down into seasons, we observed significant declines in PM10 concentrations during monsoon (- 10.71 µg m-3 year-1, p < 0.1) and post-monsoon (- 7.49 µg m-3 year-1, p < 0.001). On the other hand, summer and winter displayed statistically insignificant declining trends of - 5.32 µg m-3 year-1 and - 6.06 µg m-3 year-1, respectively. Remarkably, all months except March displayed declining PM10 concentrations, suggesting a gradual reduction in particle pollution across the city. Further analysis of PM10 across various wind sectors revealed a consistent decreasing trend in all wind directions. The most substantial decrease was observed from the northwest (- 10.24 µg m-3 year-1), while the minimum reduction occurred from the east (- 5.67 µg m-3 year-1). Throughout the 8-year study period, the daily average PM10 concentration remained at 228 ± 124 µg m-3, ranging from 33 to 819 µg m-3. Seasonal variations were apparent, with concentrations during winter, summer, monsoon, and post-monsoon seasons averaging 279 ± 133, 224 ± 117, 135 ± 95, and 323 ± 142 µg m-3, respectively. November had the highest and August had the lowest concentration. Weekend PM10 concentration is slightly lower than weekdays. These findings emphasize the need for more stringent government action plans.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Estaciones del Año , India , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Ciudades
3.
Environ Monit Assess ; 196(6): 550, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743156

RESUMEN

Odor pollution, also referred to as odor nuisance, is a growing environmental concern that is significantly associated with mental health. Once emitted into the air, the concentration of odorous substances varies considerably with wind conditions, leading to difficulties in timely sampling. In the present study, we employed selected ion flow tube mass spectrometry (SIFT-MS) to measure 22 odor-producing molecules continuously in an urban-rural complex city. In addition, we applied statistical analyses, principal component analysis (PCA), and a conditional probability function (CPF) to the datasets obtained from SIFT-MS to identify the odor characteristics at two study sites. At site A, odorants related to livestock farming and industry showed high factor loadings on principal components (PCs) from the PCA. In contrast, we estimated that the odorous gaseous chemicals affecting site B were closely related to sewage treatment and municipal solid waste disposal. Similar CPF patterns of grouped substances from the PCA supported the association between potential odor sources and specific odorants at site B, which helped estimate possible source locations. Consequently, our findings indicate that continuous monitoring of odorous substances using SIFT-MS can be an effective way to provide sufficient information on odor-producing molecules, leading to the clear identification of odor characteristics despite the high variability of odorous substances.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Espectrometría de Masas , Odorantes , Análisis de Componente Principal , Odorantes/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Espectrometría de Masas/métodos , Contaminación del Aire/estadística & datos numéricos
4.
Environ Monit Assess ; 196(6): 549, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743179

RESUMEN

Ground-level ozone is a secondary pollutant and is attributable to respiratory diseases and mortality. For this reason, the World Health Organization (WHO) implemented a new long-term (peak season) limit value for ozone. The previous studies related to ozone in Türkiye were spatially limited to certain locations. In this study, annual mean and peak season ozone concentrations, and limit exceedances were investigated for Türkiye for the year 2021. Moreover, ozone peak seasons were determined for the first time for 126 air quality monitoring stations. The annual mean ozone concentration was determined as 44.3 ± 19.3 µg/m3 whereas the peak season average ozone level was 68.4 ± 27.2 µg/m3. April-September period was the most frequently observed ozone peak season. Among all stations, Erzurum Palandöken was by far the most polluted station in terms of annual mean and limit exceedances of ozone. Ankara Siteler stations have the highest rank in peak season mean. 87 and 83 stations exceeded the short-term and long-term recommendations of WHO, respectively. Four hotspot regions were revealed in terms of peak season exceedance: Adana and surrounding provinces, the surroundings of Burdur and Isparta provinces, and the northeastern and northwestern parts of Türkiye. To protect public health, WHO recommendations for 8-h and peak season limits should be immediately implemented in Turkish regulations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Ozono , Estaciones del Año , Organización Mundial de la Salud , Ozono/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Turquía
5.
Environ Monit Assess ; 196(6): 525, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720137

RESUMEN

Adiyaman, a city recently affected by an earthquake, is facing significant air pollution challenges due to both anthropogenic activities and natural events. The sources of air pollution have been investigated using meteorological variables. Elevated southerly winds, especially prominent in spring and autumn, significantly contribute to dust transport, leading to a decline in local air quality as detected by the HYSPLIT model. Furthermore, using Suomi-NPP Thermal Anomaly satellite product, it is detected and analyzed for crop burning activities. Agricultural practices, including stubble burning, contribute to the exacerbation of PM10 pollution during the summer months, particularly when coupled with winds from all directions except the north. In fall and winter months, heating is identified as the primary cause of pollution. The city center located north of the station is the dominant source of pollution throughout all seasons. The study established the connection between air pollutants and meteorological variables. Furthermore, the Spearman correlation coefficients reveal associations between PM10 and SO2, indicating moderate positive correlations under pressure conditions (r = 0.35, 0.52). Conversely, a negative correlation is observed with windspeed (r = -0.35, -0.50), and temperature also exhibits a negative correlation (r = -0.39, -0.54). During atmospheric conditions with high pressure, PM10 and SO2 concentrations are respectively 41.2% and 117.2% higher. Furthermore, pollutant concentration levels are 29.2% and 53.3% higher on days with low winds. Last, practical strategies for mitigating air pollution have been thoroughly discussed and proposed. It is imperative that decision-makers engaged in city planning and renovation give careful consideration to the profound impact of air pollution on both public health and the environment, particularly in the aftermath of a recent major earthquake.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Estaciones del Año , Contaminación del Aire/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Conceptos Meteorológicos , Viento , Ciudades , Turquía , Dióxido de Azufre/análisis , Terremotos
6.
Environ Monit Assess ; 196(6): 519, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713313

RESUMEN

Mercury cycling in coastal metropolitan areas on the west coast of India becomes complex due to the combined effects of both intensive domestic anthropogenic emissions and marine air masses. The present study is based on yearlong data of continuous measurements of gaseous elemental mercury (GEM) concentration concurrent with meteorological parameters and some air pollutants at a coastal urban site in Mumbai, on the west coast of India, for the first time. The concentration of GEM was found in a range between 2.2 and 12.3 ng/m3, with a mean of 3.1 ± 1.1 ng/m3, which was significantly higher than the continental background values in the Northern Hemisphere (~ 1.5 ng/m3). Unlike particulates, GEM starts increasing post-winter to peak during the monsoon and decrease towards winter. July had the highest concentration of GEM followed by October, and a minimum in January. GEM exhibited a distinct diurnal cycle, mainly with a broad peak in the early morning, a narrow one by nightfall, and a minimum in the afternoon. The peaks and their timing suggest the origin of urban mobility and the start of local activities. A positive correlation between SO2, PM2.5, temperature, relative humidity, and GEM indicates that emissions from local industrial plants in the Mumbai coastal area. Principal component analysis (PCA) and cluster analysis (CA) confirm this fact. Monthly back trajectory analysis showed that air mass flows are predominantly from the Arabian Sea and local human activities. Assessment of human health risks by USEPA model reveals that the hazardous quotient, HQ < 1, implies negligible carcinogenic risk. GEM observations in Mumbai during the study period are below the World Health Organization's (WHO) safe limit (200 ng/m3) for long-term inhalation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Mercurio , India , Contaminantes Atmosféricos/análisis , Mercurio/análisis , Medición de Riesgo , Humanos , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Material Particulado/análisis , Ciudades
7.
Environ Monit Assess ; 196(6): 533, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727749

RESUMEN

The Indo-Gangetic Plains (IGP) of the Indian subcontinent during winters experience widespread fog episodes. The low visibility is not only attributed to meteorological conditions but also to the increased pollution levels in the region. The study was carried out for Tier 1 and Tier II cities of the IGP of India, including Kolkata, Amritsar, Patiala, Hisar, Delhi, Patna, and Lucknow. This work analyzes data from 1990 to 2023 (33 years) employing the Mann-Kendall-Theil-Sen slope to determine the trends in fog occurrences and the relation between fog and meteorological parameters using multiple linear regressions. Furthermore, identifying the most relevant fog (visibility)-impacting factors from a set of both meteorological factors and air pollutants using step-wise regression. All cities indicated trend in the number of foggy days except for Kolkata. The multiple regression analysis reveals relatively low associations between fog occurrences and meteorological factors (30 to 59%), although the association was stronger when air pollution levels were considered (60 to 91%). Relative humidity, PM2.5, and PM10 have the most influence on fog formation. The study provides comprehensive insights into fog trends by incorporating meteorological data and air pollution analysis. The findings highlight the significance of acknowledging meteorological and pollution factors to understand and mitigate the impacts of reduced visibility. Hence, this information can guide policymakers, urban planners, and environmental management agencies in developing effective strategies to manage fog-related risks and improve air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Tiempo (Meteorología) , Contaminantes Atmosféricos/análisis , India , Contaminación del Aire/estadística & datos numéricos , Esmog , Conceptos Meteorológicos , Material Particulado/análisis
8.
Environ Monit Assess ; 196(6): 513, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709416

RESUMEN

Anthropogenic pollution impacts human and environmental health, climate change, and air quality. Karabük, an industrial area from the Black Sea Region in northern Türkiye, is vulnerable to environmental pollution, particularly soil and air. In this research on methodological aspects, we analyzed the concentrations of six potential toxic metals in the atmospheric deposition of the city using the passive method of moss biomonitoring. The ground-growing terrestrial moss, Hypnum cupressiforme Hedw., was collected during the dry season of August 2023 at 20 urban points. The concentrations of Cr, Cu, Cd, Ni, Pb, and Co were determined in mosses by the ICP-MS method. Descriptive statistical analysis was employed to evaluate the status and variance in the spatial distribution of the studied metals, and multivariate analysis, Pearson correlation, and cluster analysis were used to investigate the associations of elements and discuss the most probable sources of these elements in the study area. Cd and Co showed positive and significant inter-element correlations (r > 0.938), representing an anthropogenic association mostly present in the air particles emitted from several metal plants. The results showed substantial impacts from local industry, manufactured activity, and soil dust emissions. Steel and iron smelter plants and cement factories are the biggest emitters of trace metals in the Karabük area and the primary sources of Cr, Cd, Ni, and Co deposition.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales Pesados , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Monitoreo Biológico/métodos , Ciudades , Briófitas/química , Industrias , Contaminación del Aire/estadística & datos numéricos , Turquía
9.
Environ Monit Assess ; 196(6): 521, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714584

RESUMEN

The transport sector is considered the largest contributor of air pollutants in urban areas, mainly on-road vehicles, affecting the environment and human health. Bahía Blanca is a medium-sized Latin American city, with high levels of traffic in the downtown area during peak hours. In this regard, it is necessary to analyze air pollution using an air quality model considering that there are no air pollutant measurements in the central area. Furthermore, this type of study has not been carried out in the region and since the city is expected to grow, it is necessary to evaluate the current situation in order to make effective future decisions. In this sense, the AERMOD model (US-EPA version) and the RLINE source type were used in this work. This study analyzes the variations of pollutant concentrations coming from mobile sources in Bahía Blanca's downtown area, particularly carbon monoxide (CO) and nitrogen oxides (NOx) during the period Jul-2020 to Jun-2022. It is interesting to note the results show the maximum concentration values detected are not directly associated with maximum levels of vehicle flow or emission rates, which highlights the importance of meteorological parameters in the modeling. In addition, alternative scenarios are proposed and analyzed from a sustainable approach. Regarding the scenario analysis, it can be concluded that diesel vehicles have a large influence on NOx emissions. Moreover, restrictions as strict as those proposed for a Low Emission Zone would be less applicable in the city than alternative temporary measures that modify traffic at peak hours.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monóxido de Carbono , Ciudades , Monitoreo del Ambiente , Emisiones de Vehículos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , Óxidos de Nitrógeno/análisis , América Latina , Modelos Teóricos , Material Particulado/análisis
10.
Environ Monit Assess ; 196(6): 523, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717514

RESUMEN

Air pollution events can be categorized as extreme or non-extreme on the basis of their magnitude of severity. High-risk extreme air pollution events will exert a disastrous effect on the environment. Therefore, public health and policy-making authorities must be able to determine the characteristics of these events. This study proposes a probabilistic machine learning technique for predicting the classification of extreme and non-extreme events on the basis of data features to address the above issue. The use of the naïve Bayes model in the prediction of air pollution classes is proposed to leverage its simplicity as well as high accuracy and efficiency. A case study was conducted on the air pollution index data of Klang, Malaysia, for the period of January 01, 1997, to August 31, 2020. The trained naïve Bayes model achieves high accuracy, sensitivity, and specificity on the training and test datasets. Therefore, the naïve Bayes model can be easily applied in air pollution analysis while providing a promising solution for the accurate and efficient prediction of extreme or non-extreme air pollution events. The findings of this study provide reliable information to public authorities for monitoring and managing sustainable air quality over time.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Teorema de Bayes , Monitoreo del Ambiente , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Malasia , Aprendizaje Automático
11.
Environ Monit Assess ; 196(6): 506, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702588

RESUMEN

Industrial cities are hotspots for many hazardous air pollutants (HAPs), which are detrimental to human health. We devised an identification method to determine priority HAP monitoring areas using a comprehensive approach involving monitoring, modeling, and demographics. The methodology to identify the priority HAP monitoring area consists of two parts: (1) mapping the spatial distribution of selected categories relevant to the target pollutant and (2) integrating the distribution maps of various categories and subsequent scoring. The identification method was applied in Ulsan, the largest industrial city in South Korea, to identify priority HAP monitoring areas. Four categories related to HAPs were used in the method: (1) concentrations of HAPs, (2) amount of HAP emissions, (3) the contribution of industrial activities, and (4) population density in the city. This method can be used to select priority HAP monitoring areas for intensive monitoring campaigns, cohort studies, and epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Sistemas de Información Geográfica , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , República de Corea , Contaminación del Aire/estadística & datos numéricos , Industrias , Humanos , Sustancias Peligrosas/análisis
12.
Environ Monit Assess ; 196(6): 505, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700603

RESUMEN

This study delves into the intricate dynamics of air pollution in the rapidly expanding northern regions of India, examining the intertwined influences of agricultural burning, industrialization, and meteorological conditions. Through comprehensive analysis of key pollutants (PM2.5, PM10, NO2, SO2, CO, O3) across ten monitoring stations in Uttar Pradesh, Haryana, Delhi, and Punjab, a consistent pattern of high pollution levels emerges, particularly notable in Delhi. Varanasi leads in SO2 and O3 concentrations, while Moradabad stands out for CO levels, and Jalandhar for SO2 concentrations. The study further elucidates the regional distribution of pollutants, with Punjab receiving significant contributions from SW, SE, and NE directions, while Haryana and Delhi predominantly face air masses from SE and NE directions. Uttar Pradesh's pollution sources are primarily local, with additional inputs from various directions. Moreover, significant negative correlations (p < 0.05) between PM10, NO2, SO2, O3, and relative humidity (RH) underscore the pivotal role of meteorological factors in shaping pollutant levels. Strong positive correlations between PM2.5 and NO2 (0.71 to 0.93) suggest shared emission sources or similar atmospheric conditions in several cities. This comprehensive understanding highlights the urgent need for targeted mitigation strategies to address the multifaceted drivers of air pollution, ensuring the protection of public health and environmental sustainability across the region.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Material Particulado , Dióxido de Azufre , Contaminantes Atmosféricos/análisis , India , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Dióxido de Azufre/análisis , Dióxido de Nitrógeno/análisis , Ozono/análisis , Conceptos Meteorológicos
13.
Environ Monit Assess ; 196(6): 545, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740605

RESUMEN

In Tunisia, urban air pollution is becoming a bigger problem. This study used a combined strategy of biomonitoring with lichens and satellite mapping with Sentinel-5 satellite data processed in Google Earth Engine (GEE) to assess the air quality over metropolitan Tunis. Lichen diversity was surveyed across the green spaces of the Faculty of Science of Tunisia sites, revealing 15 species with a predominance of pollution-tolerant genera. The Index of Atmospheric Purity (IAP) calculated from the lichen data indicated poor air quality. Spatial patterns of pollutants sulfur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO), and aerosol index across Greater Tunis were analyzed from Sentinel-5 datasets on the GEE platform. The higher values of these indices in the research area indicate that it may be impacted by industrial activity and highlight the considerable role that vehicle traffic plays in air pollution. The results of the IAP, IBL, and the combined ground-based biomonitoring and satellite mapping techniques confirm poor air quality and an environment affected by atmospheric pollutants which will enable proactive air quality management strategies to be put in place in Tunisia's rapidly expanding cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Líquenes , Ozono , Dióxido de Azufre , Líquenes/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Túnez , Ozono/análisis , Dióxido de Azufre/análisis , Dióxido de Nitrógeno/análisis , Ciudades , Imágenes Satelitales , Monóxido de Carbono/análisis
14.
Chemosphere ; 357: 141974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615955

RESUMEN

The former mining district of Salsigne is situated in the Orbiel valley. Until the 20th century, it was the first gold mine in Europe and the first arsenic mine in the world. Rehabilitation has been performed during the 20 years that followed closure of the mines and factories, which led to the accumulation of storage of several million tons of waste in this valley. Nevertheless, a detailed description of the air quality of this area is still missing. The goal of the present study is to evaluate atmospheric contamination in the valley and identify the potential sources of this contamination. Active monitors (particulate matter samplers) and passive bioindicators (Tillandsia usneoides) were placed in strategic sites including remote areas. Over the year 2022, we assessed the air quality using microscopic and spectroscopic techniques, as well as environmental risk indicators to report the level of contamination. Results indicate that the overall air quality in the valley is good with PM10 levels in accordance with EU standards. Elemental concentrations in the exposed plants were lower than reported in the literature. Among the different sites studied, Nartau and La Combe du Saut, corresponding to waste storage and former mining industry sites, were the most affected. Chronic exposure over 1 year was highlighted for Fe, Ni, Cu, Pb, Sb and As. Pollution Load Index and Enrichment Factors, which provided valuable information to assess the environmental condition of the valley's air, suggested that dust and resuspension of anthropogenic materials were the principle sources for most of the elements. Finally, this study also highlights that using T. usneoides could be a convenient approach for biomonitoring of metal (loid)-rich particles in the atmosphere within a former mining area, for at least one year. These results in turn allow to better understand the effects of chronic exposure on the ecosystem.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Minería , Material Particulado , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Francia , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Metales/análisis , Arsénico/análisis , Metales Pesados/análisis
15.
Sci Total Environ ; 929: 172638, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643869

RESUMEN

BACKGROUND: Although both air pollution and aging are related to the development of liver cirrhosis, the role of biological aging in association of the mixture of fine particulate matter (PM2.5) and its constituents with liver cirrhosis was unknown. METHODS: This case-control retrospective study included 100 liver cirrhosis patients and 100 control subjects matched by age and sex. The concentrations of PM2.5 and its constituents were estimated for patients using machine-learning methods. The clinical biomarkers were used to calculate biological age using the Klemera-Doubalmethod (KDM) algorithms. Individual associations of PM2.5 and its constituents or biological age with liver cirrhosis were analyzed by generalized linear models. WQS and BKMR were applied to analyze association of mixture of PM2.5 and its constituents with liver cirrhosis. The mediation effect of biological age on associations of PM2.5 and its constituents with liver cirrhosis was further explored. RESULTS: we found that each 1-unit increment in NH4+, NO3-, SO42- and biological age were related to 3.618-fold (95%CI: 1.896, 6.904), 1.880-fold (95%CI: 1.319, 2.680), 2.955-fold (95%CI: 1.656, 5.272) and 1.244-fold (95%CI: 1.093, 1.414) increased liver cirrhosis. Both WQS and BKMR models showed that the mixture of PM2.5 and its constituents was related to increased liver cirrhosis. Furthermore, the mediated proportion of biological age on associations of NH4+ and SO42- with liver cirrhosis were 14.7 % and 14.6 %, respectively. CONCLUSIONS: Biological aging may partly explain the exposure to PM2.5 and its constituents in association with increased risk for liver cirrhosis, implying that delaying the aging process may be a key step for preventing PM2.5-related liver cirrhosis risk.


Asunto(s)
Contaminantes Atmosféricos , Cirrosis Hepática , Material Particulado , Sulfatos , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Femenino , Masculino , Estudios de Casos y Controles , Persona de Mediana Edad , Sulfatos/análisis , Compuestos de Amonio , Estudios Retrospectivos , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Anciano , Envejecimiento
16.
Sci Total Environ ; 929: 172551, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643870

RESUMEN

The rapid expansion of green areas in China has enhanced carbon sinks, but it also presents challenges regarding increased biogenic volatile organic compound (BVOC) emissions. This study examines the impact of greening trends on BVOC emissions in China from 1985 to 2001 and from 2001 to 2022, focusing on evaluating long-term trends in BVOC emissions within eight afforestation project areas during these two periods. Emission factors for 62 dominant tree species and provincial Plant Functional Types were updated. The BVOC emission inventories were developed for China at a spatial resolution of 27 km × 27 km using the Model of Emissions of Gases and Aerosols from Nature. The national BVOC emissions in 2018 were estimated at 54.24 Tg, with isoprene, monoterpenes, sesquiterpenes, and other BVOC contributing 26.94 Tg, 2.29 Tg, 0.44 Tg, and 24.57 Tg, respectively. Over the past 37 years, BVOC emissions experienced a slow growth rate of 1.7 % (0.79 Tg) during 1985-2001, followed by a significant increase of 12 % (6 Tg) from 2001 to 2022. BVOC emissions in the eight afforestation project areas increased by 2 % and 20 % during the two periods. From 2001 to 2022, at the regional scale, the Shelterbelt program for the middle reaches of the Yellow River area exhibited the largest rate of increase (43 %) in BVOC emissions. The Shelterbelt program for the upper and middle reaches of the Yangtze River made the most largest contribution (45 %) to the national increase in BVOC emissions. Afforestation projects have shifted towards planting more broadleaf trees than needleleaf trees from 2001 to 2022, and there also showed a change from herbaceous plants to broadleaf trees. These trends have led to higher average emission factors for vegetation, resulting in increased BVOC emissions. It underscores the importance of considering BVOC emissions when evaluating afforestation initiatives, emphasizing the need to balancing ecological benefits with potential atmospheric consequences.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , China , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Bosques , Árboles , Contaminación del Aire/estadística & datos numéricos , Agricultura Forestal
17.
Sci Total Environ ; 929: 172495, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649056

RESUMEN

Pollutants produced by cremation furnaces have gradually caused concern because of the increasing rate of cremation around the world. In this study, the levels, patterns, and emission factors of unintentional persistent organic pollutants (UPOPs) from cremation were investigated. The toxic equivalent (TEQ) concentrations (11 % O2 normalized) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in flue gas ranged from 0.036 to 22 ng TEQ/Nm3, while the levels of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in flue gas samples ranged from 0.0023 to 1.2 ng TEQ/Nm3 and 0.17-44 pg TEQ/Nm3, respectively. The average concentrations of UPOPs in flue gas from car-type furnaces were higher than those from flat-panel furnaces. Secondary chambers and air pollution control devices were effective for controlling UPOPs emissions. However, heat exchangers were not as effective for reducing UPOPs emissions. It was observed that the UPOPs profiles exhibited dissimilarities between fly ash and flue gas samples. HxCDF, OCDD, and PeCDF were the dominant homologs of PCDD/Fs in flue gas, while HxCDF, PeCDF, and HpCDF were the dominant homologs in fly ash. The fractions of MoCBs and MoCNs in fly ash were higher than those in flue gas. Finally, we conducted an assessment of the global emissions of UPOPs from cremation in the years of 2019 and 2021. The total emission of UPOPs in 47 countries was estimated at 239 g TEQ in 2021, which was during the peak period of the COVID-19 pandemic worldwide. The emissions in 2021 increased by approximately 24 % compared to 2019, with the impact of COVID-19 being a significant factor that cannot be disregarded.


Asunto(s)
Contaminantes Atmosféricos , Cremación , Monitoreo del Ambiente , Contaminantes Orgánicos Persistentes , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Dibenzodioxinas Policloradas/análisis , Bifenilos Policlorados/análisis , Incineración , Dibenzofuranos Policlorados/análisis , Contaminación del Aire/estadística & datos numéricos
18.
Sci Total Environ ; 927: 172233, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615759

RESUMEN

OBJECTIVE: Children and adolescents are particularly vulnerable to the effects of various environmental factors, which could disrupt growth processes and potentially lead to obesity. Currently, comprehensive and systematic assessments of these environmental exposures during developmental periods are lacking. Therefore, this study aims to evaluate the association between external environmental exposures and the incidence of obesity in children and adolescents. METHODS: Data was collected from the 2019 Chinese National Survey on Students' Constitution and Health, including 214,659 Han children aged 7 to 19. Body Mass Index (BMI) and BMI-for-age z-score (zBMI) were the metrics used to assess overweight and obesity prevalence. The study assessed 18 environmental factors, including air pollutants, natural space, land cover, meteorological conditions, built environment, road conditions, and artificial light at night. Exposome-wide association study (ExWAS) to analyze individual exposures' associations with health outcomes, and Weighted Quantile Sum (WQS) to assess cumulative exposure effects. RESULTS: Among the children and adolescents, there were 24.2 % participants classified as overweight or obesity. Notably, 17 out of 18 environmental factors exhibited significant associations with zBMI and overweight/obesity. Seven air pollutants, road conditions, and built density were positively correlated with higher zBMI and obesity risk, while NDVI, forests, and meteorological factors showed negative correlations. Co-exposure analysis highlighted that SO2, ALAN, PM10, and trunk road density significantly increased zBMI, whereas rainfall, grassland, and forest exposure reduced it. Theoretically reduction in the number and prevalence of cases was calculated, indicating potential reductions in prevalence of up to 4.51 % for positive exposures and 5.09 % for negative exposures. Notably, substantial reductions were observed in regions with high pollution levels. CONCLUSION: This large-scale investigation, encompassing various environmental exposures in schools, highlights the significant impact of air pollution, road characteristics, rainfall, and forest coverage on childhood obesity.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Exposoma , Humanos , Niño , Adolescente , Exposición a Riesgos Ambientales/estadística & datos numéricos , China/epidemiología , Femenino , Masculino , Contaminantes Atmosféricos/análisis , Obesidad Infantil/epidemiología , Contaminación del Aire/estadística & datos numéricos , Adulto Joven , Índice de Masa Corporal , Prevalencia
19.
Ecotoxicol Environ Saf ; 276: 116308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593496

RESUMEN

BACKGROUND: Impact of outdoor and household air pollution on physical function remains unelucidated. This study examined the influence of various ambient particulate sizes (PM1, PM2.5, and PM10) and household fuel usage on physical function. METHODS: Data from the China Health and Retirement Longitudinal Study (CHARLS) spanning 2011 and 2015 were utilized. The physical functional score was computed by summing scores from four tests: grip strength, gait speed, chair stand test, and balance. Multivariate linear and linear mixed-effects models were used to explore the separate and combined effects of PM1, PM2.5, PM10 and household fuel use on physical function in the cross-sectional and longitudinal analyses, respectively, and to further observe the effects of fuel cleanup on physical function in the context of air pollution exposure. RESULTS: Both cross-sectional and longitudinal analyses revealed negative correlations between PM1 (ß = -0.044; 95% CI: -0.084, -0.004), PM2.5 (ß = -0.024; 95% CI: -0.046, -0.001), PM10 (ß = -0.041; 95% CI: -0.054, -0.029), and physical function, with a more pronounced impact observed for fine particulate matter (PM1). Cleaner fuel use was associated with enhanced physical function compared to solid fuels (ß = 0.143; 95% CI: 0.070, 0.216). The presence of air pollutants and use of solid fuels had a negative impact on physical function, while cleaner fuel usage mitigated the adverse effects of air pollutants, particularly in areas with high exposure. CONCLUSION: This study underscores the singular and combined detrimental effects of air pollutants and solid fuel usage on physical function. Addressing fine particulate matter, specifically PM1, and prioritizing efforts to improve household fuel cleanliness in regions with elevated air pollution levels are crucial for preventing physical disability.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Material Particulado , Material Particulado/análisis , China , Humanos , Estudios Transversales , Estudios Longitudinales , Persona de Mediana Edad , Masculino , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/efectos adversos , Femenino , Anciano , Estudios de Cohortes , Tamaño de la Partícula , Exposición a Riesgos Ambientales , Culinaria , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/efectos adversos
20.
Environ Int ; 186: 108587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579450

RESUMEN

Air pollution is a key global environmental problem raising human health concern. It is essential to comprehensively assess the long-term characteristics of air pollution and the resultant health impacts. We first assessed the global trends of fine particulate matter (PM2.5) during 1980-2020 using a monthly global PM2.5 reanalysis dataset, and evaluated their association with three types of climate variability including El Niño-Southern Oscillation, Indian Ocean Dipole and North Atlantic Oscillation. We then estimated PM2.5-attributable premature deaths using integrated exposure-response functions. Results show a significant increasing trend of ambient PM2.5 during 1980-2020 due to increases in anthropogenic emissions. Ambient PM2.5 caused a total of âˆ¼ 135 million premature deaths globally during the four decades. Occurrence of air pollution episodes was strongly associated with climate variability, which were associated with up to 14 % increase in annual global PM2.5-attributable premature deaths.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Salud Global , Material Particulado , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Cambio Climático , Exposición a Riesgos Ambientales/estadística & datos numéricos , Clima , Mortalidad Prematura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...