Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.492
Filtrar
1.
Nat Commun ; 15(1): 3831, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714663

RESUMEN

The Na+-Ca2+ exchanger (NCX1) is the dominant Ca2+ extrusion mechanism in cardiac myocytes. NCX1 activity is inhibited by intracellular Na+ via a process known as Na+-dependent inactivation. A central question is whether this inactivation plays a physiological role in heart function. Using CRISPR/Cas9, we inserted the K229Q mutation in the gene (Slc8a1) encoding for NCX1. This mutation removes the Na+-dependent inactivation while preserving transport properties and other allosteric regulations. NCX1 mRNA levels, protein expression, and protein localization are unchanged in K229Q male mice. However, they exhibit reduced left ventricular ejection fraction and fractional shortening, while displaying a prolonged QT interval. K229Q ventricular myocytes show enhanced NCX1 activity, resulting in action potential prolongation, higher incidence of aberrant action potentials, a faster decline of Ca2+ transients, and depressed cell shortening. The results demonstrate that NCX1 Na+-dependent inactivation plays an essential role in heart function by affecting both cardiac excitability and contractility.


Asunto(s)
Potenciales de Acción , Calcio , Miocitos Cardíacos , Intercambiador de Sodio-Calcio , Sodio , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/genética , Animales , Miocitos Cardíacos/metabolismo , Masculino , Sodio/metabolismo , Ratones , Calcio/metabolismo , Contracción Miocárdica/fisiología , Contracción Miocárdica/genética , Corazón/fisiología , Humanos , Mutación , Sistemas CRISPR-Cas
2.
J Gen Physiol ; 156(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709176

RESUMEN

Dilated cardiomyopathy (DCM) is a condition characterized by impaired cardiac function, due to myocardial hypo-contractility, and is associated with point mutations in ß-cardiac myosin, the molecular motor that powers cardiac contraction. Myocardial function can be modulated through sequestration of myosin motors into an auto-inhibited "super-relaxed" state (SRX), which may be further stabilized by a structural state known as the "interacting heads motif" (IHM). Here, we sought to determine whether hypo-contractility of DCM myocardium results from reduced function of individual myosin molecules or from decreased myosin availability to interact with actin due to increased IHM/SRX stabilization. We used an established DCM myosin mutation, E525K, and characterized the biochemical and mechanical activity of wild-type and mutant human ß-cardiac myosin constructs that differed in the length of their coiled-coil tail, which dictates their ability to form the IHM/SRX state. We found that short-tailed myosin constructs exhibited low IHM/SRX content, elevated actin-activated ATPase activity, and fast velocities in unloaded motility assays. Conversely, longer-tailed constructs exhibited higher IHM/SRX content and reduced actomyosin ATPase and velocity. Our modeling suggests that reduced velocities may be attributed to IHM/SRX-dependent sequestration of myosin heads. Interestingly, longer-tailed E525K mutants showed no apparent impact on velocity or actomyosin ATPase at low ionic strength but stabilized IHM/SRX state at higher ionic strength. Therefore, the hypo-contractility observed in DCM may be attributable to reduced myosin head availability caused by enhanced IHM/SRX stability in E525K mutants.


Asunto(s)
Cardiomiopatía Dilatada , Miosinas Ventriculares , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Mutación , Actinas/metabolismo , Actinas/genética , Contracción Miocárdica/fisiología , Animales
4.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683993

RESUMEN

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Asunto(s)
Miosinas Cardíacas , Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Cadenas Pesadas de Miosina , Humanos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Contracción Miocárdica/genética , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Miofibrillas/metabolismo , Respiración de la Célula/genética
5.
PLoS Comput Biol ; 20(4): e1011974, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635493

RESUMEN

Since the left ventricle (LV) has pressure (Plv) and volume (Vlv), we can define LV elastance from the ratio between Plv and Vlv, termed as "instantaneous elastance." On the other hand, end-systolic elastance (Emax) is known to be a good index of LV contractility, which is measured by the slope of several end-systolic Plv-Vlv points obtained by using different loads. The word Emax originates from the assumption that LV elastance increases during the ejection phase and attains its maximum at the end-systole. From this concept, we can define another elastance determined by the slope of isochronous Plv-Vlv points, that is Plv-Vlv points at a certain time after the ejection onset time by using different loads. We refer to this elastance as "load-dependent elastance." To reveal the relation between these two elastances, we used a hemodynamic model that included a detailed ventricular myocyte contraction model. From the simulation results, we found that the isochronous Plv-Vlv points lay in one line and that the line slope corresponding to the load-dependent elastance slightly decreased during the ejection phase, which is quite different from the instantaneous elastance. Subsequently, we analyzed the mechanism determining these elastances from the model equations. We found that instantaneous elastance is directly related to contraction force generated by the ventricular myocyte, but the load-dependent elastance is determined by two factors: one is the transient characteristics of the cardiac cell, i.e., the velocity-dependent force drops characteristics in instantaneous shortening. The other is the force-velocity relation of the cardiac cell. We also found that the linear isochronous pressure-volume relation is based on the approximately linear relation between the time derivative of the cellular contraction force and the cellular shortening velocity that results from the combined characteristics of LV and aortic compliances.


Asunto(s)
Ventrículos Cardíacos , Contracción Miocárdica , Sístole , Hemodinámica , Miocitos Cardíacos
6.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658324

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Asunto(s)
Arritmias Cardíacas , Distrofina , Contracción Miocárdica , Animales , Masculino , Distrofina/genética , Distrofina/deficiencia , Ratones , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/genética , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Ratones Endogámicos C57BL
7.
BMC Cardiovasc Disord ; 24(1): 224, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664609

RESUMEN

BACKGROUND: Careful interpretation of the relation between phenotype changes of the heart and gene variants detected in dilated cardiomyopathy (DCM) is important for patient care and monitoring. OBJECTIVE: We sought to assess the association between cardiac-related genes and whole-heart myocardial mechanics or morphometrics in nonischemic dilated cardiomyopathy (NIDCM). METHODS: It was a prospective study consisting of patients with NIDCM. All patients were referred for genetic testing and a genetic analysis was performed using Illumina NextSeq 550 and a commercial gene capture panel of 233 genes (Systems Genomics, Cardiac-GeneSGKit®). It was analyzed whether there are significant differences in clinical, two-dimensional (2D) echocardiographic, and magnetic resonance imaging (MRI) parameters between patients with the genes variants and those without. 2D echocardiography and MRI were used to analyze myocardial mechanics and morphometrics. RESULTS: The study group consisted of 95 patients with NIDCM and the average age was 49.7 ± 10.5. All echocardiographic and MRI parameters of myocardial mechanics (left ventricular ejection fraction 28.4 ± 8.7 and 30.7 ± 11.2, respectively) were reduced and all values of cardiac chambers were increased (left ventricular end-diastolic diameter 64.5 ± 5.9 mm and 69.5 ± 10.7 mm, respectively) in this group. It was noticed that most cases of whole-heart myocardial mechanics and morphometrics differences between patients with and without gene variants were in the genes GATAD1, LOX, RASA1, KRAS, and KRIT1. These genes have not been previously linked to DCM. It has emerged that KRAS and KRIT1 genes were associated with worse whole-heart mechanics and enlargement of all heart chambers. GATAD1, LOX, and RASA1 genes variants showed an association with better cardiac function and morphometrics parameters. It might be that these variants alone do not influence disease development enough to be selective in human evolution. CONCLUSIONS: Combined variants in previously unreported genes related to DCM might play a significant role in affecting clinical, morphometrics, or myocardial mechanics parameters.


Asunto(s)
Cardiomiopatía Dilatada , Predisposición Genética a la Enfermedad , Fenotipo , Función Ventricular Izquierda , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Persona de Mediana Edad , Masculino , Femenino , Adulto , Estudios Prospectivos , Función Ventricular Izquierda/genética , Volumen Sistólico , Remodelación Ventricular/genética , Imagen por Resonancia Magnética , Fenómenos Biomecánicos , Variación Genética , Ecocardiografía , Contracción Miocárdica/genética , Estudios de Asociación Genética , Valor Predictivo de las Pruebas
8.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(4): 391-396, 2024 Apr 24.
Artículo en Chino | MEDLINE | ID: mdl-38644254

RESUMEN

Objective: To investigate the short-term efficacy and safety of cardiac contractility modulation (CCM) in patients with heart failure. Methods: This was a cross-sectional study of patients with heart failure who underwent CCM placement at the First Affiliated Hospital of Xinjiang Medical University from February to June 2022. With a follow-up of 3 months, CCM sensation, impedance, percent output, and work time were monitored, and patients were compared with pre-and 3-month postoperative left ventricular ejection fraction (LVEF) values, and 6-minute walk test distance and New York Heart Association (NYHA) cardiac function classification, and the occurrence of complications was recorded. Results: CCM was successfully implanted in all 9 patients. Seven(7/9) of them were male, aged (56±14) years, 3 patients had ischaemic cardiomyopathy and 6 patients had dilated cardiomyopathy. At 3-month postoperative follow-up, threshold was stable, sense was significantly lower at follow-up than before (right ventricle: (16.3±7.0) mV vs. (8.2±1.1) mV, P<0.05; local sense: (15.7±4.9) mV vs. (6.7±2.5) mV, P<0.05), and impedance was significantly lower at follow-up than before (right ventricle (846±179) Ω vs. (470±65) Ω, P<0.05, local sense: (832±246) Ω vs. (464±63) Ω, P<0.05). The CCM output percentage was (86.9±10.7) %, the output amplitude was (6.7±0.4) V, and the daily operating time was (8.6±1.0) h. LVEF was elevated compared to preoperative ((29.4±5.2) % vs. (38.3±4.3) %, P<0.05), the 6-minute walk test was significantly longer than before ((96.8±66.7)m vs. (289.3±121.7)m, P<0.05). No significant increase in the number of NYHA Class Ⅲ-Ⅳ patients was seen (7/9 vs. 2/9, P>0.05). The patient was not re-hospitalised for worsening heart failure symptoms, had no malignant arrhythmic events and experienced significant relief of symptoms such as chest tightness and shortness of breath. No postoperative complications related to pocket hematoma, pocket infection and rupture, electrode detachment, valve function impairment, pericardial effusion, or cardiac perforation were found. Conclusions: CCM has better short-term safety and efficacy in patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , Contracción Miocárdica , Humanos , Masculino , Insuficiencia Cardíaca/fisiopatología , Persona de Mediana Edad , Femenino , Estudios Transversales , Resultado del Tratamiento , Anciano , Función Ventricular Izquierda , Volumen Sistólico
9.
Catheter Cardiovasc Interv ; 103(6): 943-948, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577955

RESUMEN

BACKGROUND: Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS: To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS: In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS: In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION: Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.


Asunto(s)
Operación de Switch Arterial , Cateterismo Cardíaco , Arteria Pulmonar , Estenosis de Arteria Pulmonar , Transposición de los Grandes Vasos , Función Ventricular Derecha , Adolescente , Niño , Femenino , Humanos , Masculino , Operación de Switch Arterial/efectos adversos , Adaptabilidad , Contracción Miocárdica , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Estenosis de Arteria Pulmonar/fisiopatología , Estenosis de Arteria Pulmonar/diagnóstico por imagen , Estenosis de Arteria Pulmonar/etiología , Volumen Sistólico , Transposición de los Grandes Vasos/fisiopatología , Transposición de los Grandes Vasos/cirugía , Transposición de los Grandes Vasos/complicaciones , Transposición de los Grandes Vasos/diagnóstico por imagen , Resultado del Tratamiento , Rigidez Vascular , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/diagnóstico por imagen , Presión Ventricular
10.
J Am Heart Assoc ; 13(9): e033744, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38686853

RESUMEN

BACKGROUND: The heart can metabolize the microbiota-derived short-chain fatty acid butyrate. Butyrate may have beneficial effects in heart failure, but the underlying mechanisms are unknown. We tested the hypothesis that butyrate elevates cardiac output by mechanisms involving direct stimulation of cardiac contractility and vasorelaxation in rats. METHODS AND RESULTS: We examined the effects of butyrate on (1) in vivo hemodynamics using parallel echocardiographic and invasive blood pressure measurements, (2) isolated perfused hearts in Langendorff systems under physiological conditions and after ischemia and reperfusion, and (3) isolated coronary arteries mounted in isometric wire myographs. We tested Na-butyrate added to injection solutions or physiological buffers and compared its effects with equimolar doses of NaCl. Butyrate at plasma concentrations of 0.56 mM increased cardiac output by 48.8±14.9%, stroke volume by 38.5±12.1%, and left ventricular ejection fraction by 39.6±6.2%, and lowered systemic vascular resistance by 33.5±6.4% without affecting blood pressure or heart rate in vivo. In the range between 0.1 and 5 mM, butyrate increased left ventricular systolic pressure by up to 23.7±3.4% in isolated perfused hearts and by 9.4±2.9% following ischemia and reperfusion, while reducing myocardial infarct size by 81.7±16.9%. Butyrate relaxed isolated coronary septal arteries concentration dependently with an EC50=0.57 mM (95% CI, 0.23-1.44). CONCLUSIONS: We conclude that butyrate elevates cardiac output through mechanisms involving increased cardiac contractility and vasorelaxation. This effect of butyrate was not associated with adverse myocardial injury in damaged hearts exposed to ischemia and reperfusion.


Asunto(s)
Butiratos , Cardiotónicos , Contracción Miocárdica , Vasodilatación , Vasodilatadores , Función Ventricular Izquierda , Animales , Masculino , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Cardiotónicos/farmacología , Butiratos/farmacología , Vasodilatadores/farmacología , Preparación de Corazón Aislado , Ratas , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Gasto Cardíaco/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Ratas Wistar , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
11.
Cell Calcium ; 119: 102873, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537433

RESUMEN

Calcium signaling is a critical process required for cellular mechanisms such as cardiomyocyte contraction. The inability of the cell to properly activate or regulate calcium signaling can lead to contractile dysfunction. In isolated cardiomyocytes, calcium signaling has been primarily studied using calcium fluorescent dyes, however these dyes have limited applicability to whole organs. Here, we crossed the Salsa6f mouse which expresses a genetically encoded ratiometric cytosolic calcium indicator with a cardiomyocyte specific inducible cre to temporally-induce expression and studied cytosolic calcium transients in isolated cardiomyocytes and modified Langendorff heart preparations. Isolated cardiomyocytes expressing Salsa6f or Fluo-4AM loaded were compared. We also crossed the Salsa6f mouse with a floxed Polycystin 2 (PC2) mouse to test the feasibility of using the Salsa6f mouse to measure calcium transients in PC2 heterozygous or homozygous knock out mice. Although there are caveats in the applicability of the Salsa6f mouse, there are clear advantages to using the Salsa6f mouse to measure whole heart calcium signals.


Asunto(s)
Calcio , Miocitos Cardíacos , Ratones , Animales , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Señalización del Calcio/fisiología , Colorantes Fluorescentes/metabolismo , Contracción Miocárdica/fisiología
12.
Int J Cardiovasc Imaging ; 40(4): 907-920, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427272

RESUMEN

According to updated Lake-Louise Criteria, impaired regional myocardial function serves as a supportive criterion in diagnosing myocarditis. This study aimed to assess visual regional wall motional abnormalities (RWMA) and novel quantitative regional longitudinal peak strain (RLS) for risk stratification in the clinical setting of myocarditis. In patients undergoing CMR and meeting clinical criteria for suspected myocarditis global longitudinal strain (GLS), late gadolinium enhancement (LGE), RWMA and RLS were assessed in the anterior, septal, inferior, and lateral regions and correlated to the occurrence of major adverse cardiac events (MACE), including heart failure hospitalization, sustained ventricular tachycardia, recurrent myocarditis, and all-cause death. In 690 consecutive patients (age: 48.0 ± 16.0 years; 37.7% female) with suspected myocarditis impaired RLS was correlated with RWMA and LV-GLS but not with the presence of LGE. At median follow up of 3.8 years, MACE occurred in 116 (16.8%) patients. Both, RWMA and RLS in anterior-, septal-, inferior-, and lateral- locations were univariately associated with outcomes (all p < 0.001), but not after adjusting for clinical characteristics and LV-GLS. In the subgroup of patients with normal LV function, RWMA were not predictive of outcomes, whereas septal RLS had incremental and independent prognostic value over clinical characteristics (HRadjusted = 1.132, 95% CI 1.020-1.256; p = 0.020). RWMA and RLS can be used to assess regional impairment of myocardial function in myocarditis but are of limited prognostic value in the overall population. However, in the subgroup of patients with normal LV function, septal RLS represents a distinctive marker of regional LV dysfunction, offering potential for risk-stratification.


Asunto(s)
Imagen por Resonancia Cinemagnética , Miocarditis , Valor Predictivo de las Pruebas , Función Ventricular Izquierda , Humanos , Femenino , Masculino , Persona de Mediana Edad , Miocarditis/fisiopatología , Miocarditis/diagnóstico por imagen , Miocarditis/mortalidad , Miocarditis/complicaciones , Adulto , Pronóstico , Factores de Riesgo , Medición de Riesgo , Factores de Tiempo , Estudios Retrospectivos , Medios de Contraste , Contracción Miocárdica , Recurrencia , Anciano , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/mortalidad , Reproducibilidad de los Resultados
13.
Chem Biol Interact ; 394: 110949, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555048

RESUMEN

Methylglyoxal (MGO) is an endogenous, highly reactive dicarbonyl metabolite generated under hyperglycaemic conditions. MGO plays a role in developing pathophysiological conditions, including diabetic cardiomyopathy. However, the mechanisms involved and the molecular targets of MGO in the heart have not been elucidated. In this work, we studied the exposure-related effects of MGO on cardiac function in an isolated perfused rat heart ex vivo model. The effect of MGO on calcium homeostasis in cardiomyocytes was studied in vitro by the fluorescence indicator of intracellular calcium Fluo-4. We demonstrated that MGO induced cardiac dysfunction, both in contractility and diastolic function. In rat heart, the effects of MGO treatment were significantly limited by aminoguanidine, a scavenger of MGO, ruthenium red, a general cation channel blocker, and verapamil, an L-type voltage-dependent calcium channel blocker, demonstrating that this dysfunction involved alteration of calcium regulation. MGO induced a significant concentration-dependent increase of intracellular calcium in neonatal rat cardiomyocytes, which was limited by aminoguanidine and verapamil. These results suggest that the functionality of various calcium channels is altered by MGO, particularly the L-type calcium channel, thus explaining its cardiac toxicity. Therefore, MGO could participate in the development of diabetic cardiomyopathy through its impact on calcium homeostasis in cardiac cells.


Asunto(s)
Calcio , Miocitos Cardíacos , Piruvaldehído , Ratas Wistar , Animales , Piruvaldehído/toxicidad , Ratas , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Masculino , Guanidinas/farmacología , Canales de Calcio Tipo L/metabolismo , Corazón/efectos de los fármacos , Miocardio/metabolismo , Verapamilo/farmacología , Contracción Miocárdica/efectos de los fármacos
15.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483507

RESUMEN

The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.


Asunto(s)
Bencilaminas , Miocardio , Sarcómeros , Solubilidad , Uracilo/análogos & derivados , Animales , Sarcómeros/metabolismo , Miocardio/metabolismo , Ratones , Miosinas/metabolismo , Pliegue de Proteína , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Humanos , Masculino
16.
J Pharmacol Exp Ther ; 389(2): 174-185, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38531640

RESUMEN

There is a debate on whether H1-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H1-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H1-histamine receptors (H1-TG) and compared these findings with those in littermate wild-type mice (WT). In H1-TG mice, we studied the presence of H1-histamine receptors by autoradiography of the atrium and ventricle using [3H]mepyramine. The messenger RNA for human H1-histamine receptors was present in the heart from H1-TG and absent from WT. Using in situ hybridization, we noted mRNA for the human H1-histamine receptor in cardiac cells from H1-TG. We noted that histamine (1 nM-10 µM) in paced (1 Hz) left atrial preparations from H1-TG, exerted at each concentration of histamine initially reduced force of contraction and then raised contractile force. Likewise, in spontaneously beating left atrial preparations from H1-TG, we noted that histamine led to a transient reduction in the spontaneous beating rate followed by an augmentation in the beating rate. The negative inotropic and chronotropic and the positive inotropic effects on histamine in isolated atrial muscle strips from H1-TG were attenuated by the H1-histamine receptor antagonist mepyramine. Histamine failed to exert an increased force or reduce the heartbeat in atrial preparations from WT. We concluded that stimulation of H1-histamine-receptors can decrease and then augment contractile force in the mammalian heart and stimulation of H1-histamine receptors exerts a negative chronotropic effect. SIGNIFICANCE STATEMENT: We made novel transgenic mice with cardiomyocyte-specific high expressional levels of the human H1-histamine receptor to contribute to the clarification of the controversy on whether H1-histamine receptors increase or decrease contractility and beating rate in the mammalian heart. From our data, we conclude that stimulation of H1-histamine receptors first decrease and then raise contractile force in the mammalian heart but exert solely negative chronotropic effects.


Asunto(s)
Histamina , Contracción Miocárdica , Humanos , Ratones , Animales , Ratones Transgénicos , Histamina/farmacología , Pirilamina/farmacología , Corazón , Receptores Histamínicos , Atrios Cardíacos , Frecuencia Cardíaca , Receptores Histamínicos H1/genética , Mamíferos
17.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Señalización del Calcio , Factores de Tiempo , Acoplamiento Excitación-Contracción , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Terapia por Estimulación Eléctrica/instrumentación , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo
18.
Physiol Rep ; 12(6): e15974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491822

RESUMEN

Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.


Asunto(s)
Monóxido de Carbono , Miofibrillas , Ratas , Animales , Humanos , Masculino , Monóxido de Carbono/farmacología , Contracción Miocárdica , Ratas Sprague-Dawley , Miocitos Cardíacos , Hemo , Calcio
20.
Gene ; 914: 148420, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556117

RESUMEN

Sleep disorders have emerged as a widespread public health concern, primarily due to their association with an increased risk of developing cardiovascular diseases. Our previous research indicated a potential direct impact of insufficient sleep duration on cardiac remodeling in children and adolescents. Nevertheless, the underlying mechanisms behind the link between sleep fragmentation (SF) and cardiac abnormalities remain unclear. In this study, we aimed to investigate the effects of SF interventions at various life stages on cardiac structure and function, as well as to identify genes associated with SF-induced cardiac dysfunction. To achieve this, we established mouse models of chronic SF and two-week sleep recovery (SR). Our results revealed that chronic SF significantly compromised left ventricular contractile function across different life stages, leading to alterations in cardiac structure and ventricular remodeling, particularly during early life stages. Moreover, microarray analysis of mouse heart tissue identified two significant modules and nine hub genes (Ddx60, Irf9, Oasl2, Rnf213, Cmpk2, Stat2, Parp14, Gbp3, and Herc6) through protein-protein interaction analysis. Notably, the interactome predominantly involved innate immune responses. Importantly, all hub genes lost significance following SR. The second module primarily consisted of circadian clock genes, and real-time PCR validation demonstrated significant upregulation of Arntl, Dbp, and Cry1 after SF, while subsequent SR restored normal Arntl expression. Furthermore, the expression levels of four hub genes (Ddx60, Irf9, Oasl2, and Cmpk2) and three circadian clock genes (Arntl, Dbp, and Cry1) exhibited correlations with structural and functional echocardiographic parameters. Overall, our findings suggest that SF impairs left ventricular contractile function and ventricular remodeling during early life stages, and this may be mediated by modulation of the innate immune response and circadian rhythm. Importantly, our findings suggest that a short period of SR can alleviate the detrimental effects of SF on the cardiac immune response, while the influence of SF on circadian rhythm appears to be more persistent. These findings underscore the importance of good sleep for maintaining cardiac health, particularly during early life stages.


Asunto(s)
Ritmo Circadiano , Inmunidad Innata , Privación de Sueño , Función Ventricular Izquierda , Animales , Ratones , Privación de Sueño/genética , Inmunidad Innata/genética , Ritmo Circadiano/genética , Masculino , Función Ventricular Izquierda/genética , Contracción Miocárdica/genética , Ratones Endogámicos C57BL , Remodelación Ventricular/genética , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...