Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474302

RESUMEN

Our previous research studies have demonstrated the role of microRNA133b (miR133b) in healing the contused spinal cord when administered either intranasally or intravenously 24 h following an injury. While our data showed beneficial effects of exogenous miR133b delivered within hours of a spinal cord injury (SCI), the kinetics of endogenous miR133b levels in the contused spinal cord and rostral/caudal segments of the injury were not fully investigated. In this study, we examined the miR133b dysregulation in a mouse model of moderate unilateral contusion injury at the fifth cervical (C5) level. Between 30 min and 7 days post-injury, mice were euthanized and tissues were collected from different areas of the spinal cord, ipsilateral and contralateral prefrontal motor cortices, and off-targets such as lung and spleen. The endogenous level of miR133b was determined by RT-qPCR. We found that after SCI, (a) most changes in miR133b level were restricted to the injured area with very limited alterations in the rostral and caudal parts relative to the injury site, (b) acute changes in the endogenous levels were predominantly specific to the lesion site with delayed miR133b changes in the motor cortex, and (c) ipsilateral and contralateral hemispheres responded differently to unilateral SCI. Our results suggest that the therapeutic window for exogenous miR133b therapy begins earlier than 24 h post-injury and potentially lasts longer than 7 days.


Asunto(s)
Médula Cervical , Contusiones , MicroARNs , Traumatismos de la Médula Espinal , Animales , Ratones , Contusiones/metabolismo , Modelos Animales de Enfermedad , MicroARNs/metabolismo , MicroARNs/uso terapéutico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Cervical/lesiones
2.
Int J Legal Med ; 138(1): 197-206, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37804331

RESUMEN

Given that combination with multiple biomarkers may well raise the predictive value of wound age, it appears critically essential to identify new features under the limited cost. For this purpose, the present study explored whether the gene expression ratios provide unique time information as an additional indicator for wound age estimation not requiring the detection of new biomarkers and allowing full use of the available data. The expression levels of four wound-healing genes (Arid5a, Ier3, Stom, and Lcp1) were detected by real-time polymerase chain reaction, and a total of six expression ratios were calculated among these four genes. The results showed that the expression levels of four genes and six ratios of expression changed time-dependent during wound repair. The six expression ratios provided additional temporal information, distinct from the four genes analyzed separately by principal component analysis. The overall performance metrics for cross-validation and external validation of four typical prediction models were improved when six ratios of expression were added as additional input variables. Overall, expression ratios among genes provide temporal information and have excellent potential as predictive markers for wound age estimation. Combining the expression levels of genes with ratio-expression of genes may allow for more accurate estimates of the time of injury.


Asunto(s)
Contusiones , Ratas , Animales , Humanos , Ratas Sprague-Dawley , Contusiones/genética , Contusiones/metabolismo , Músculo Esquelético/metabolismo , Cicatrización de Heridas/genética , Biomarcadores/metabolismo
3.
Folia Morphol (Warsz) ; 83(1): 113-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37183514

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a serious trauma to the central nervous system. M1/M2 microglial polarization as well as the following neuroinflammatory response are crucial factors in SCI. Autophagy plays an important role in SCI, but its neuroprotective or neurodegenerative role remains controversial. MATERIALS AND METHODS: Here, we majorly examined the properties of autophagy in SCI and uncovered the regulatory relationship between autophagy and microglial polarization in SCI. RESULTS: In our study, the Basso-Beattie-Bresnahan (BBB) score was declined in SCI. The cervical contusion SCI stimulated a sustaining neuropathic pain-linked phenotype characterized by thermal hyperalgesia as well as mechanical allodynia. It was revealed the structural damage to the spinal cord in SCI. Besides, the expression of microglia markers as well as inflammatory factor were promoted in SCI. Cervical contusion SCI induced autophagy inhibition and nuclear factor kappa-B (NF-κB) activation in mice. More importantly, enhanced autophagy induced by rapamycin suppressed the NF-κB pathway and alleviated cervical contusion SCI-induced neurological function damage in mice. Additionally, rapamycin promoted microglia M2 polarization and improved microglia-mediated inflammatory response. CONCLUSIONS: In conclusion, our study demonstrated that autophagy played a protective role in cervical SCI by promoting microglia polarization toward M2 through the NF-κB pathway. Our study may provide a novel sight for SCI treatment.


Asunto(s)
Médula Cervical , Contusiones , Traumatismos de la Médula Espinal , Ratones , Animales , Microglía/metabolismo , FN-kappa B/metabolismo , Médula Cervical/metabolismo , Sirolimus/metabolismo , Autofagia , Contusiones/metabolismo
4.
Surg Infect (Larchmt) ; 24(9): 773-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37903014

RESUMEN

Background: Severe trauma and hemorrhagic shock lead to persistent anemia. Although biologic gender is known to modulate inflammatory responses after critical illness, the impact of gender on anemia recovery after injury remains unknown. The aim of this study was to identify gender-specific differences in anemia recovery after critical illness. Materials and Methods: Male and proestrus female Sprague-Dawley rats (n = 8-9 per group) were subjected to lung contusion and hemorrhagic shock (LCHS) or LCHS with daily chronic stress (LCHS/CS) compared with naïve. Hematologic data, bone marrow progenitor growth, and bone marrow and liver gene transcription were analyzed on day seven. Significance was defined as p < 0.05. Results: Males lost substantial weight after LCHS and LCHS/CS compared with naïve males, while female LCHS rats did not compared with naive counterparts. Male LCHS rats had a drastic decrease in hemoglobin from naïve males. Male LCHS/CS rats had reduced colony-forming units-granulocyte, -erythrocyte, -monocyte, -megakaryocyte (CFU-GEMM) and burst-forming unit-erythroid (BFU-E) when compared with female counterparts. Naïve, LCHS, and LCHS/CS males had lower serum iron than their respective female counterparts. Liver transcription of BMP4 and BMP6 was elevated after LCHS and LCHS/CS in males compared with females. The LCHS/CS males had decreased expression of bone marrow pro-erythroid factors compared with LCHS/CS females. Conclusions: After trauma with or without chronic stress, male rats demonstrated increased weight loss, substantial decrease in hemoglobin level, dysregulated iron metabolism, substantial suppression of bone marrow erythroid progenitor growth, and no change in transcription of pro-erythroid factors. These findings confirm that gender is an important variable that impacts anemia recovery and bone marrow dysfunction after traumatic injury and shock in this rat model.


Asunto(s)
Anemia , Contusiones , Lesión Pulmonar , Choque Hemorrágico , Femenino , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Choque Hemorrágico/metabolismo , Enfermedad Crítica , Lesión Pulmonar/metabolismo , Contusiones/metabolismo , Hemoglobinas , Hierro , Pulmón
5.
Cell Death Dis ; 14(8): 496, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537168

RESUMEN

Traumatic Brain injury-induced disturbances in mitochondrial fission-and-fusion dynamics have been linked to the onset and propagation of neuroinflammation and neurodegeneration. However, cell-type-specific contributions and crosstalk between neurons, microglia, and astrocytes in mitochondria-driven neurodegeneration after brain injury remain undefined. We developed a human three-dimensional in vitro triculture tissue model of a contusion injury composed of neurons, microglia, and astrocytes and examined the contributions of mitochondrial dysregulation to neuroinflammation and progression of injury-induced neurodegeneration. Pharmacological studies presented here suggest that fragmented mitochondria released by microglia are a key contributor to secondary neuronal damage progression after contusion injury, a pathway that requires astrocyte-microglia crosstalk. Controlling mitochondrial dysfunction thus offers an exciting option for developing therapies for TBI patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Contusiones , Humanos , Enfermedades Neuroinflamatorias , Inflamación/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Contusiones/metabolismo , Mitocondrias/metabolismo , Microglía/metabolismo , Astrocitos/metabolismo
6.
J Neuroinflammation ; 20(1): 118, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210532

RESUMEN

BACKGROUND: Blood-spinal cord barrier (BSCB) disruption is a key event after spinal cord injury (SCI), which permits unfavorable blood-derived substances to enter the neural tissue and exacerbates secondary injury. However, limited mechanical impact is usually followed by a large-scale BSCB disruption in SCI. How the BSCB disruption is propagated along the spinal cord in the acute period of SCI remains unclear. Thus, strategies for appropriate clinical treatment are lacking. METHODS: A SCI contusion mouse model was established in wild-type and LysM-YFP transgenic mice. In vivo two-photon imaging and complementary studies, including immunostaining, capillary western blotting, and whole-tissue clearing, were performed to monitor BSCB disruption and verify relevant injury mechanisms. Clinically applied target temperature management (TTM) to reduce the core body temperature was tested for the efficacy of attenuating BSCB disruption. RESULTS: Barrier leakage was detected in the contusion epicenter within several minutes and then gradually spread to more distant regions. Membrane expression of the main tight junction proteins remained unaltered at four hours post-injury. Many junctional gaps emerged in paracellular tight junctions at the small vessels from multiple spinal cord segments at 15 min post-injury. A previously unnoticed pathological hemodynamic change was observed in the venous system, which likely facilitated gap formation and barrier leakage by exerting abnormal physical force on the BSCB. Leukocytes were quickly initiated to transverse through the BSCB within 30 min post-SCI, actively facilitating gap formation and barrier leakage. Inducing leukocyte transmigration generated gap formation and barrier leakage. Furthermore, pharmacological alleviation of pathological hemodynamic changes or leukocyte transmigration reduced gap formation and barrier leakage. TTM had very little protective effects on the BSCB in the early period of SCI other than partially alleviating leukocyte infiltration. CONCLUSIONS: Our data show that BSCB disruption in the early period of SCI is a secondary change, which is indicated by widespread gap formation in tight junctions. Pathological hemodynamic changes and leukocyte transmigration contribute to gap formation, which could advance our understanding of BSCB disruption and provide new clues for potential treatment strategies. Ultimately, TTM is inadequate to protect the BSCB in early SCI.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Barrera Hematoencefálica/metabolismo , Leucocitos/patología , Contusiones/metabolismo
7.
Glia ; 71(8): 1947-1959, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37096399

RESUMEN

Neural activity and learning lead to myelin sheath plasticity in the intact central nervous system (CNS), but this plasticity has not been well-studied after CNS injury. In the context of spinal cord injury (SCI), demyelination occurs at the lesion site and natural remyelination of surviving axons can take months. To determine if neural activity modulates myelin and axon plasticity in the injured, adult CNS, we electrically stimulated the contralesional motor cortex at 10 Hz to drive neural activity in the corticospinal tract of rats with sub-chronic spinal contusion injuries. We quantified myelin and axonal characteristics by tracing corticospinal axons rostral to and at the lesion epicenter and identifying nodes of Ranvier by immunohistochemistry. Three weeks of daily stimulation induced very short myelin sheaths, axon branching, and thinner axons outside of the lesion zone, where remodeling has not previously been reported. Surprisingly, remodeling was particularly robust rostral to the injury which suggests that electrical stimulation can promote white matter plasticity even in areas not directly demyelinated by the contusion. Stimulation did not alter myelin or axons at the lesion site, which suggests that neuronal activity does not contribute to myelin remodeling near the injury in the sub-chronic period. These data are the first to demonstrate wide-scale remodeling of nodal and myelin structures of a mature, long-tract motor pathway in response to electrical stimulation. This finding suggests that neuromodulation promotes white matter plasticity in intact regions of pathways after injury and raises intriguing questions regarding the interplay between axonal and myelin plasticity.


Asunto(s)
Médula Cervical , Contusiones , Traumatismos de la Médula Espinal , Ratas , Animales , Vaina de Mielina/metabolismo , Médula Cervical/patología , Traumatismos de la Médula Espinal/metabolismo , Axones/patología , Contusiones/metabolismo , Contusiones/patología , Médula Espinal/metabolismo
8.
Int J Legal Med ; 137(3): 875-886, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36797435

RESUMEN

From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.


Asunto(s)
Contusiones , Células Satélite del Músculo Esquelético , Ratas , Animales , Masculino , Miogenina/genética , Miogenina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratas Sprague-Dawley , Músculo Esquelético/metabolismo , Contusiones/metabolismo , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo
9.
Biomolecules ; 12(10)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36291666

RESUMEN

There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-ß plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as ß-APP cleaving enzyme (BACE1) and Glycogen synthase-3-ß (GSK3ß). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Contusiones , MicroARNs , Animales , Ratas , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Glucógeno Sintasa/metabolismo , Ácido Aspártico Endopeptidasas/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , MicroARNs/metabolismo , Placa Amiloide/complicaciones , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Contusiones/complicaciones , Contusiones/metabolismo
10.
Neuroscience ; 503: 45-57, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089165

RESUMEN

Traumatic brain injury (TBI) is the leading cause of death in young adults and the main cause of mortality and disability across all ages worldwide. We previously analyzed the expression profile data of TBI models obtained from the Gene Expression Omnibus (GEO) database and found that the seripina3n mRNA was markedly upregulated in the acute phase of TBI in four mRNA expression profile data sets, indicating that serpina3n may be involved in the pathophysiological process of TBI. Therefore, we further investigated the biological role and molecular mechanism of serpina3n in traumatic brain injury in this study. As a result, the endogenous level of sepina3n was markedly elevated in the cortex around the contusion sit in mice at day 1 and day 3 after TBI. Inhibiting the expression of serpina3n caused aggravation of neutrophil elastase (NE) expression, BBB disruption, and neurological deficit. With the inactivation of NE, even if serpina3n was silenced, the disruption of the BBB was not further aggravated. In vitro experiments further proved that recombinant serpina3n dose-dependently inhibited the activity of recombinant NE. Based on the above, this study demonstrated that the endogenous level of sepina3n was significantly elevated in the cortex around the contusion sit after TBI in mice, which reduced the secondary blood-brain barrier disruption by inhibiting the activity of neutrophil elastase.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Contusiones , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Contusiones/metabolismo , Regulación hacia Abajo , Elastasa de Leucocito/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Proteínas de Fase Aguda/metabolismo
11.
Forensic Sci Int Genet ; 59: 102722, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640312

RESUMEN

Accurate estimation of the wound age is critical in investigating intentional injury cases. Establishing objective and reliable biological indicators to estimate wound age is still a significant challenge in forensic medicine. Therefore, exploring an objective, flexible, and reliable index system selection method for wound age estimation based on next-generation sequencing gene expression profiles is necessary. We randomly divided 63 Sprague-Dawley rats into a control group, seven experimental groups (n = 7 per group), and an external validation group. After rats in the experimental and external validation groups suffered contusions, we sacrificed them at 4, 8, 12, 16, 20, 24, and 48 h after contusion, respectively. We selected 54 genes with the most significant changes between adjacent time points after contusion and defined set A. The Hub genes with time-related expression patterns were set B, C, and D through next-generation sequencing and bioinformatics analysis. Four different machine learning classification algorithms, including logistic regression, support vector machine, multi-layer perceptron, and random forest were used to compare and verify the efficiency of four index systems to estimate the wound age. The best combination for wound age estimation is the Genes ascribed to set A combined with the random forest classification algorithm. The accuracy of external verification was 85.71%. Only one rat was incorrectly classified (4 h post-injury incorrectly classified as 8 h). This study demonstrated the potential advantage of the index system selection based on next-generation sequencing and bioinformatics analysis for wound age estimation.


Asunto(s)
Contusiones , Músculo Esquelético , Animales , Contusiones/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
12.
J Surg Res ; 267: 320-327, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34186308

RESUMEN

Introduction Following major trauma, persistent injury-associated anemia is associated with organ failure, increased length of stay and mortality. We hypothesize that prolonged adrenergic stimulation following trauma is directly responsible for persistent iron dysfunction that impairs anemia recovery. Materials and Methods Naïve rodents, lung contusion and hemorrhagic shock followed by daily handling for 13 d (LCHS), LCHS followed by 6 d of restraint stress and 7 d of daily handling (LCHS/CS-7) and LCHS/CS followed by 13 d of restraint stress with day and/or night disruption (LCHS/CS-14) were sacrificed on day 14. Hemoglobin, plasma, urine, bone marrow/liver inflammatory and erythropoietic markers were analyzed. Results LCHS/CS-14 led to a significant decline in weight gain and persistently elevated plasma and urine inflammatory markers. Liver IL-6, IL-1ß and hepcidin expression were significantly increased following LCHS/CS-14. LCHS/CS-14 also had impaired anemia recovery with reduced plasma transferrin and erythropoietin receptor expression. Conclusion Prolonged chronic stress following trauma/hemorrhagic shock led to sustained inflammation with increased expression of IL-1ß, IL-6 and hepcidin with decreased iron availability for uptake into erythroid progenitor cells and a lack of anemia recovery.


Asunto(s)
Anemia , Contusiones , Choque Hemorrágico , Anemia/complicaciones , Anemia/prevención & control , Animales , Contusiones/metabolismo , Hierro , Ratas , Ratas Sprague-Dawley , Choque Hemorrágico/metabolismo
13.
FASEB J ; 35(7): e21735, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34143440

RESUMEN

Neuroinflammation is recognized as a hallmark of spinal cord injury (SCI). Although neuroinflammation is an important pathogenic factor that leads to secondary injuries after SCI, neuroprotective anti-inflammatory treatments remain ineffective in the management of SCI. Moreover, the molecular signatures involved in the pathophysiological changes that occur during the course of SCI remain ambiguous. The current study investigated the proteins and pathways involved in C5 spinal cord hemi-contusion injury using a rat model by means of 4-D label-free proteomic analysis. Furthermore, two Gene Expression Omnibus (GEO) transcriptomic datasets, Western blot assays, and immunofluorescent staining were used to validate the expression levels and localization of dysregulated proteins. The present study observed that the rat models of SCI were associated with the enrichment of proteins related to the complement and coagulation cascades, cholesterol metabolism, and lysosome pathway throughout the acute and subacute phases of injury. Intriguingly, the current study also observed that 75 genes were significantly altered in both the GEO datasets, including ANXA1, C1QC, CTSZ, GM2A, GPNMB, and PYCARD. Further temporal clustering analysis revealed that the continuously upregulated protein cluster was associated with immune response, lipid regulation, lysosome pathway, and myeloid cells. Additionally, five proteins were further validated by means of Western blot assays and the immunofluorescent staining showed that these proteins coexisted with the F4/80+ reactive microglia and infiltrating macrophages. In conclusion, the proteomic data pertaining to the current study indicate the notable proteins and pathways that may be novel therapeutic targets for the treatment of SCI.


Asunto(s)
Contusiones/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Inmunidad/fisiología , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Células Mieloides/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
14.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466275

RESUMEN

We have augmented a recently introduced method for noninvasive analysis of skin structure and composition and applied it to monitoring of dynamical processes in traumatic bruises. The approach combines diffuse reflectance spectroscopy in visible spectral range and pulsed photothermal radiometry. Data from both techniques are analyzed simultaneously using a numerical model of light and heat transport in a four-layer model of human skin. Compared to the earlier presented approach, the newly introduced elements include two additional chromophores (ß-carotene and bilirubin), individually adjusted thickness of the papillary dermal layer, and analysis of the bruised site using baseline values assessed from intact skin in its vicinity. Analyses of traumatic bruises in three volunteers over a period of 16 days clearly indicate a gradual, yet substantial increase of the dermal blood content and reduction of its oxygenation level in the first days after injury. This is followed by the emergence of bilirubin and relaxation of all model parameters towards the values characteristic for healthy skin approximately two weeks after the injury. The assessed parameter values and time dependences are consistent with existing literature. Thus, the presented methodology offers a viable approach for objective characterization of the bruise healing process.


Asunto(s)
Bilirrubina/análisis , Contusiones/diagnóstico , Contusiones/terapia , Terapia Fototérmica , Tratamiento de Radiofrecuencia Pulsada , Radiometría/métodos , Piel/fisiopatología , Bilirrubina/metabolismo , Contusiones/metabolismo , Femenino , Humanos , Masculino , Oxígeno/sangre , Piel/metabolismo , Espectrofotometría , beta Caroteno
15.
J Surg Res ; 260: 315-324, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373851

RESUMEN

BACKGROUND: This study investigated the molecular mediators of prolonged hematopoietic progenitor cell mobilization a trauma and chronic stress and the role of propranolol in modifying this response. METHODS: Sprague-Dawley rats were randomized to lung contusion (LC), LC plus hemorrhagic shock (LCHS), or LCHS with daily restraint stress (LCHS/CS). Propranolol was administered daily. Bone marrow (BM) and lung expression of high mobility group box 1 (HMGB1), granulocyte colony-stimulating factor (G-CSF), neutrophil elastase, stromal cell-derived factor 1 (SDF-1)/CXR4, and vascular cell adhesion protein 1 (VCAM-1)/very late antigen-4 were measured by real-time polymerase chain reaction. RESULTS: Bone marrow HMGB1, G-CSF, and neutrophil elastase expression were significantly elevated two- to four-fold after LCHS/CS, and all were decreased with the use of propranolol. SDF-1 and VCAM-1 were both significantly decreased after LCHS/CS. CONCLUSIONS: The increased expression of HMGB1 and G-CSF and decreased expression of BM anchoring molecules, SDF-1 and VCAM-1, after LCHS/CS, likely mediates prolonged hematopoietic progenitor cell mobilization. Propranolol's ability to reduce HMGB1, G-CSF, and neutrophil elastase expression suggests that the mobilization of hematopoietic progenitor cells was driven by persistent hypercatecholaminemia.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Contusiones/metabolismo , Células Madre Hematopoyéticas/metabolismo , Lesión Pulmonar/metabolismo , Propranolol/farmacología , Choque Hemorrágico/metabolismo , Estrés Fisiológico/fisiología , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Biomarcadores/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Enfermedad Crónica , Contusiones/tratamiento farmacológico , Ensayo de Inmunoadsorción Enzimática , Células Madre Hematopoyéticas/efectos de los fármacos , Lesión Pulmonar/tratamiento farmacológico , Masculino , Propranolol/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Restricción Física , Choque Hemorrágico/tratamiento farmacológico
16.
Int J Legal Med ; 134(6): 2177-2186, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32909067

RESUMEN

Wound age estimation is a complex, multifactorial issue. It is considered to have great practical significance that combining multi-biomarkers and multi-methods for injury time estimation. We optimized our earlier "up, no change, or down" model by adding data on the expression levels of mRNAs encoding ABHD2, MAD2L2, and ARID5A, and we converted the relative quantitative expression levels of seven genes into a vector rather than a color model. We used Python to derive the cosine similarity (CS) between a test set and the vector matrix; the highest similarity most accurately reflected the injury time. For the optimized model, the internal and external verifications were approximately 0.71 and 0.66, respectively. The good double-blinded results indicated that the model was stable and reliable. In summary, we used a vector matrix and cosine similarities derived by Python to mine the levels of genes expressed in contused skeletal muscle. We are the first to combine several biomarkers and methods for wound age estimation.


Asunto(s)
Contusiones/metabolismo , Proteínas de Unión al ADN/genética , Hidrolasas/genética , Proteínas Mad2/genética , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Animales , Regulación hacia Abajo , Regulación de la Expresión Génica , Masculino , Modelos Animales , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Factores de Tiempo , Regulación hacia Arriba
17.
PLoS One ; 15(6): e0234245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542053

RESUMEN

There are approximately 1.2 million people currently living with spinal cord injury (SCI), with a majority of cases at the cervical level and half involving incomplete injuries. Yet, as most preclinical research has been focused on bilateral thoracic models, there remains a disconnect between bench and bedside that limits translational success. Here, we profile a clinically relevant model of unilateral cervical contusion injury in the mouse (30kD with 0, 2, 5, or 10 second dwell time). We demonstrate sustained behavioral deficits in performance on grip strength, cylinder reaching, horizontal ladderbeam and CatWalk automated gait analysis tasks. Beyond highlighting reliable parameters for injury assessment, we also explored the effect of mouse strain and age on injury outcome, including evaluation of constitutively immunodeficient mice relevant for neurotransplantation and cellular therapy testing. Comparison of C57Bl/6 and immunodeficient Rag2gamma(c)-/- as well as Agouti SCIDxRag2Gamma(c)-/- hybrid mouse strains revealed fine differences in post-injury ipsilateral grip strength as well as total number of rearings on the cylinder task. Differences in post-SCI contralateral forepaw duty cycle and regularity index as measured by CatWalk gait analysis between the two immunodeficient strains were also observed. Further, assessment of young (3-4 months old) and aging (16-17 months old) Rag2gamma(c)-/- mice identified age-related pre-injury differences in strength and rearing that were largely masked following cervical contusion injury; observations that may help interpret previous results in aged rodents as well as human clinical trials. Collectively, the work provides useful insight for experimental design and analysis of future pre-clinical studies in a translational unilateral cervical contusion injury model.


Asunto(s)
Envejecimiento , Vértebras Cervicales/lesiones , Contusiones , Traumatismos de la Médula Espinal , Animales , Contusiones/metabolismo , Contusiones/patología , Contusiones/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ratones , Análisis Multivariante , Neuroquímica , Recuperación de la Función , Especificidad de la Especie , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
18.
Sci Rep ; 10(1): 2744, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066777

RESUMEN

Hyperbaric oxygen (HBO) treatment promotes early recovery from muscle injury. Reactive oxygen species (ROS) upregulation is a key mechanism of HBO, which produces high O2 content in tissues through increased dissolution of oxygen at high pressure. Nitric oxide (NO), a type of ROS, generally stabilizes hypoxia-inducible factor (HIF) 1α and stimulates secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) from endothelial cells and macrophages, which then induces angiogenesis. The purpose of the present study was to investigate whether HBO could promote angiogenesis via induction of NO and induce muscle regeneration in contused rat skeletal muscles. The HBO protocol consisted of 2.5 atmospheres absolute (ATA) 100% oxygen for 120 minutes, once a day for 5 consecutive days. We also evaluated the effects of a ROS inhibitor (NAC) or NOS-specific inhibitor (L-NAME) on HBO. HBO significantly increased NO3-, VEGF, and bFGF levels and stabilized HIF1α within 1 day. HBO promoted blood vessel formation at 3-7 days and muscle healing at 5-7 days after contusion. Administration of both NAC and L-NAME before HBO suppressed angiogenesis and muscle regeneration even after HBO. HBO thus promoted angiogenesis and muscle regeneration mainly through generation of NO in the early phase after muscle contusion injury.


Asunto(s)
Contusiones/terapia , Oxigenoterapia Hiperbárica/métodos , Músculo Esquelético/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico/biosíntesis , Oxígeno/farmacología , Acetilcisteína/farmacología , Inductores de la Angiogénesis , Animales , Contusiones/genética , Contusiones/metabolismo , Contusiones/patología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/agonistas , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Physiol Rep ; 8(3): e14357, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32026570

RESUMEN

To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1ß, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1ß, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1ß, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1ß was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.


Asunto(s)
Músculo Esquelético/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Contusiones/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
20.
Eur J Trauma Emerg Surg ; 46(1): 21-30, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30937460

RESUMEN

OBJECTIVES: Blunt chest (thoracic) trauma (TxT) is known to contribute to the development of secondary pulmonary complications. Of these, acute lung injury (ALI) is common especially in multiply injured patients and might not only be due to the direct trauma itself, but seems to be caused by ongoing and multifactorial inflammatory changes. Nevertheless, the exact mechanisms and contributing factors of the development of ALI following blunt chest trauma are still elusive. METHODS: 60 CL57BL/6N mice sustained either blunt chest trauma combined with laparotomy without further interventions or a double hit (DH) including TxT and cecal ligation puncture (CLP) after 24 h to induce ALI. Animals were killed either 6 or 24 h after the second procedure. Pulmonary expression of inflammatory mediators cxcl1, cxcl5, IL-1ß and IL-6, neutrophil infiltration and lung tissue damage using the Lung Injury Score (LIS) were determined. RESULTS: Next to a moderate increase in other inflammatory mediators, a significant increase in CXCL1, neutrophil infiltration and lung injury was observed early after TxT, which returned to baseline levels after 24 h. DH induced significantly increased gene expression of cxcl1, cxcl5, IL-1ß and IL-6 after 6 h, which was followed by the postponed significant increase in the protein expression after 24 h compared to controls. Neutrophil infiltration was significantly enhanced 24 h after DH compared to all other groups, and exerted a slight decline after 24 h. LIS has shown a significant increase after both 6 and 24 h compared to both control groups as well the late TxT group. CONCLUSION: Early observed lung injury with moderate inflammatory changes after blunt chest trauma recovered quickly, and therefore, may be caused by mechanical lung injury. In contrast, lung injury in the ALI group did not undergo recovery and is closely associated with significant changes of inflammatory mediators. This model may be used for further examinations of contributing factors and therapeutic strategies to prevent ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Sepsis/metabolismo , Traumatismos Torácicos/metabolismo , Heridas no Penetrantes/metabolismo , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Ciego/cirugía , Quimiocina CXCL1/inmunología , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/inmunología , Quimiocina CXCL5/metabolismo , Contusiones/inmunología , Contusiones/metabolismo , Contusiones/patología , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Laparotomía , Ligadura , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/inmunología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones , Traumatismo Múltiple/inmunología , Traumatismo Múltiple/metabolismo , Neutrófilos/inmunología , Neutrófilos/patología , Punciones , Distribución Aleatoria , Sepsis/inmunología , Sepsis/patología , Traumatismos Torácicos/inmunología , Traumatismos Torácicos/patología , Heridas no Penetrantes/inmunología , Heridas no Penetrantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...