Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Curr Top Dev Biol ; 141: 119-147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33602486

RESUMEN

How vertebrates evolved from their invertebrate ancestors has long been a central topic of discussion in biology. Evolutionary developmental biology (evodevo) has provided a new tool-using gene expression patterns as phenotypic characters to infer homologies between body parts in distantly related organisms-to address this question. Combined with micro-anatomy and genomics, evodevo has provided convincing evidence that vertebrates evolved from an ancestral invertebrate chordate, in many respects resembling a modern amphioxus. The present review focuses on the role of evodevo in addressing two major questions of chordate evolution: (1) how the vertebrate brain evolved from the much simpler central nervous system (CNS) in of this ancestral chordate and (2) whether or not the head mesoderm of this ancestor was segmented.


Asunto(s)
Evolución Biológica , Encéfalo , Sistema Nervioso Central , Cordados no Vertebrados , Vertebrados , Animales , Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/embriología , Cordados no Vertebrados/anatomía & histología , Cordados no Vertebrados/embriología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Lampreas/anatomía & histología , Lampreas/crecimiento & desarrollo , Anfioxos/embriología , Cresta Neural , Tiburones/embriología
2.
Curr Top Dev Biol ; 141: 173-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33602488

RESUMEN

During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.


Asunto(s)
Evolución Biológica , Invertebrados/embriología , Cresta Neural/citología , Vertebrados/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cordados no Vertebrados/embriología , Ectodermo/citología , Embrión no Mamífero/citología , Cresta Neural/metabolismo , Placa Neural/metabolismo
3.
Curr Top Dev Biol ; 141: 75-117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33602496

RESUMEN

Hemichordates, along with echinoderms and chordates, belong to the lineage of bilaterians called the deuterostomes. Their phylogenetic position as an outgroup to chordates provides an opportunity to investigate the evolutionary origins of the chordate body plan and reconstruct ancestral deuterostome characters. The body plans of the hemichordates and chordates are organizationally divergent making anatomical comparisons very challenging. The developmental underpinnings of animal body plans are often more conservative than the body plans they regulate, and offer a novel data set for making comparisons between morphologically divergent body architectures. Here I review the hemichordate developmental data generated over the past 20 years that further test hypotheses of proposed morphological affinities between the two taxa, but also compare the conserved anteroposterior, dorsoventral axial patterning programs and germ layer specification programs. These data provide an opportunity to determine which developmental programs are ancestral deuterostome or bilaterian innovations, and which ones occurred in stem chordates or vertebrates representing developmental novelties of the chordate body plan.


Asunto(s)
Evolución Biológica , Cordados no Vertebrados/anatomía & histología , Cordados no Vertebrados/embriología , Animales , Tipificación del Cuerpo , Cordados no Vertebrados/crecimiento & desarrollo , Embrión no Mamífero , Branquias/anatomía & histología , Estadios del Ciclo de Vida , Mesodermo , Filogenia
4.
Nat Commun ; 11(1): 4435, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895385

RESUMEN

Colonial ascidians are the only chordates able to undergo whole body regeneration (WBR), during which entire new bodies can be regenerated from small fragments of blood vessels. Here, we show that during the early stages of WBR in Botrylloides diegensis, proliferation occurs only in small, blood-borne cells that express integrin-alpha-6 (IA6), pou3 and vasa. WBR cannot proceed when proliferating IA6+ cells are ablated with Mitomycin C, and injection of a single IA6+ Candidate stem cell can rescue WBR after ablation. Lineage tracing using EdU-labeling demonstrates that donor-derived IA6+ Candidate stem cells directly give rise to regenerating tissues. Inhibitors of either Notch or canonical Wnt signaling block WBR and reduce proliferation of IA6+ Candidate stem cells, indicating that these two pathways regulate their activation. In conclusion, we show that IA6+ Candidate stem cells are responsible for whole body regeneration and give rise to regenerating tissues.


Asunto(s)
Integrina alfa6/metabolismo , Regeneración/fisiología , Urocordados , Animales , Cordados no Vertebrados/embriología , Expresión Génica , Integrina alfa6/genética , Células Madre/citología , Células Madre/metabolismo , Urocordados/citología , Urocordados/embriología , Urocordados/crecimiento & desarrollo
5.
Proc Natl Acad Sci U S A ; 116(26): 12925-12932, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189599

RESUMEN

A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Cordados no Vertebrados/embriología , Gastrulación/fisiología , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Sistema Nervioso/embriología , Filogenia , Erizos de Mar/embriología
6.
Proc Natl Acad Sci U S A ; 116(17): 8403-8408, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30967509

RESUMEN

The trunk is a key feature of the bilaterian body plan. Despite spectacular morphological diversity in bilaterian trunk anatomies, most insights into trunk development are from segmented taxa, namely arthropods and chordates. Mechanisms of posterior axis elongation (PAE) and segmentation are tightly coupled in arthropods and vertebrates, making it challenging to differentiate between the underlying developmental mechanisms specific to each process. Investigating trunk elongation in unsegmented animals facilitates examination of mechanisms specific to PAE and provides a different perspective for testing hypotheses of bilaterian trunk evolution. Here we investigate the developmental roles of canonical Wnt and Notch signaling in the hemichordate Saccoglossus kowalevskii and reveal that both pathways play key roles in PAE immediately following the completion of gastrulation. Furthermore, our functional analysis of the role of Brachyury is supportive of a Wnt-Brachyury feedback loop during PAE in S. kowalevskii, establishing this key regulatory interaction as an ancestral feature of deuterostomes. Together, our results provide valuable data for testing hypotheses of bilaterian trunk evolution.


Asunto(s)
Tipificación del Cuerpo , Cordados no Vertebrados , Regulación del Desarrollo de la Expresión Génica , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Cordados no Vertebrados/crecimiento & desarrollo , Cordados no Vertebrados/fisiología , Embrión no Mamífero/embriología , Embrión no Mamífero/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores Notch/genética , Receptores Notch/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
7.
Nature ; 520(7548): 474-482, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903629

RESUMEN

The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.


Asunto(s)
Evolución Biológica , Cresta Neural/metabolismo , Vertebrados/embriología , Animales , Proliferación Celular , Cordados no Vertebrados/citología , Cordados no Vertebrados/embriología , Duplicación de Gen/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Cresta Neural/citología , Células Madre/citología , Vertebrados/anatomía & histología , Vertebrados/genética
8.
Dev Biol ; 386(1): 252-63, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24333176

RESUMEN

Defining the organization and temporal onset of key steps in neurogenesis in invertebrate deuterostomes is critical to understand the evolution of the bilaterian and deuterostome nervous systems. Although recent studies have revealed the organization of the nervous system in adult hemichordates, little attention has been paid to neurogenesis during embryonic development in this third major phylum of deuterostomes. We examine the early events of neural development in the enteropneust hemichordate Saccoglossus kowalevskii by analyzing the expression of 11 orthologs of key genes associated with neurogenesis in an expansive range of bilaterians. Using in situ hybridization (ISH) and RT-PCR, we follow the course of neural development to track the transition of the early embryonic diffuse nervous system to the more regionalized midline nervous system of the adult. We show that in Saccoglossus, neural progenitor markers are expressed maternally and broadly encircle the developing embryo. An increase in their expression and the onset of pan neural markers, indicate that neural specification occurs in late blastulae - early gastrulae. By mid-gastrulation, punctate expression of markers of differentiating neurons encircling the embryo indicate the presence of immature neurons, and at the end of gastrulation when the embryo begins to elongate, markers of mature neurons are expressed. At this stage, expression of a subset of neuronal markers is concentrated along the trunk ventral and dorsal midlines. These data indicate that the diffuse embryonic nervous system of Saccoglossus is transient and quickly reorganizes before hatching to resemble the adult regionalized, centralized nervous system. This regionalization occurs at a much earlier developmental stage than anticipated indicating that centralization is not linked in S. kowalevskii to a lifestyle change of a swimming larva metamorphosing to a crawling worm-like adult.


Asunto(s)
Cordados no Vertebrados/embriología , Sistema Nervioso/embriología , Animales , Evolución Biológica , ADN Complementario/metabolismo , Gástrula/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Marcadores Genéticos/genética , Hibridación in Situ , Larva/genética , Neurogénesis , Neuronas/metabolismo , Factores de Tiempo
9.
Nat Commun ; 4: 2713, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24177053

RESUMEN

The origin of the body plan of our own phylum, Chordata, is one of the most fascinating questions in evolutionary biology. Yet, after more than a century of debate, the evolutionary origins of the neural tube and notochord remain unclear. Here we examine the development of the collar nerve cord in the hemichordate Balanoglossus simodensis and find shared gene expression patterns between hemichordate and chordate neurulation. Moreover, we show that the dorsal endoderm of the buccal tube and the stomochord expresses Hedgehog RNA, and it seems likely that collar cord cells can receive the signal. Our data suggest that the endoderm functions as an organizer to pattern the overlying collar cord, similar to the relationship between the notochord and neural tube in chordates. We propose that the origin of the core genetic mechanisms for the development of the notochord and the neural tube date back to the last common deuterostome ancestor.


Asunto(s)
Evolución Biológica , Cordados no Vertebrados/fisiología , Tubo Neural/fisiología , Neurulación , Notocorda/fisiología , Animales , Cordados no Vertebrados/embriología , Clonación Molecular , Endodermo/metabolismo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Filogenia
10.
Dev Genes Evol ; 223(4): 269-78, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23584404

RESUMEN

Amphioxus is a promising model animal for evolutionary and developmental studies. However, as an emerging model organism, amphioxus lacks most molecular techniques applied in other well-developed model animals. Microinjection is a powerful technique for gene manipulation, and thus it undoubtedly is one of useful approaches in the studies of gene function and embryonic development. Although the method has been exploited in Florida and European amphioxus, it still remains to be optimized and introduced into other amphioxus species. In order to introduce the technique into our lab, we followed and optimized the previous description and successfully performed microinjection on unfertilized eggs of Asian amphioxus Branchiostoma belcheri. We made six solutions for practice: 200 mM KCl, 100 ng/µl actin-LacZ or 100 ng/µl actin-RFP vectors, LacZ or RFP vectors without promoter and RFP capped mRNA. More than 99.2 % of eggs injected with KCl were able to be fertilized, 94.3 % of them could hatch normally and 55.9 % survived until 2-day larvae, all of which were nearly equivalent to those obtained from normally fertilized eggs. Embryos injected with two plasmid constructs also showed very high fertilizing and hatching ratios, but normally developing ratios were slightly lower than that of KCl injection. Of those injected embryos, 91.8 % expressed exogenous gene LacZ and 80.5 % exhibited foreign RFP expression, which were driven by a promoter from amphioxus ß-actin gene. The data indicated a successful modified microinjection method for the unfertilized eggs of Asian amphioxus, and those modifications improved the feasibility and efficiency of microinjection on amphioxus.


Asunto(s)
Cordados no Vertebrados/metabolismo , Microinyecciones/métodos , Oocitos/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Técnicas de Transferencia de Gen , Larva/genética , Larva/metabolismo
11.
Evol Dev ; 14(1): 104-15, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23016978

RESUMEN

Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.


Asunto(s)
Tipificación del Cuerpo/genética , Cordados no Vertebrados/embriología , Estratos Germinativos/metabolismo , Lampreas/embriología , ARN Mensajero Almacenado/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXF/genética , Animales , Cordados no Vertebrados/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/embriología , Lampreas/genética , Larva/genética , Larva/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXF/metabolismo , Cigoto/metabolismo
12.
Evol Dev ; 14(2): 178-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23017026

RESUMEN

Genes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Wnt/genética , Secuencia de Aminoácidos , Animales , Embrión de Pollo , Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Evolución Molecular , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas Wnt/metabolismo
13.
Evol Dev ; 14(4): 338-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22765205

RESUMEN

To dissect the molecular mechanism of head specification in the basal chordate amphioxus, we investigated the function of Dkk3, a secreted protein in the Dickkopf family, which is expressed anteriorly in early embryos. Amphioxus Dkk3 has three domains characteristic of Dkk3 proteins-an N-terminal serine rich domain and two C-terminal cysteine-rich domains (CRDs). In addition, amphioxus Dkk3 has a TGFß-receptor 2 domain, which is not present in Dkk3 proteins of other species. As vertebrate Dkk3 proteins have been reported to regulate either Nodal signaling or Wnt/ß-catenin signaling but not both in the same species, we tested the effects of Dkk3 on signaling by these two pathways in amphioxus embryos. Loss of function experiments with an anti-sense morpholino oligonucleotide (MO) against amphioxus Dkk3 resulted in larvae with truncated heads and concomitant loss of expression of anterior gene markers. The resemblance of the headless phenotype to that from upregulation of Wnt/ß-catenin signaling with BIO, a GSK3ß inhibitor, suggested that Dkk3 might inhibit Wnt/ß-catenin signaling. In addition, the Dkk3 MO rescued dorsal structures in amphioxus embryos treated with SB505124, an inhibitor of Nodal signaling, indicating that amphioxus Dkk3 can also inhibit Nodal signaling. In vitro assays in Xenopus animal caps showed that Nodal inhibition is largely due to domains other than the TGFß domain. We conclude that amphioxus Dkk3 regulates head formation by modulating both Wnt/ß-catenin and Nodal signaling, and that these functions may have been partitioned among various vertebrate lineages during evolution of Dkk3 proteins.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cordados no Vertebrados/embriología , Evolución Molecular , Cabeza , Proteína Nodal/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Cordados no Vertebrados/genética , Morfolinos/genética , Morfolinos/farmacología , Proteína Nodal/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/genética , beta Catenina/metabolismo
14.
Development ; 139(11): 2020-30, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535413

RESUMEN

The evolution of the nervous system has been a topic of great interest. To gain more insight into the evolution of the peripheral sensory system, we used the cephalochordate amphioxus. Amphioxus is a basal chordate that has a dorsal central nervous system (CNS) and a peripheral nervous system (PNS) comprising several types of epidermal sensory neurons (ESNs). Here, we show that a proneural basic helix-loop-helix gene (Ash) is co-expressed with the Delta ligand in ESN progenitor cells. Using pharmacological treatments, we demonstrate that Delta/Notch signaling is likely to be involved in the specification of amphioxus ESNs from their neighboring epidermal cells. We also show that BMP signaling functions upstream of Delta/Notch signaling to induce a ventral neurogenic domain. This patterning mechanism is highly similar to that of the peripheral sensory neurons in the protostome and vertebrate model animals, suggesting that they might share the same ancestry. Interestingly, when BMP signaling is globally elevated in amphioxus embryos, the distribution of ESNs expands to the entire epidermal ectoderm. These results suggest that by manipulating BMP signaling levels, a conserved neurogenesis circuit can be initiated at various locations in the epidermal ectoderm to generate peripheral sensory neurons in amphioxus embryos. We hypothesize that during chordate evolution, PNS progenitors might have been polarized to different positions in various chordate lineages owing to differential regulation of BMP signaling in the ectoderm.


Asunto(s)
Evolución Biológica , Cordados no Vertebrados/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurogénesis/fisiología , Sistema Nervioso Periférico/embriología , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Region del Complejo Génico Achaete-Scute/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Clonación Molecular , Cartilla de ADN/genética , Epidermis/embriología , Florida , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso Periférico/metabolismo , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo
15.
Acta Histochem ; 114(4): 386-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21831412

RESUMEN

A Smad nuclear interacting protein 1 (SNIP1) homologous gene was identified in amphioxus. Phylogenic analysis showed that SNIP1 proteins from different species share a highly conserved FHA domain at the C-terminus, but their N-terminus varies remarkably. The genomic structure of SNIP1 varies in different species, especially at the 5' end. Through in situ hybridization, we studied SNIP1 expression patterns in amphioxus and zebrafish embryos. Amphioxus SNIP1 transcripts were specifically located in the notochord in larval and adult stages. In zebrafish, however, snip1 transcripts were specifically located not only in the notochord, but also in the rhombencephalic ventricle, otic vesicles and pectoral fin buds. This is the first report of SNIP1 expression pattern in early development, which clearly shows different expression patterns between invertebrates and vertebrates. Previous studies reported that it is the N-terminal domain of human and mouse SNIP1 that functions to inhibit both TGF-ß and the NF-κB pathways. Therefore, it is most likely that the modification of SNIP1 expression pattern is related to the remarkable evolution in the N-terminal sequence. In addition, the difference in SNIP1 expression pattern between amphioxus and zebrafish implies the role of SNIP1 in the vertebrate body structural innovation of brain, otic vesicles and pectoral fins.


Asunto(s)
Cordados no Vertebrados/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , ARN Mensajero/biosíntesis , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Cordados no Vertebrados/anatomía & histología , Cordados no Vertebrados/embriología , Clonación Molecular , Embrión no Mamífero , Evolución Molecular , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Notocorda/citología , Notocorda/metabolismo , Filogenia , Homología de Secuencia de Aminoácido , Transducción de Señal/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/embriología
16.
Methods Mol Biol ; 770: 423-38, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21805274

RESUMEN

The invertebrate chordate amphioxus (Branchiostoma), which is the most basal living chordate, has become an accepted model for the vertebrate ancestor in studies of development and evolution. Amphioxus resembles vertebrates in regard to morphology, developmental gene expression, and gene function. In addition, the amphioxus genome has representatives of most vertebrate gene families. Although it has not undergone the two rounds of whole genome duplications that occurred early in the vertebrate lineage, the amphioxus genome has retained considerable synteny with vertebrate genomes. Thus, studies of genes and development in amphioxus embryos can reveal the fundamental genetic basis of the vertebrate body plan, giving insights into the developmental mechanisms of such organs as the somites, pharynx, kidney, and the central nervous system. Moreover, amphioxus is very useful for understanding how these characters evolved. This chapter details methods for microinjection of amphioxus eggs with mRNAs or morpholino antisense oligonucleotides to analyze gene networks operating in early development.


Asunto(s)
Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Embrión no Mamífero/metabolismo , Microinyecciones/métodos , Morfolinas/metabolismo , Oligonucleótidos Antisentido/genética , Animales , Cordados no Vertebrados/fisiología , Embrión no Mamífero/fisiología , Femenino , Fertilización In Vitro , Masculino , Microinyecciones/instrumentación , Óvulo/metabolismo , Óvulo/fisiología , Polilisina/química , ARN Mensajero/genética
17.
Dev Biol ; 359(1): 124-136, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21864524

RESUMEN

Possession of paired appendages is regarded as a novelty that defines crown gnathostomes and allows sophisticated behavioral and locomotive patterns. During embryonic development, initiation of limb buds in the lateral plate mesoderm involves several steps. First, the lateral plate mesoderm is regionalized into the cardiac mesoderm (CM) and the posterior lateral plate mesoderm (PLPM). Second, in the PLPM, Hox genes are expressed in a collinear manner to establish positional values along the anterior-posterior axis. The developing PLPM splits into somatic and splanchnic layers. In the presumptive limb field of the somatic layer, expression of limb initiation genes appears. To gain insight into the evolutionary sequence leading to the emergence of paired appendages in ancestral vertebrates, we examined the embryonic development of the ventral mesoderm in the cephalochordate amphioxus Branchiostoma floridae and of the lateral plate mesoderm in the agnathan lamprey Lethenteron japonicum, and studied the expression patterns of cognates of genes known to be expressed in these mesodermal layers during amniote development. We observed that, although the amphioxus ventral mesoderm posterior to the pharynx was not regionalized into CM and posterior ventral mesoderm, the lateral plate mesoderm of lampreys was regionalized into CM and PLPM, as in gnathostomes. We also found nested expression of two Hox genes (LjHox5i and LjHox6w) in the PLPM of lamprey embryos. However, histological examination showed that the PLPM of lampreys was not separated into somatic and splanchnic layers. These findings provide insight into the sequential evolutionary changes that occurred in the ancestral lateral plate mesoderm leading to the emergence of paired appendages.


Asunto(s)
Evolución Biológica , Cordados no Vertebrados/embriología , Lampreas/embriología , Mesodermo/embriología , Animales , Secuencia de Bases , Cartilla de ADN , Genes Homeobox , Hibridación in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Dev Biol ; 354(1): 173-90, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21466800

RESUMEN

One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl2), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl2 disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl2 sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl2 sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.


Asunto(s)
Tipificación del Cuerpo/efectos de los fármacos , Cordados no Vertebrados/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Níquel/farmacología , Animales , Tipificación del Cuerpo/genética , Proteína Morfogenética Ósea 2/clasificación , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 4/clasificación , Proteína Morfogenética Ósea 4/genética , Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Ectodermo/efectos de los fármacos , Ectodermo/embriología , Ectodermo/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endodermo/efectos de los fármacos , Endodermo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/metabolismo , Filogenia , Proteína smad6/clasificación , Proteína smad6/genética , Factores de Tiempo
19.
Genes Genet Syst ; 86(1): 37-46, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21498921

RESUMEN

Amphioxus is a good model organism for understanding the origin and developmental mechanism of vertebrates owing to its important evolutionary position. During the developmental process of amphioxus embryo, the neurula is a crucial stage because of neural tube and notochord formation as well as somite emergence at this stage. In order to isolate genes up-regulated at the neurula stage, we constructed an 11-hour neurula subtracted cDNA library of amphioxus Branchiostoma belcheri and sequenced 204 ESTs representing 82 contigs. Comparative analysis revealed that 55% of those contigs were homologous to various known genes while 45% of them had no significant similarity to any known genes. Those observations imply that the un-identified ESTs might contain some new genes which are involved in the development of amphioxus neurula. Real-time quantitative PCR (RTqPCR) indicated that the expression levels of 14 genes are up-regulated after gastrulation among 20 assayed genes. Of those up-regulated genes, we further cloned and sequenced the full-length of fatty acid binding protein gene (AmphiFABP). The deduced protein sequence was similar to that of vertebrate brain FABP and heart FABP, and in situ hybridization displayed that AmphiFABP, similar to their vertebrate cognates, was expressed not only in nervous system but also in embryonic somite and gut, hinting a multifunctional property of AmphiFABP in amphioxus.


Asunto(s)
Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Secuencia de Bases , Cordados no Vertebrados/metabolismo , Cartilla de ADN/genética , Embrión no Mamífero/metabolismo , Etiquetas de Secuencia Expresada , Proteínas de Unión a Ácidos Grasos/genética , Biblioteca de Genes , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia
20.
Dev Biol ; 353(1): 147-59, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21354126

RESUMEN

The origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear. Here, we show that in the cephalochordate amphioxus Branchiostoma floridae, the germ cell-specific molecular markers Vasa and Nanos become localized to the vegetal pole cytoplasm during oogenesis and are inherited asymmetrically by a single blastomere during cleavage. After gastrulation, this founder cell gives rise to a cluster of progeny that display typical characters of primordial germ cells (PGCs). Blastomeres separated at the two-cell stage grow into twin embryos, but one of the twins fails to develop this Vasa-positive cell population, suggesting that the vegetal pole cytoplasm is required for the formation of putative PGCs in amphioxus embryos. Contrary to the hypothesis that cephalochordates may form their PGCs by epigenesis, our data strongly support a preformation mode of germ cell specification in amphioxus. In addition to the early localization of their maternal transcripts in the putative PGCs, amphioxus Vasa and Nanos are also expressed zygotically in the tail bud, which is the posterior growth zone of amphioxus. Thus, in addition to PGC specification, amphioxus Vasa and Nanos may also function in highly proliferating somatic stem cells.


Asunto(s)
Cordados no Vertebrados/embriología , ARN Helicasas DEAD-box/metabolismo , Células Germinativas/química , Proteínas de Unión al ARN/metabolismo , Animales , Blastómeros/fisiología , Tipificación del Cuerpo , Cordados no Vertebrados/química , Cordados no Vertebrados/genética , ARN Helicasas DEAD-box/genética , Desarrollo Embrionario , Femenino , Células Germinativas/citología , Masculino , Oogénesis , ARN Mensajero/análisis , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...