Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731610

RESUMEN

Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.


Asunto(s)
Apoptosis , Proliferación Celular , Cordyceps , Humanos , Cordyceps/química , Proliferación Celular/efectos de los fármacos , Células HCT116 , Apoptosis/efectos de los fármacos , Adenosina/farmacología , Adenosina/análogos & derivados , Adenosina/química , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Células HL-60 , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral
2.
Arch Microbiol ; 206(6): 259, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739151

RESUMEN

Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.


Asunto(s)
Antioxidantes , Cordyceps , Fermentación , Nucleótidos , Schisandra , Cordyceps/metabolismo , Cordyceps/química , Schisandra/química , Schisandra/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Nucleótidos/metabolismo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno
3.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582477

RESUMEN

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.


Asunto(s)
Antioxidantes , Colitis Ulcerosa , Cordyceps , Pez Cebra , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Células RAW 264.7 , Cordyceps/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/farmacología , Polisacáridos/química , Monosacáridos/análisis , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673866

RESUMEN

In recent years, there has been increasing interest in utilizing Traditional Chinese Medicine principles and natural bioactive compounds to combat age-related ailments and enhance longevity. A Cordyceps sinensis mycelium hydroethanolic extract (CsEx), which was standardized in cordycepin and adenosine using UHPLC-DAD, was investigated for its adaptogenic properties using in vitro assays and a double-blind, placebo-controlled clinical trial involving 40 subjects. The CsEx demonstrated activity at a concentration of 0.0006%, significantly increasing sirtuin expression (SirT1: +33%, SirT3: +10%, SirT6: +72%, vs. CTR, p < 0.05) and NAD+ synthesis in HaCat cells (+20% vs. CTR, p < 0.001). Moreover, the CsEx boosted ATP production by 68% in skin cells, correlating with higher skin energy values (+52.0% at D28, p < 0.01) in the clinical trial. Additionally, CsEx notably reduced cytosolic reactive oxygen species (ROS) by 30% in HaCaT cells (p < 0.05) and enhanced collagen production both in vitro (+69% vs. CTR, p < 0.01) and in vivo (+10% vs. D0, p < 0.01), confirmed by ultrasound examination. Furthermore, CsEx's stimulation of fibroblasts, coupled with its antioxidant and energizing properties, led to a significant reduction in wrinkles by 28.0% (D28, p < 0.001). This study underscores Cordyceps sinensis hydroethanolic extract's potential in regulating skin cell energy metabolism and positively influencing the mechanisms associated with skin longevity control.


Asunto(s)
Cordyceps , NAD , Sirtuinas , Piel , Cordyceps/química , Cordyceps/metabolismo , Humanos , NAD/metabolismo , Piel/metabolismo , Piel/efectos de los fármacos , Sirtuinas/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Femenino , Línea Celular , Longevidad/efectos de los fármacos , Adulto , Envejecimiento de la Piel/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Persona de Mediana Edad
5.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580687

RESUMEN

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Asunto(s)
Cordyceps , Adulto , Humanos , Masculino , Femenino , Cordyceps/química , Desoxiadenosinas/farmacología , Adenosina/metabolismo , Adyuvantes Inmunológicos/farmacología , Hígado , Inmunidad
6.
Phytochemistry ; 222: 114074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604324

RESUMEN

Ustiloxins I-M (1-5), five undescribed cyclopeptides bearing a 15-membered macrocyclic skeleton, were isolated from Cordyceps militaris. The structures of 1 and 5 were identified by spectroscopic and crystallographic methods, whereas the structures of 2-4 were assigned by spectroscopic and computational approaches. Biological evaluation of all the compounds toward human triple-negative breast cancer cells revealed that compounds 4 and 5 are toxic with IC50 values of 64.29 µM and 28.89 µM, respectively.


Asunto(s)
Cordyceps , Péptidos Cíclicos , Cordyceps/química , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Humanos , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga
7.
J Integr Med ; 22(2): 102-114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494355

RESUMEN

Atherosclerosis is a leading cause of mortality and morbidity worldwide. Despite the challenges in managing atherosclerosis, researchers continue to investigate new treatments and complementary therapies. Cordyceps is a traditional Chinese medicine that has recently gained attention as a potential therapeutic agent for atherosclerosis. Numerous studies have demonstrated the effectiveness of cordyceps in treating atherosclerosis through various pharmacological actions, including anti-inflammatory and antioxidant activities, lowering cholesterol, inhibiting platelet aggregation, and modulating apoptosis or autophagy in vascular endothelial cells. Notably, the current misuse of the terms cordyceps and Ophiocordyceps sinensis has caused confusion among researchers, and complicated the current academic research on cordyceps. This review focuses on the chemical composition, pharmacological actions, and underlying mechanisms contributing to the anti-atherosclerotic effects of cordyceps and the mycelium of Ophiocordyceps spp. This review provides a resource for the research on the development of new drugs for atherosclerosis from cordyceps. Please cite this article as: Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. J Integr Med. 2024; 22(2): 102-114.


Asunto(s)
Aterosclerosis , Cordyceps , Humanos , Cordyceps/química , Células Endoteliales , Medicina Tradicional China , Aterosclerosis/tratamiento farmacológico , Apoptosis
8.
Food Funct ; 15(8): 4010-4020, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38501161

RESUMEN

Cordyceps sinensis is a parasitic fungus known to induce immune responses. The impact of Cordyceps supplementation on stem cell homing and expansion to human skeletal muscle after exercise remains unexplored. In this study, we examined how pre-exercise Cordyceps supplementation influences cell infiltration, CD34+ cell recruitment, and Pax7+ cell expansion in human skeletal muscle after high-intensity interval exercise (HIIE) on a cycloergometer. A randomized, double-blind, placebo-controlled crossover study was conducted with 14 young adults (age: 24 ± 0.8 years). A placebo (1 g cornstarch) and Cordyceps (1 g Cordyceps sinensis) were administered before exercise (at 120% maximal aerobic power). Multiple biopsies were taken from the vastus lateralis for muscle tissue analysis before and after HIIE. This exercise regimen doubled the VEGF mRNA in the muscle at 3 h post-exercise (P = 0.006). A significant necrotic cell infiltration (+284%, P = 0.05) was observed 3 h after HIIE and resolved within 24 h. This response was substantially attenuated by Cordyceps supplementation. Moreover, we observed increases in CD34+ cells at 24 h post-exercise, notably accelerated by Cordyceps supplementation to 3 h (+51%, P = 0.002). This earlier response contributed to a four-fold expansion in Pax7+ cell count, as demonstrated by immunofluorescence double staining (CD34+/Pax7+) (P = 0.01). In conclusion, our results provide the first human evidence demonstrating the accelerated resolution of exercise-induced muscle damage by Cordyceps supplementation. This effect is associated with earlier stem cell recruitment into the damaged sites for muscle regeneration.


Asunto(s)
Cordyceps , Estudios Cruzados , Ejercicio Físico , Músculo Esquelético , Humanos , Cordyceps/química , Adulto Joven , Masculino , Ejercicio Físico/fisiología , Adulto , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Método Doble Ciego , Células Madre/efectos de los fármacos , Antígenos CD34/metabolismo , Femenino , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
9.
Aging (Albany NY) ; 16(7): 5887-5904, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38517396

RESUMEN

Acute kidney injury (AKI) is associated with immune cell activation and inflammation. However, the putative pathogenic mechanisms of this injury have not been thoroughly investigated. Natural killer (NK) cells play an important role in immune regulation; however, whether NK cells regulate AKI remains unclear. Cordyceps sinensis (CS), a modern Chinese patented medicine preparation, has been widely used in treating patients with chronic kidney disease (CKD) owing to its anti-inflammatory effects and maintenance of immune homeostasis. Whether 2'-deoxyadenosine, a major active component in CS, can ameliorate renal AKI by regulating immunity, particularly in NK cells, has not been reported. This study is the first to demonstrate how NK cells promote AKI by releasing perforin, interferon-gamma (IFN-γ) and other inflammatory factors in vivo and in vitro. Differential gene expression between AKI and normal tissues was assessed using bioinformatic analyses. Quantitative real-time PCR, western blotting, and immunohistochemical staining were used to detect target protein mRNA and protein expression. Levels of inflammatory factors were measured using enzyme-linked immunosorbent assay. We found the high doses of the 2'-deoxyadenosine treatment significantly alleviated FA-induced renal damage in vivo, and alleviated the NK cells of renal injury by activating the STING/IRF3 pathway to inhibit perforin release in vitro. The results showed that 2'-deoxyadenosine could mitigate AKI by downregulating the activity of NK cells (by decreasing the expressions of perforin and IFN-γ) and inhibiting the stimulator of interferon genes and phosphorylated IFN regulatory factor 3. This may provide valuable evidence supporting the clinical use of CS in treating patients with AKI.


Asunto(s)
Lesión Renal Aguda , Cordyceps , Factor 3 Regulador del Interferón , Células Asesinas Naturales , Proteínas de la Membrana , Perforina , Transducción de Señal , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Animales , Cordyceps/química , Perforina/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Masculino , Interferón gamma/metabolismo , Ratones Endogámicos C57BL
10.
Anal Bioanal Chem ; 416(8): 1883-1906, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367042

RESUMEN

In this paper, we establish an in situ visualization analysis method to image the spatial distribution of metabolites in different parts (sclerotium, coremium) and different microregions of Cordyceps cicadae (C. cicadae) to achieve the in situ visual characterization of tissues for a variety of metabolites such as nucleosides, amino acids, polysaccharides, organic acids, fatty acids, and so on. The study included LC-MS chemical composition identification, preparation of C. cicadae tissue sections, DEDI-MSI analysis, DESI combined with Q-TOF/MS to obtain high-resolution imaging of mass-to-charge ratio and space, imaging of C. cicadae in positive-negative ion mode with a spatial resolution of 100 µm, and localizing and identifying its chemical compositions based on its precise mass. A total of 62 compounds were identified; nucleosides were mainly distributed in the coremium, L-threonine and DL-isoleucine, and other essential amino acids; peptides were mainly distributed in the sclerotium of C. cicadae; and the rest of the amino acids did not have a clear pattern; sugars and sugar alcohols were mainly distributed in the coremium of C. cicadae; organic acids and fatty acids were distributed in the nucleus of C. cicadae more than in the sclerotium, and the mass spectrometry imaging method is established in the research. The mass spectrometry imaging method established in this study is simple and fast and can visualize and analyse the spatial distribution of metabolites of C. cicadae, which is of great significance in characterizing the metabolic network of C. cicadae, and provides support for the quality evaluation of C. cicadae and the study of the temporal and spatial metabolic network of chemical compounds.


Asunto(s)
Cordyceps , Distribución Tisular , Espectrometría de Masas , Cordyceps/química , Cordyceps/metabolismo , Nucleósidos/química , Ácidos Grasos/metabolismo , Aminoácidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
11.
Bioorg Chem ; 144: 107169, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330722

RESUMEN

Four undescribed compounds including one aromatic glucoside derivative, cordyceglycoside A (1), one new isoleucine derivative inner salt, cordycepisosalt A (2), a rare four-membered lactam, cinerealactam B (3), and one sesquiterpene derivative, cordycepsetp A (4), together with six known compounds were isolated from Cordyceps militaris. The structures including absolute configurations of these new compounds, were unambiguously elucidated by spectroscopic data analysis and single crystal X-ray diffraction. Biological evaluation of compounds 1-4 showed that 3 displays anti-renal fibrotic activities in TGF-ß1 induced NRK-52e cells. Furthermore, DARTS coupled with LC-MS/MS analysis was used to identify candidate target proteins for 3. Subsequently, C1qbp knockdown using siRNA allowed us to validate the target protein of 3.


Asunto(s)
Cordyceps , Cordyceps/química , Cordyceps/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Análisis Espectral , Fibrosis
12.
Int J Biol Macromol ; 260(Pt 1): 129336, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224811

RESUMEN

Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.


Asunto(s)
Cordyceps , Cordyceps/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Polisacáridos/química , Fermentación , Hipoglucemiantes/metabolismo
13.
J Pharm Biomed Anal ; 239: 115879, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38048742

RESUMEN

Cordyceps Sinensis, renowned for its diverse pharmacological properties and the rarity of its natural species, faces significant challenges due to rampant adulteration by counterfeit products. Consequently, there is a crucial need to reliably identify Cordyceps species to ensure their quality and efficacy. While current analytical techniques predominantly rely on LC-MS, there remains a notable deficiency and substantial demand for the development of a unified, reproducible, and fast method suitable for commercial applications. In this study, we employed a cost-effective and straightforward approach utilizing headspace GC-MS to authenticate Cordyceps sinensis. This method enables the comprehensive analysis of the chemical profile, facilitating the identification of quality and authenticity in Cordyceps samples. Through a comparative analysis of the chemical profiles of seven authentic Cordyceps samples with seven other Cordyceps samples, we propose a Quality Assessment System for Authentic Cordyceps, encompassing the following criteria: 1) the presence of 29 compounds commonly found in authentic Cordyceps within the chemical profile, and 2) the area ratio of 3-methylbutanal to 2-methylbutanal falling within the range of 2.09-3.01. This method exhibits considerable promise as a standardized, reproducible, and expeditious technique for the quality assessment and authentication of Cordyceps.


Asunto(s)
Cordyceps , Cordyceps/química , Cromatografía de Gases y Espectrometría de Masas , Contaminación de Medicamentos
14.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067475

RESUMEN

Cordyceps represent a valuable class of medicinal fungi with potential utilization. The overexploitation and resource scarcity of Cordyceps sinensis (CS) have led to the emergence of Cordyceps such as Cordyceps militaris (CM) and Cordyceps cicadae (CC) as substitutes. The medicinal value of CS is often considered superior to other Cordyceps, potentially owing to differences in active ingredients. This study aimed to evaluate the differences in the composition and abundance of the primary and secondary metabolites of CS and its substitutes by untargeted metabolomics. A total of 4671 metabolites from 18 superclasses were detected. CS and its substitutes were rich in amino acids, lipids, organic acids, and their derivatives. We statistically analyzed the metabolites and found a total of 285 differential metabolites (3'-Adenylic acid, O-Adipoylcarnitine, L-Dopachrome, etc.) between CS and CC, CS and CM, and CM and CC, which are potential biomarkers. L-glutamate and glycerophospholipids were differential metabolites. A KEGG enrichment analysis indicated that the tyrosine metabolic pathway and tryptophan metabolism pathway are the most differentially expressed pathways among the three Cordyceps. In contrast, CS was enriched in a higher abundance of most lipid metabolites when compared to CM and CC, which may be an indispensable foundation for the pharmacological functions of CS. In conclusion, systematic, untargeted metabolomics analyses for CS and other Cordyceps have delivered a precious resource for insights into metabolite landscapes and predicted potential components of disease therapeutics.


Asunto(s)
Cordyceps , Cordyceps/química , Cromatografía Líquida de Alta Presión , Metabolómica
15.
J Antibiot (Tokyo) ; 76(12): 735-740, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37789127

RESUMEN

Two new diketopiperazines, namely samsoniellain A (1) and samsoniellain B (2), together with two known compounds (3, 4) were isolated from Cordyceps fungus Samsoniella sp. XY4. The planar structures of 1 and 2 were determined by HRESIMS, 1D and 2D NMR spectroscopy. The absolute configurations of 1 and 2 were determined by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Results of antimicrobial activity indicated that compound 2 showed weak bacteriostatic activities against S. typhimurium χ 8956, H. influenza ATCC 10211, MRSA 2024 with the MIC values of 128, 256, and 256 µg ml-1, respectively. This is the first report about secondary metabolites of Samsoniella sp.


Asunto(s)
Cordyceps , Hypocreales , Cordyceps/química , Dicetopiperazinas/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
16.
J Pharm Biomed Anal ; 235: 115603, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37542829

RESUMEN

Cordyceps sinensis is a precious medicinal food which has been successfully cultivated indoors. It remains to be investigated for a simultaneous comparison on aqueous components of natural and cultivated samples. Herein, an approach of quantitative nuclear magnetic resonance (qNMR) analysis combined with global spectral deconvolution (GSD) was established for simultaneous quantification of 26 aqueous components in C. sinensis. Processed by GSD, the distorted baselines of 1H NMR spectra were greatly improved, and overlapped signals were also well separated so as to achieve accurate identification and quantitation of components in C. sinensis. Method validation by UHPLC-QTOF-MS and TOF-SIMS analysis revealed that qNMR combined with GSD is a reliable approach for simultaneous quantification of multiple components including characteristic markers of glutamine, GABA and trehalose in authentic and fake C. sinensis. The well-established qNMR approach can be used for quality assessment of natural and cultivated C. sinensis as well as differentiation from fake ones.


Asunto(s)
Cordyceps , Cordyceps/química , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Agua
17.
Int J Med Mushrooms ; 25(6): 41-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522532

RESUMEN

Cordyceps militaris is a medicinal and edible mushroom. Researchers often add exogenous substances to the culture medium to increase the active substance content in C. militaris. However, the effect of earth elements on the active substance content in C. militaris and its antioxidant effects have not been reported. In this study, the active substance content in C. militaris treated with lanthanum nitrate was determined using high-performance liquid chromatography and ultraviolet spectrophotometry, and the effect on the antioxidant capacity of C. militaris after lanthanum nitrate spraying was further explored. The results showed that, in the experimental concentration range, the two concentrations of 10 mg/L and 50 mg/L had a significant influence on the active substance content of C. militaris. When the concentration of lanthanum nitrate was 10 mg/L, the synthesis of pentostatin and cordycepin was promoted. When the concentration of lanthanum nitrate was 50 mg/L, it significantly promoted the synthesis of cordycepin, and the ferric-reducing power and DPPH· scavenging rate of C. militaris treated at this concentration were significantly higher than those of the control group. However, lanthanum nitrate had no significant effect on ergosterol synthesis (P > 0.05). Finally, considering that the residual amount of lanthanum in C. militaris and the residual amount of lanthanum in 50 mg/L lanthanum nitrate-treated C. militaris is within the allowable daily intake of 4.2 mg for humans, the optimal concentration of lanthanum nitrate-treated C. militaris is 50 mg/L.


Asunto(s)
Agaricales , Cordyceps , Humanos , Antioxidantes/farmacología , Lantano/farmacología , Cordyceps/química , Desoxiadenosinas/análisis
18.
J Nat Med ; 77(4): 986-991, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515674

RESUMEN

Chinese cordyceps, also known as Dong-Chong-Xia-Cao, is widely recognized as a famous precious tonic herb, and used as traditional Chinese medicine for centuries. It is mainly used for regulating the immune system and improving functions of the lung and kidney, with anti-tumor, anti-inflammatory, and anti-diabetic activities. Due to its rarity and preciousness, a few chemical components are isolated and identified. Moreover, most of them are common chemical components and widely distributed in other natural resources, such as nucleosides, sterols, fatty acids, sugar alcohols, and peptides. Therefore, a large number of active substances of Chinese cordyceps is still unclear. During our search for chemical constituents of Chinese cordyceps, a new thiazole alkaloid, cordythiazole A (1), was isolated and identified. Its structure was elucidated by comprehensive spectroscopic analysis and single-crystal X-ray diffraction analysis. This is the first report of the presence of thiazole alkaloid in Chinese cordyceps, which adds a new class of metabolite of Chinese cordyceps. Furthermore, a putative biosynthesis pathway of cordythiazole A was proposed based on possible biogenic precursor, genes, and literatures. In addition, it showed α-glucosidase inhibitory activity with potency close to that of acarbose. The discovery of cordythiazole A with α-glucosidase inhibitory activity adds a new class of potential anti-diabetes ingredient in Chinese cordyceps.


Asunto(s)
Alcaloides , Antineoplásicos , Cordyceps , Cordyceps/química , alfa-Glucosidasas , Alcaloides/farmacología
19.
Biotechnol Appl Biochem ; 70(6): 1925-1940, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37455564

RESUMEN

A new exopolysaccharide component named as PC-EPS was isolated from Cordyceps cicadae, and its structure was determined. PC-EPS was identified to be constituted of mannose, glucose, and galactose (28.84:1:19.42), with an average molecular weight of 3.72 × 106  Da, according to the results of monosaccharide composition, Fourier transform infrared, nuclear magnetic resonance, periodate oxidation and Smith degradation, and methylation studies. According to structural characterization, PC-EPS's connection type was made up of →6) -α-d-Manp (1→, →2) -ß-d-Manp (1→, →4) -α-d-Manp (1→, →2) -α-d-Galf (1→, and →4) -α-d-Galp (1→. PC-EPS may significantly increase phagocytosis and RAW264.7 cell proliferation. Additionally, by boosting intracellular lysozyme, cellular acid phosphatase, and cellular superoxide dismutase enzyme concentrations, as well as by promoting the generation of cellular NO, it is the potential to regulate the immunological activity of RAW264.7 cells. Additionally, the effects of PC-EPS on RAW264.7 cells increased their capacities to create tumor necrosis factor-α and interleukin 6 cytokines, all of which suggested that PC-EPS had the potential to improve immunomodulatory activity.


Asunto(s)
Cordyceps , Citocinas , Animales , Ratones , Cordyceps/química , Células RAW 264.7 , Factor de Necrosis Tumoral alfa , Polisacáridos/farmacología , Polisacáridos/química
20.
Phytochemistry ; 212: 113743, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269936

RESUMEN

Cordyceps is a genus of ascomycete fungi with some of them being edible and/or having a long tradition in Chinese medicine. The chemical characterization of a solvent extract of the entomopathogenic fungus Cordyceps bifusispora afforded four undescribed coumarins, bifusicoumarin A-D (1-4), along with previously reported metabolites (5-8). Structural elucidation was performed via NMR, UV and HRMS analyses, X-ray single crystal diffraction and experimental ECD. A high throughput resazurin reduction assay, that measures cell viability, indicated that 5 has a IC50 between 1 and 15 µM for several assayed tumor lines. Moreover, a protein-interaction network indicated that C. bifusispora is a promising source of additional antitumor metabolites based on SwissTargetPrediction software predictions.


Asunto(s)
Antineoplásicos , Cordyceps , Cordyceps/química , Cordyceps/metabolismo , Antineoplásicos/farmacología , Solventes , Supervivencia Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...