Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
PLoS One ; 19(6): e0304614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870218

RESUMEN

Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Cuerpos Fructíferos de los Hongos/química , Quitina/química , Quitina/metabolismo , Pared Celular/química , Coriolaceae/metabolismo , Coriolaceae/química , Quitosano/química , Fuerza Compresiva , Glucanos/química , Glucanos/metabolismo , Porosidad
2.
Int J Biol Macromol ; 272(Pt 1): 132543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788870

RESUMEN

Some macrofungi have a long history of being used as traditional or folk medicines, making significant contributions to human health. To discover bioactive molecules with potential anticancer properties, a homogeneous heteropolysaccharide (FOBP90-1) was purified from the medicinal macrofungus Fomitopsis officinalis. FOBP90-1 was found to have a molecular weight of 2.87 × 104 g/mol and mainly consist of →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, →6)-ß-d-Glcp-(1→, α-d-Manp-(1→, and 3-O-Me-α-l-Fucp-(1→ according to UV, FT-IR, methylation analysis, and NMR data. In addition to its structural properties, FOBP90-1 displayed anticancer activity in zebrafish models. The following mechanistic analysis discovered that the in vivo antitumor effect was linked to immune activation and angiogenesis inhibition. These effects were mediated by the interactions of FOBP90-1 with TLR-2, TLR-4, PD-L1, and VEGFR-2, as determined through a series of experiments involving cells, transgenic zebrafish, molecular docking simulations, and surface plasmon resonance (SPR). All the experimental findings have demonstrated that FOBP90-1, a purified fungal polysaccharide, is expected to be utilized as a cancer treatment agent.


Asunto(s)
Antineoplásicos , Coriolaceae , Polisacáridos Fúngicos , Pez Cebra , Animales , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Humanos , Coriolaceae/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Simulación del Acoplamiento Molecular
3.
J Biotechnol ; 387: 44-48, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582405

RESUMEN

The biocatalytic aerobic "in-water" reduction of anthranilic acid to 2-aminobenzaldehyde by growing cultures of the basidiomycetous white-rot fungus Bjerkandera adusta has been studied. The high specific activity of Bjerkandera adusta towards the carboxylic group of anthranilic acid that allows avoiding the formation of the corresponding alcohol has been demonstrated using different substrate concentrations. The presence of ethanol as co-solvent allows increasing the yield of target product. In contrast to chemical reducing agents that usually yield 2-aminobenzyl alcohol, an overreduction of anthranilic acid is completely suppressed by the fungus and gives the target flavor compound in satisfactory preparative yields. It was shown that the activity of Bjerkandera adusta towards anthranilic acid does not apply to its m- and p-isomers.


Asunto(s)
Benzaldehídos , ortoaminobenzoatos , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , Benzaldehídos/química , Benzaldehídos/metabolismo , Oxidación-Reducción , Coriolaceae/metabolismo , Coriolaceae/química
4.
Int J Biol Macromol ; 267(Pt 2): 131320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569989

RESUMEN

Macrofungi, a class of unique natural resources, are gaining popularity owing to their potential therapeutic benefits and edibility. From Fomitopsis officinalis, a medicinal macrofungus with anticancer activity, a homogeneous heteropolysaccharide (FOBP50-1) with a molecular weight of 2.21 × 104 g/mol has been extracted and purified. FOBP50-1 was found to be composed of 3-O-methylfucose, fucose, mannose, glucose, and galactose with a ratio of 1: 6.5: 4.4: 8.1: 18.2. The sugar fragments and structure of FOBP50-1 were investigated, which included →6)-α-d-Galp-(1→, →2,6)-α-d-Galp-(1→, →3)-α-l-Fucp-(1→, α-d-Glcp-(1→, →3)-ß-d-Manp-(1→, →6)-ß-d-Manp-(1→, 3-O-Me-α-l-Fucp-(1→, according to the UV, FT-IR, GC-MS, and NMR data. Besides the structure elucidation, FOBP50-1 showed promising antitumor activity in the zebrafish assays. The following mechanism examination discovered that FOBP50-1 interacted with TLR-4, PD-1, and VEGF to activate immunity and inhibit angiogenesis according to a series of cell, transgenic zebrafish, and surface plasmon resonance (SPR) experiments. The KD values indicating the association of FOBP50-1 with TLR-4, PD-1, and VEGF, were 4.69 × 10-5, 7.98 × 10-6, 3.04 × 10-6 M, respectively, in the SPR experiments. All investigations have demonstrated that the homogenous fungal polysaccharide FOBP50-1 has the potential to be turned into a tumor immunotherapy agent.


Asunto(s)
Inhibidores de la Angiogénesis , Antineoplásicos , Polisacáridos Fúngicos , Pez Cebra , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/aislamiento & purificación , Humanos , Coriolaceae/química , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones , Angiogénesis
5.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38640440

RESUMEN

Fomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed. Here we used metagenomics and metatranscriptomics to analyse the microbial community associated with healthy living and decomposing F. fomentarius fruiting bodies to assess the functional potential of the fruiting body-associated microbiome and to determine the main players involved in fruiting body decomposition. F. fomentarius sequences in the metagenomes were replaced by bacterial sequences as the fruiting body decomposed. Most CAZymes expressed in decomposing fruiting bodies targeted components of the fungal cell wall with almost all chitin-targeting sequences, plus a high proportion of beta-glucan-targeting sequences, belonging to Arthropoda. We suggest that decomposing fruiting bodies of F. fomentarius represent a habitat rich in bacteria, while its decomposition is primarily driven by Arthropoda. Decomposing fruiting bodies thus represent a specific habitat supporting both microorganisms and microfauna.


Asunto(s)
Artrópodos , Ascomicetos , Coriolaceae , Microbiota , Animales , Microbiota/genética , Cuerpos Fructíferos de los Hongos , Bacterias/genética
6.
Molecules ; 29(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257335

RESUMEN

Medium additives have been shown to affect the synthesis of active products in fungi. This study investigated the effects of corn stalk, poplar sawdust, Tween-80, and oleic acid on mycelial biomass and physicochemical properties, as well as the bioactivity of polysaccharides, including exopolysaccharides (EPS) and intracellular polysaccharides (IPS), in the submerged culture of Bjerkandera fumosa. Results showed that the addition of corn stalk or poplar sawdust increased the production of EPS but decreased the production of IPS; Tween-80 had less effect on the production of EPS and IPS; and oleic acid stimulated polysaccharide production significantly. Polysaccharide property analysis showed that the addition of corn stalk or poplar sawdust promoted the production of high-molecular-weight components in polysaccharides and changed the monosaccharide composition of polysaccharides, as well as increased the mannose, glucuronic acid, and xylose contents of IPS. Tween-80 and oleic acid also changed the molecular weight distribution of polysaccharides but only slightly affected the composition of monosaccharides. The bioactivity assay indicated that the polysaccharides obtained by adding corn stalk possessed high hydroxyl radical scavenging and antitumor activities. The effect of poplar sawdust was slightly weaker than that of corn stalk. EPS and IPS obtained from a culture with Tween-80 and oleic acid possessed low antioxidant activity. Moreover, their antitumor activity was improved and lost, respectively. The results obtained in this work are useful for improving the understanding of the optimization and regulation of bioactive polysaccharide production in the submerged culture of B. fumosa.


Asunto(s)
Coriolaceae , Ácido Oléico , Populus , Polisorbatos , Metabolismo de los Hidratos de Carbono , Monosacáridos , Polisacáridos/farmacología
7.
Phytochem Anal ; 35(2): 369-379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37859582

RESUMEN

INTRODUCTION: Fungal species are an attractive resource for physiologically functional food and drug precursor. Fomes officinalis Ames, a medicinal fungus, is traditionally used as a folk medicine in traditional Chinese medicine prescription for the therapy of cough and asthma. The water-soluble substances in Chinese herbal medicines are likely to play an important physiological function. However, information on probing and identifying chemical components of the aqueous extract of Fomes officinalis Ames (AFO) remains unknown. OBJECTIVE: This study was conducted to screen and characterise the chemical components of AFO. MATERIAL AND METHODS: An effective and sensitive ultrahigh-performance liquid chromatography tandem quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) method with the Full MS/PIL/dd-MS2 acquisition approach was applied for the profiling of chemical components in AFO. An HSS T3 column was used for component separation, and a strategy of simultaneous targeted and untargeted multicomponent characterisation was implemented. Multiple identification approaches were used, including accurate molecular mass and elemental composition matching, literature and database searching, and fragmentation rules elucidation. RESULTS: A total of 115 components, including 20 amino acids and derivatives, six nucleobases, nine nucleosides, 75 dipeptides, two tripeptides, and three other components, were tentatively identified. Among them, the targeted exploring method screened six nucleobases and nine nucleosides including modified nucleosides. To our best knowledge, this is the first time a report has been done on the presence of the 115 compounds in AFO. CONCLUSION: Profiling and characterisation compounds of AFO enriched its material basis, which would lay the foundation for improving potential medicinal and nutritional values and effecting comprehensive quality control of Fomes officinalis Ames.


Asunto(s)
Coriolaceae , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Aminoácidos , Bases de Datos Factuales
8.
Int J Med Mushrooms ; 25(3): 21-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37017659

RESUMEN

The tough, hoof-shaped fruiting bodies of the tinder conk mushroom, Fomes fomentarius (L.) Fr. (Polyporaceae, Agaricomycetes), were traditionally used all over the world as tinder to start fire, for ritual purposes, to make artworks like clothing, frames, ornaments, and also to cure various human diseases (wounds, gastro-intestinal disorders, liver-related problems, inflammations, various cancers, etc.). The first wave of scientific interest in F. fomentarius in Europe dates back to the early 1970s with the discovery of the red-brown pigments of the F. fomentarius external layer. Since then, a number of research papers and reviews have mentioned the history of use, taxonomy, composition and medicinal properties of some F. fomentarius preparations, e.g., soluble extracts and their fractions, isolated cell walls, mycelia and compounds purified from the culture broth. The present review is focused on the composition and benefits of the water-insoluble cell walls obtained from the F. fomentarius fruiting bodies. Isolated cell walls of the tinder mushroom reveal a fibrous hollow structure with an average diameter of 3-5 µm and a wall thickness of 0.2-1.5 µm. Naturally, the fibers are composed of 25-38% glucans, with a majority of ß-glucans, around 30% polyphenols, 6% chitin and less than 2% hemicellulose. The percentage of the main structural compounds can vary either slightly or considerably, depending on the extraction conditions. According to in vitro, in vivo, ex vivo as well as clinical studies, F. fomentarius fibers can modulate the immune system, contribute to intestinal health, accelerate wound healing, absorb heavy metals, organic dyes and radionuclides, normalize kidney and liver function, and provide antibacterial, antiviral, antifungal, anxiolytic, anti-inflammatory and analgesic effects. Multiple action of the insoluble cell walls purified from the F. fomentarius fruiting bodies is particularly effective in the treatment of chronic, recurring, complicated multifactorial diseases. It is certainly worth exploring the medicinal potential and the practical application of these preparations further.


Asunto(s)
Agaricales , Coriolaceae , Humanos , Coriolaceae/química , Cuerpos Fructíferos de los Hongos/química , Europa (Continente)
9.
Biosci Biotechnol Biochem ; 87(5): 555-562, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36731868

RESUMEN

The sapwood of Japanese cedar (Cryptomeria japonica D. Don) was decayed by the brown-rot fungus Fomitopsis palustris under bright and dark conditions. Scanning electron microscopy revealed the presence of mycelia inside the wood even after 1 week from the start of fungal exposure. Moreover, holes were observed in the torus after fungal exposure. Ruthenium red staining revealed that the pectin in pits was largely absent for 3 weeks. These events occurred before the mass loss of wood samples was confirmed at the early stage. Moreover, FpPG28A was more highly expressed at the hyphal front on a pectin-containing medium under dark conditions compared with bright conditions. This up-regulation under dark conditions indicated that the pectin decomposition ability was promoted inside the wood where light could not reach. In conclusion, we suggest that the brown-rot fungus completed its hyphal expansion within the wood via pectin decomposition in pits before holocellulose decomposition.


Asunto(s)
Coriolaceae , Proteínas Fúngicas , Pectinas , Madera/microbiología
10.
Sci Adv ; 9(8): eade5417, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812306

RESUMEN

High strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that Fomes fomentarius is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that F. fomentarius is a functionally graded material with three distinct layers that undergo multiscale hierarchical self-assembly. Mycelium is the primary component in all layers. However, in each layer, mycelium exhibits a very distinct microstructure with unique preferential orientation, aspect ratio, density, and branch length. We also show that an extracellular matrix acts as a reinforcing adhesive that differs in each layer in terms of quantity, polymeric content, and interconnectivity. These findings demonstrate how the synergistic interplay of the aforementioned features results in distinct mechanical properties for each layer.


Asunto(s)
Coriolaceae , Coriolaceae/química
12.
Appl Biochem Biotechnol ; 195(5): 2974-2992, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36462111

RESUMEN

Mushrooms possess wide array of biologically active secondary metabolites and have been traditionally used for their medicinal properties. Exopolysaccharide (EPS) is one of such bioactive metabolites. The bioactive attributes and emulsification capabilities of the exopolysaccharides produced by a novel brown-rot fungus Fomitopsis meliae AGDP-2 under submerged fermentation has been thoroughly investigated in the present study. Exopolysaccharide displayed anti-oxidant activities in dose dependent manner with the maximum scavenging of ABTS radicals (42.45%), DPPH radicals (75.34%), Hydroxyl radicals (63.64%), Superoxide anion radical (76.54%) and Ferric Reducing Antioxidant Power with IC50 value of 231 µg/mL. Additionally, evaluation of anti-proliferative properties revealed that EPS significantly inhibited the proliferation of HepG2 and HT-29 cancer cells followed by moderate inhibition of HeLa and MCF-7 cancer cell lines and quite less inhibition of L-132 and KB cell lines. The IC50 values of EPS for the abovementioned cell lines are 9.465 µg/mL, 11.25 µg/mL, 38.98 µg/mL, 87.78 µg/mL, 2061 µg/mL and 2361 µg/mL respectively. Moreover EPS also possess good anti-microbial as well as anti-biofilm properties. The studies on emulsification potential described that EPS is good emulsifier of different vegetable oils and the emulsion formed was quite stable up to 144 h.


Asunto(s)
Antioxidantes , Coriolaceae , Antioxidantes/farmacología , Antioxidantes/química , Superóxidos , Emulsionantes
13.
Int. microbiol ; 25(4): 831-838, Nov. 2022. graf
Artículo en Inglés | IBECS | ID: ibc-216249

RESUMEN

Bjerkandera adusta can decompose polycyclic aromatic hydrocarbons including cellulose and lignin, but its roles in inhibiting plant pathogens are unclear. Here, the confrontation culture and greenhouse pot experiments were employed to study the control effect of B. adusta M1 on Fusarium graminearum and wheat scab. The results showed that B. adusta M1 fermentation broth (FB) inhibited the growth of F. graminearum, with an inhibition rate of 52.7–89.17%. FB had a significant control effect (72.14 ± 1.42%) on wheat scab, which was slightly lower than that of the chemical fungicide carbendazim (77.34 ± 1.76%). The growth rate was significantly higher in B. adusta M1 than in F. graminearum, indicating a strong competitiveness by B. adusta M1. The images from a scanning electron microscope showed substantial deformations of the hyphae of F. graminearum being penetrated by the hyphae of B. adusta M1, indicating a strong mycoparasitism by B. adusta M1. In addition, FB increased the activity of catalase, peroxidase, and phenylalanine ammonia-lyase in wheat leaves related to disease resistance and decreased the malondialdehyde production and cell membrane permeability. We conclude that B. adusta M1 is a promising fungal agent to control the detriment of F. graminearum to cereal growth in the field.(AU)


Asunto(s)
Humanos , Triticum , Fusarium , Enzimas , Coriolaceae , Microbiología , Microbiología de Alimentos
14.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293297

RESUMEN

Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate wood, which has a particularly negative impact on the condition of the soil in plants that impregnate wooden materials. Therefore, a rapid, effective, and eco-friendly technique for eliminating the creosote in this soil must be developed. The research focused on obtaining a preparation of Bjerkandera adusta DSM 3375 mycelium immobilized in polyurethane foam (PUF). It contained mold cells in the amount of 1.10 ± 0.09 g (DW)/g of the carrier. The obtained enzyme preparation was used in the bioremediation of soil contaminated with creosote (2% w/w). The results showed that applying the PUF-immobilized mycelium of B. adusta DSM 3375 over 5, 10, and 15 weeks of bioremediation, respectively, removed 19, 30, and 35% of creosote from the soil. After 15 weeks, a 73, 79, and 72% level of degradation of fluoranthene, pyrene, and fluorene, respectively, had occurred. The immobilized cells have the potential for large-scale study, since they can degrade creosote oil in soil.


Asunto(s)
Coriolaceae , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Creosota/análisis , Creosota/metabolismo , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Pirenos , Fluorenos , Carbón Mineral
15.
Biomater Adv ; 140: 213084, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36027667

RESUMEN

Fomes fomentarius is a medicinal fungus used in traditional Chinese medicine to treat various illnesses. Antidiabetic effects of F. fomentarius extracts have been reported recently. In this study, F. fomentarius extracellular polysaccharide (PS) was prepared, and then to enhance its antidiabetic effects, Na2SeO3 was added to the culture medium, and selenium-polysaccharide (PS-Se) was obtained. Also, solid lipid nanoparticles containing PS (SLN-PS) and PS-Se (SLN-PS-Se) were synthesized by the microemulsion method to compare their effects with free polysaccharides in streptozotocin (STZ) diabetic rats. Optimized SLNs had a size of 170.5 nm and drug loading of 9.27 %. EDS analysis confirmed that Se presence in PS-Se. Characterization analyses such as FTIR, DSC, TGA, and XRD suggested that SLNs have good thermal stability and crystalline nature. Release of PS from SLNs demonstrated sustained profile, and MTT assay proved that PSs and SLNs have no cytotoxicity. Furthermore, oral administration of PS, PS-Se, SLN-PS, and SLN-PS-Se for 28 days to diabetic rats significantly declined blood glucose by 48.24 %, 49.96 %, 55.50 %, and 60.47 %, respectively. Also, insulin secretion and body weight improved, and HbA1c levels decreased. Treatment by PS, PS-Se, SLN-PS, and SLN-PS-Se alleviated lipid profiles, liver enzymes, and serum proteins. Liver anti-oxidant parameters and histopathological observation of the liver, pancreas, and kidney confirmed that F. fomentarius PSs and SLNs have antidiabetic impacts. Moreover, supplementation of PS with selenium improves its anti-hyperglycemic effects. Finally, SLN-PS and SLN-PS-Se showed a higher antidiabetic impact than free PS and PS-Se.


Asunto(s)
Diabetes Mellitus Experimental , Selenio , Animales , Glucemia , Coriolaceae , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Hemoglobina Glucada , Hipoglucemiantes/farmacología , Liposomas , Nanopartículas , Tamaño de la Partícula , Polisacáridos/farmacología , Ratas , Selenio/farmacología
16.
Int J Med Mushrooms ; 24(9): 1-13, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004705

RESUMEN

Bioactive complexes of medicinal mushrooms have become attractive as complementary anticancer remedies. Our in vitro study focused on the cytotoxicity of the polyphenol-reach and beta-glucan-containing aqueous alkali extract from Fomes fomentarius fruiting bodies (FFE) using murine fibroblasts (L929), human colon adenocarcinoma cells (Caco-2), and cutaneous melanoma cells (COLO-818). Dose-dependent FFE cytotoxicity with an half maximal inhibitory concentration of 0.44 mg/mL was observed for L929 cells upon analysis of the total number of adherent cells, degree of cell viability, cell morphology, and mitochondrial metabolic activity. Cytotoxic effects on cancer cells tested using cell impedance were dependent on FFE concentration, type of cells, and their density. As a routine in vitro model for predicting human intestinal absorption, Caco-2 cells did not react on FFE, which can indirectly support its safety for the human intestinal epithelium. Melanoma cells were affected in a dose-dependent manner, even at low FFE concentrations (0.01-0.05 mg/mL). The confluent cell layer, which resembles a fully formed tumor, was much more resistant than the incompletely formed, subconfluent cell layer, simulating tumor formation. FFE applied topically could be a promising candidate to prevent melanoma development in its early stages.


Asunto(s)
Adenocarcinoma , Agaricales , Antineoplásicos , Neoplasias del Colon , Melanoma , Neoplasias Cutáneas , Álcalis , Animales , Antineoplásicos/farmacología , Células CACO-2 , Coriolaceae , Fibroblastos , Humanos , Melanoma/tratamiento farmacológico , Ratones
17.
Carbohydr Polym ; 295: 119794, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988992

RESUMEN

In our ongoing process of discovering bioactive macromolecules, a homogeneous polysaccharide (FOP80-1) was first purified from Fomes officinalis. FOP80-1 with molecular weight of 4560 Da was mainly composed of →3)-d-Galp-(1→, →4)-ß-d-Manp-(1→, →6)-α-d-Glcp-(1→, →3,6)-d-Glcp-(1→, and t--d-Glcp. Besides the structure features, the anti-tumor activity and potential mechanism of FOP80-1 were also investigated. The cellular and zebrafish experiments revealed that FOP80-1 inhibited tumor proliferation, invasion, and metastasis by increasing ROS, arresting cell cycle, inducing apoptosis, and suppressing angiogenesis. Corresponding to the inhibition of angiogenesis, the surface plasmon resonance (SPR) experiments revealed that FOP80-1 had good affinity with VEGF, a crucial protein to regulate angiogenesis. Molecular docking indicated that FOP80-1 could interact with the protein VEGF.


Asunto(s)
Coriolaceae , Polisacáridos Fúngicos , Animales , Polisacáridos Fúngicos/farmacología , Simulación del Acoplamiento Molecular , Polisacáridos/química , Polisacáridos/farmacología , Factor A de Crecimiento Endotelial Vascular , Pez Cebra
18.
Int Microbiol ; 25(4): 831-838, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35857219

RESUMEN

Bjerkandera adusta can decompose polycyclic aromatic hydrocarbons including cellulose and lignin, but its roles in inhibiting plant pathogens are unclear. Here, the confrontation culture and greenhouse pot experiments were employed to study the control effect of B. adusta M1 on Fusarium graminearum and wheat scab. The results showed that B. adusta M1 fermentation broth (FB) inhibited the growth of F. graminearum, with an inhibition rate of 52.7-89.17%. FB had a significant control effect (72.14 ± 1.42%) on wheat scab, which was slightly lower than that of the chemical fungicide carbendazim (77.34 ± 1.76%). The growth rate was significantly higher in B. adusta M1 than in F. graminearum, indicating a strong competitiveness by B. adusta M1. The images from a scanning electron microscope showed substantial deformations of the hyphae of F. graminearum being penetrated by the hyphae of B. adusta M1, indicating a strong mycoparasitism by B. adusta M1. In addition, FB increased the activity of catalase, peroxidase, and phenylalanine ammonia-lyase in wheat leaves related to disease resistance and decreased the malondialdehyde production and cell membrane permeability. We conclude that B. adusta M1 is a promising fungal agent to control the detriment of F. graminearum to cereal growth in the field.


Asunto(s)
Coriolaceae , Fungicidas Industriales , Hidrocarburos Policíclicos Aromáticos , Catalasa , Fungicidas Industriales/farmacología , Lignina , Malondialdehído , Fenilanina Amoníaco-Liasa , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Triticum/microbiología
20.
PLoS One ; 17(3): e0264632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239729

RESUMEN

In folklore, Heritiera fomes (H. fomes) has been extensively used in treatment of various ailments such as diabetes, cardiac and hepatic disorders. The present study aimed to elucidate the antidiabetic actions of hot water extract of H. fomes (HWHF), including effects on insulin release from BRIN BD11 cells and isolated mouse islets as well as glucose homeostasis in high-fat-fed rats. Molecular mechanisms underlying anti-diabetic activity along with isolation of active compounds were also evaluated. Non-toxic concentrations of HWHF stimulated concentration-dependent insulin release from isolated mouse islets and clonal pancreatic ß-cells. The stimulatory effect was potentiated by glucose and isobutyl methylxanthine (IBMX), persisted in presence of tolbutamide or a depolarizing concentration of KCl but was attenuated by established inhibitors of insulin release such as diazoxide, verapamil, and Ca2+ chelation. HWHF caused depolarization of the ß-cell membrane and increased intracellular Ca2+. The extract also enhanced glucose uptake and insulin action in 3T3-L1 differentiated adipocytes cells and significantly inhibited in a dose-dependent manner starch digestion, protein glycation, DPP-IV enzyme activity, and glucose diffusion in vitro. Oral administration of HWHF (250 mg/5ml/kg b.w.) to high-fat fed rats significantly improved glucose tolerance and plasma insulin responses and it inhibited plasma DPP-IV activity. HWHF also decreased in vivo glucose absorption and intestinal disaccharidase activity while increasing gastrointestinal motility and unabsorbed sucrose transit. Compounds were isolated from HWHF with similar molecular weights to quercitrin (C21 H20 O11) ranging from 447.9 to 449.9 Da which stimulated the insulin release in vitro and improved both glucose tolerance and plasma insulin responses in mice. In conclusion, H. fomes and its water-soluble phytochemicals such as quercitrin may exert antidiabetic actions mediated through a variety of mechanisms which might be useful as dietary adjunct in the management of type 2 diabetes.


Asunto(s)
Coriolaceae , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Malvaceae , Animales , Glucemia/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/química , Imidazoles , Insulina/metabolismo , Secreción de Insulina , Insulina Regular Humana/metabolismo , Islotes Pancreáticos/metabolismo , Malvaceae/metabolismo , Ratones , Corteza de la Planta/metabolismo , Ratas , Sulfonamidas , Tiofenos , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...