Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Daru ; 32(1): 215-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652363

RESUMEN

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Reposicionamiento de Medicamentos , Mapas de Interacción de Proteínas , SARS-CoV-2 , Biología de Sistemas , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efectos de los fármacos , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Nucleofosmina , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Redes Reguladoras de Genes/efectos de los fármacos , COVID-19
2.
Environ Pollut ; 347: 123700, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452839

RESUMEN

Emerging bio-contaminants (airborne viruses) exploits and manipulate host (human) metabolism to produce new viral particles, evading the host's immune defences and leading to infections. Non-thermal plasma, operating at atmospheric pressure and ambient temperature, is explored for virus inactivation, generating RONS that interact and denatures viral proteins. However, various factors affecting virus survival influence the efficacy of non-thermal plasma. Glucose analogue 2-DG, a metabolic modifier used in this study, disrupts the glycolysis pathway viruses rely on, creating an unfavourable environment for replication. Here, airborne HCoV-229E bio-contaminant was treated with plasma for inactivation, and the presence of RONS was analysed. Metabolically altered lung cells were subsequently exposed to the treated airborne viruses. Cytopathic effect, spike protein, and cell death were evaluated via flow cytometry and confocal microscopy, and CPRRs mediated antiviral gene expression was evaluated using PCR. Gas plasma-treated viruses led to reduced virus proliferation in unaltered lung cells, although few virus particles survived the exposure, as confirmed by biological assessment (cytopathic effects and live/dead staining). A combination approach of gas plasma-treated viruses and altered lung cells displayed drastic virus reduction compared to the control group, established through confocal microscopy and flow cytometry. Furthermore, altered lung cell enhances gene transcription responsible for innate immunity when exposed to the gas plasma-treated virus, thereby impeding airborne virus propagation. This study demonstrates the significance of a surface air gas plasma and metabolic alteration approach in enhancing genes targeted towards antiviral innate immunity and tackling outbreaks of emerging bio-contaminants of concerns (airborne viruses).


Asunto(s)
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Inactivación de Virus , Pulmón , Inmunidad Innata , Antivirales
3.
J Hazard Mater ; 465: 133249, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154189

RESUMEN

The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.


Asunto(s)
Coronavirus Humano 229E , Subtipo H1N1 del Virus de la Influenza A , Concanavalina A/genética , Microfluídica , Subtipo H1N1 del Virus de la Influenza A/genética , Aerosoles y Gotitas Respiratorias , Coronavirus Humano 229E/genética , Reacción en Cadena de la Polimerasa
4.
Virology ; 588: 109889, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778059

RESUMEN

The lack of suitable in vitro culture model has hampered research on wild-type (WT) human coronaviruses. While 3D tissue or organ cultures have been instrumental for this purpose, such models are challenging, time-consuming, expensive and require extensive cell culture adaptation and directed evolution. Consequently, high-throughput applications are beyond reach in most cases. Here we developed a robust A549 cell line permissive to a human coronavirus 229E (HCoV-229E) clinical isolate by transducing CD13 and transmembrane serine protease 2 (TMPRSS2), henceforth referred to as A549++ cells. This modification allowed for productive infection, and a more detailed analysis showed that the virus might use the TMPRSS2-dependent pathway but can still bypass this pathway using cathepsin-mediated endocytosis. Overall, our data showed that A549++ cells are permissive to HCoV-229E clinical isolate, and applicable for further studies on HCoV-229E infectiology. Moreover, this line constitutes a uniform platform for studies on multiple members of the Coronaviridae family.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Humanos , Coronavirus Humano 229E/genética , Células A549 , Catepsinas/metabolismo , Endocitosis , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
5.
Int J Biol Macromol ; 253(Pt 6): 127319, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37820917

RESUMEN

Human coronavirus 229E (HCoV-229E) represents one of the known coronaviruses capable of infecting humans and causes mild respiratory symptoms. It is also considered to have a zoonotic source, originating from animals and being transmitted the humans. In this study, a comprehensive phylogenetic and codon usage analysis of the spike (S) gene of HCoV-229E was conducted. Utilizing phylogenetic analysis and principal component analysis, HCoV-229E was categorized into four distinct clusters, each demonstrating unique host affiliations. Furthermore, it was observed that the codon usage bias within the S gene of HCoV-229E is relatively low, primarily influenced by natural selection patterns, with contributions from mutation pressure and dinucleotide abundance. Comparative analysis involving Codon Adaptation Index (CAI) and Relative Codon Deoptimization Index (RCDI) revealed that the codon usage pattern of HCoV-229E mirrors more closely that of camels, as opposed to alpacas and humans. The elucidation of the codon usage pattern within HCoV-229E, which we have meticulously examined, offers valuable insights for a more comprehensive comprehension of viral features, history, and evolutionary trajectory.


Asunto(s)
Coronavirus Humano 229E , Coronavirus , Animales , Humanos , Coronavirus Humano 229E/genética , Filogenia , Uso de Codones , Glicoproteína de la Espiga del Coronavirus/genética , Coronavirus/genética
6.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203872

RESUMEN

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Asunto(s)
Quirópteros , Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Animales , Quirópteros/genética , Genes MHC Clase II , Filogenia , Coronavirus/genética , Coronavirus Humano 229E/genética , Antígenos de Histocompatibilidad Clase II/genética
7.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920695

RESUMEN

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , Pseudotipado Viral , SARS-CoV-2/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus Humano 229E/genética
8.
CRISPR J ; 6(4): 359-368, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36912815

RESUMEN

CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Humanos , SARS-CoV-2/genética , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/genética , COVID-19/genética , Sistemas CRISPR-Cas/genética , Edición Génica
9.
J Med Virol ; 95(1): e28101, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36031726

RESUMEN

In 2019, an outbreak of pharyngoconjunctival fever (PCF) occurred at a swimming center in Zhejiang Province, China. A total of 97 (13.55%) of the 716 amateur swimmers had illnesses, with 24 patients (24.74%) hospitalized in the pediatric ward. Human adenovirus serotype 7 (HAdV-7) was isolated from one concentrated water from the swimming pool, and 20 of 97 positive cases without liver damage. This outbreak led to a nosocomial outbreak in the pediatric ward, in which 1 nurse had a fever and was confirmed to be adenovirus positive. The hexon, fiber, and penton genes from 20 outbreak cases, 1 water sample, and 1 nurse had 100% homology. Furthermore, 2 cases admitted to the pediatric ward, 2 parents, and 1 doctor were confirmed to be human coronaviruses (HCoV-229E) positive. Finally, all outbreak cases had fully recovered, regardless of a single infection (adenovirus or HCoV-229E) or coinfection of these two viruses simultaneously. Thus, PCF and acute respiratory disease outbreaks in Zhejiang were caused by the completely homologous type 7 adenovirus and HCoV-229E, respectively. The swimming pool water contaminated with HAdV-7 was most likely the source of the PCF outbreak, whereas nosocomial transmission might be the source of HCoV-229E outbreak.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Coronavirus Humano 229E , Infección Hospitalaria , Infecciones del Sistema Respiratorio , Humanos , Niño , Coronavirus Humano 229E/genética , Adenovirus Humanos/genética , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Infecciones por Adenovirus Humanos/epidemiología , Agua , Brotes de Enfermedades , Infección Hospitalaria/epidemiología
10.
Front Cell Infect Microbiol ; 12: 958634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211973

RESUMEN

Rationale: Human coronaviruses (HCoVs) seriously affect human health by causing respiratory diseases ranging from common colds to severe acute respiratory diseases. Immunophilins, including peptidyl-prolyl isomerases of the FK506-binding protein (FKBP) and the cyclophilin family, are promising targets for pharmaceutical inhibition of coronavirus replication, but cell-type specific effects have not been elucidated. FKBPs and cyclophilins bind the immunosuppressive drugs FK506 and cyclosporine A (CsA), respectively. Methods: Primary human bronchial epithelial cells (phBECs) were treated with CsA, Alisporivir (ALV), FK506, and FK506-derived non-immunosuppressive analogs and infected with HCoV-229E. RNA and protein were assessed by RT-qPCR and immunoblot analysis. Treatment with the same compounds was performed in hepatoma cells (Huh-7.5) infected with HCoV-229E expressing Renilla luciferase (HCoV-229E-RLuc) and the kidney cell line HEK293 transfected with a SARS-CoV-1 replicon expressing Renilla luciferase (SARS-CoV-1-RLuc), followed by quantification of luminescence as a measure of viral replication. Results: Both CsA and ALV robustly inhibited viral replication in all models; both compounds decreased HCoV-229E RNA in phBECs and reduced luminescence in HCoV-229E-RLuc-infected Huh7.5 and SARS-CoV-1-RLuc replicon-transfected HEK293. In contrast, FK506 showed inconsistent and less pronounced effects in phBECs while strongly affecting coronavirus replication in Huh-7.5 and HEK293. Two non-immunosuppressive FK506 analogs had no antiviral effect in any infection model. Conclusion: The immunophilin inhibitors CsA and ALV display robust anti-coronaviral properties in multiple infection models, including phBECs, reflecting a primary site of HCoV infection. In contrast, FK506 displayed cell-type specific effects, strongly affecting CoV replication in Huh7.5 and HEK293, but inconsistently and less pronounced in phBECs.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus , Coronavirus/genética , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/genética , Ciclofilinas , Ciclosporina/química , Ciclosporina/farmacología , Ciclosporina/uso terapéutico , Células HEK293 , Humanos , Inmunosupresores/farmacología , Luciferasas de Renilla , Preparaciones Farmacéuticas , ARN , Tacrolimus/química , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Proteínas de Unión a Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/uso terapéutico
11.
Cell Rep ; 41(4): 111540, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36243002

RESUMEN

The cellular fate after infection with human coronaviruses (HCoVs) is typically death. Previous data suggest, however, that the transcriptional state of an individual cell may sometimes allow additional outcomes of infection. Here, to probe the range of interactions a permissive cell type can have with a HCoV, we perform a CRISPR activation screen with HCoV-229E. The screen identified the transcription factor ZBTB7A, which strongly promotes cell survival after infection. Rather than suppressing viral infection, ZBTB7A upregulation allows the virus to induce a persistent infection and homeostatic state with the cell. We also find that control of oxidative stress is a primary driver of cellular survival during HCoV-229E infection. These data illustrate that, in addition to the nature of the infecting virus and the type of cell that it encounters, the cellular gene expression profile prior to infection can affect the eventual fate.


Asunto(s)
Coronavirus Humano 229E , Humanos , Coronavirus Humano 229E/genética , Línea Celular Tumoral , Proteínas de Unión al ADN , Factores de Transcripción/genética , Homeostasis
12.
Virus Res ; 321: 198925, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115551

RESUMEN

Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFNß, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Interferón Tipo I , Coronavirus del Síndrome Respiratorio de Oriente Medio , Nanopartículas , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Coronavirus Humano 229E/genética , Citidina Monofosfato , Humanos , ARN , SARS-CoV-2
13.
EBioMedicine ; 81: 104132, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35779493

RESUMEN

BACKGROUND: Human seasonal coronaviruses usually cause mild upper-respiratory tract infection, but severe complications can occur in specific populations. Research into seasonal coronaviruses is limited and robust experimental models are largely lacking. This study aims to establish human airway organoids (hAOs)-based systems for seasonal coronavirus infection and to demonstrate their applications in studying virus-host interactions and therapeutic development. METHODS: The infections of seasonal coronaviruses 229E, OC43 and NL63 in 3D cultured hAOs with undifferentiated or differentiated phenotypes were tested. The kinetics of virus replication and production was profiled at 33 °C and 37 °C. Genome-wide transcriptome analysis by RNA sequencing was performed in hAOs under various conditions. The antiviral activity of molnupiravir and remdesivir, two approved medications for treating COVID19, was tested. FINDINGS: HAOs efficiently support the replication and infectious virus production of seasonal coronaviruses 229E, OC43 and NL63. Interestingly, seasonal coronaviruses replicate much more efficiently at 33 °C compared to 37 °C, resulting in over 10-fold higher levels of viral replication. Genome-wide transcriptomic analyses revealed distinct patterns of infection-triggered host responses at 33 °C compared to 37 °C temperature. Treatment of molnupiravir and remdesivir dose-dependently inhibited the replication of 229E, OC43 and NL63 in hAOs. INTERPRETATION: HAOs are capable of modeling 229E, OC43 and NL63 infections. The intriguing finding that lower temperature resembling that in the upper respiratory tract favors viral replication may help to better understand the pathogenesis and transmissibility of seasonal coronaviruses. HAOs-based innovative models shall facilitate the research and therapeutic development against seasonal coronavirus infections. FUNDING: This research is supported by funding of a VIDI grant (No. 91719300) from the Netherlands Organization for Scientific Research and the Dutch Cancer Society Young Investigator Grant (10140) to Q.P., and the ZonMw COVID project (114025011) from the Netherlands Organization for Health Research and Development to R.R.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus Humano 229E , Infecciones del Sistema Respiratorio , Antivirales/farmacología , Antivirales/uso terapéutico , Coronavirus Humano 229E/genética , Humanos , Organoides/patología , Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/patología , Estaciones del Año
14.
Viruses ; 14(5)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35632836

RESUMEN

Four endemic coronaviruses infect humans and cause mild symptoms. Because previous analyses were based on a limited number of sequences and did not control for effects that affect molecular dating, we re-assessed the timing of endemic coronavirus emergence. After controlling for recombination, selective pressure, and molecular clock model, we obtained similar tMRCA (time to the most recent common ancestor) estimates for the four coronaviruses, ranging from 72 (HCoV-229E) to 54 (HCoV-NL63) years ago. The split times of HCoV-229E and HCoV-OC43 from camel alphacoronavirus and bovine coronavirus were dated ~268 and ~99 years ago. The split times of HCoV-HKU1 and HCoV-NL63 could not be calculated, as their zoonoticic sources are unknown. To compare the timing of coronavirus emergence to that of another respiratory virus, we recorded the occurrence of influenza pandemics since 1500. Although there is no clear relationship between pandemic occurrence and human population size, the frequency of influenza pandemics seems to intensify starting around 1700, which corresponds with the initial phase of exponential increase of human population and to the emergence of HCoV-229E. The frequency of flu pandemics in the 19th century also suggests that the concurrence of HCoV-OC43 emergence and the Russian flu pandemic may be due to chance.


Asunto(s)
Coronavirus Humano 229E , Infecciones por Coronavirus , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Gripe Humana , Animales , Bovinos , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/epidemiología , Coronavirus Humano OC43/genética , Humanos , Factores de Tiempo
15.
Cell Rep Methods ; 2(2): 100170, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35128513

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human coronavirus within 20 years that gave rise to a life-threatening disease and the first to reach pandemic spread. To make therapeutic headway against current and future coronaviruses, the biology of coronavirus RNA during infection must be precisely understood. Here, we present a robust and generalizable framework combining high-throughput confocal and super-resolution microscopy imaging to study coronavirus infection at the nanoscale. Using the model human coronavirus HCoV-229E, we specifically labeled coronavirus genomic RNA (gRNA) and double-stranded RNA (dsRNA) via multi-color RNA immunoFISH and visualized their localization patterns within the cell. The 10-nm resolution achieved by our approach uncovers a striking spatial organization of gRNA and dsRNA into three distinct structures and enables quantitative characterization of the status of the infection after antiviral drug treatment. Our approach provides a comprehensive imaging framework that will enable future investigations of coronavirus fundamental biology and therapeutic effects.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , SARS-CoV-2/genética , Coronavirus Humano 229E/genética , Línea Celular , ARN Bicatenario/farmacología
16.
J Virol ; 96(4): e0195521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34908442

RESUMEN

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. IMPORTANCE Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Coronavirus Humano 229E , Infecciones por Coronavirus , Epítopos , Glicoproteína de la Espiga del Coronavirus , Secuencias de Aminoácidos , Animales , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34793437

RESUMEN

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Asunto(s)
COVID-19/genética , COVID-19/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , SARS-CoV-2/genética , Adaptación Fisiológica/genética , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Antígenos CD13/genética , Antígenos CD13/fisiología , Resfriado Común/genética , Resfriado Común/virología , Biología Computacional , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/fisiología , Evolución Molecular , Genómica , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Especificidad del Huésped/genética , Especificidad del Huésped/fisiología , Humanos , Mamíferos/genética , Mamíferos/virología , Filogenia , Dominios y Motivos de Interacción de Proteínas/genética , Receptores Virales/genética , Receptores Virales/fisiología , SARS-CoV-2/fisiología , Selección Genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología , Internalización del Virus
19.
Virology ; 564: 33-38, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619630

RESUMEN

Endemic seasonal coronaviruses cause morbidity and mortality in a subset of patients, but no specific treatment is available. Molnupiravir is a promising pipeline antiviral drug for treating SARS-CoV-2 infection potentially by targeting RNA-dependent RNA polymerase (RdRp). This study aims to evaluate the potential of repurposing molnupiravir for treating seasonal human coronavirus (HCoV) infections. Molecular docking revealed that the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC), has similar binding affinity to RdRp of SARS-CoV-2 and seasonal HCoV-NL63, HCoV-OC43 and HCoV-229E. In cell culture models, treatment of molnupiravir effectively inhibited viral replication and production of infectious viruses of the three seasonal coronaviruses. A time-of-drug-addition experiment indicates the specificity of molnupiravir in inhibiting viral components. Furthermore, combining molnupiravir with the protease inhibitor GC376 resulted in enhanced antiviral activity. Our findings highlight that the great potential of repurposing molnupiravir for treating seasonal coronavirus infected patients.


Asunto(s)
Coronavirus Humano 229E/genética , Infecciones por Coronavirus/tratamiento farmacológico , Coronavirus Humano NL63/genética , Coronavirus Humano OC43/genética , Citidina/análogos & derivados , Hidroxilaminas/farmacología , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Resfriado Común/tratamiento farmacológico , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Coronavirus Humano NL63/efectos de los fármacos , Coronavirus Humano NL63/fisiología , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Citidina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Pirrolidinas/farmacología , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Estaciones del Año , Ácidos Sulfónicos/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
Virol J ; 18(1): 166, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389034

RESUMEN

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolution and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolutionary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of concern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, pathogenicity, and neutralization by natural or vaccine-mediated immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/virología , SARS-CoV-2/genética , Animales , COVID-19/transmisión , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/inmunología , Coronavirus Humano 229E/patogenicidad , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/inmunología , Coronavirus Humano NL63/patogenicidad , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/inmunología , Coronavirus Humano OC43/patogenicidad , Humanos , Inmunidad , Mutación , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...