Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173046

RESUMEN

Cytoplasmic streaming with extremely high velocity (∼70 µm s-1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by myosin XI, it has been suggested that a myosin XI with a velocity of 70 µm s-1, the fastest myosin measured so far, exists in Chara cells. However, the velocity of the previously cloned Chara corallina myosin XI (CcXI) was about 20 µm s-1, one-third of the cytoplasmic streaming velocity in Chara Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. We cloned these four myosin XI (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 motor domains (MDs) were similar to that of CcXI MD, the velocities of CbXI-1 and CbXI-2 MDs were 3.2 times and 2.8 times faster than that of CcXI MD, respectively. The velocity of chimeric CbXI-1, a functional, full-length CbXI-1 construct, was 60 µm s-1 These results suggest that CbXI-1 and CbXI-2 would be the main contributors to cytoplasmic streaming in Chara cells and show that these myosins are ultrafast myosins with a velocity 10 times faster than fast skeletal muscle myosins in animals. We also report an atomic structure (2.8-Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-electron microscopy structure of acto-myosin XI at low resolution (4.3-Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loops support this hypothesis.


Asunto(s)
Chara/genética , Corriente Citoplasmática/fisiología , Miosinas/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Corriente Citoplasmática/genética , Miosinas/genética
2.
Proc Natl Acad Sci U S A ; 113(34): E4995-5004, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27512034

RESUMEN

Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.


Asunto(s)
Corriente Citoplasmática/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas/genética , Microtúbulos/metabolismo , Oocitos/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Axonal/genética , Sitios de Unión , Fenómenos Biomecánicos , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Prueba de Complementación Genética , Cinesinas/metabolismo , Microtúbulos/ultraestructura , Mutación , Oocitos/ultraestructura , Unión Proteica , Dominios Proteicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
Plant Signal Behav ; 11(3): e1010947, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26337543

RESUMEN

A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Corriente Citoplasmática/genética , Gravitropismo/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación , Tallos de la Planta/citología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Transducción de Señal
4.
Plant Cell ; 25(9): 3405-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24058157

RESUMEN

Actin filaments are often arranged into higher-order structures, such as the longitudinal actin cables that generate the reverse fountain cytoplasmic streaming pattern present in pollen tubes. While several actin binding proteins have been implicated in the generation of these cables, the mechanisms that regulate their dynamic turnover remain largely unknown. Here, we show that Arabidopsis thaliana actin-depolymerizing factor7 (ADF7) is required for turnover of longitudinal actin cables. In vitro biochemical analyses revealed that ADF7 is a typical ADF that prefers ADP-G-actin over ATP-G-actin. ADF7 inhibits nucleotide exchange on actin and severs filaments, but its filament severing and depolymerizing activities are less potent than those of the vegetative ADF1. ADF7 primarily decorates longitudinal actin cables in the shanks of pollen tubes. Consistent with this localization pattern, the severing frequency and depolymerization rate of filaments significantly decreased, while their maximum lifetime significantly increased, in adf7 pollen tube shanks. Furthermore, an ADF7-enhanced green fluorescent protein fusion with defective severing activity but normal G-actin binding activity could not complement adf7, providing compelling evidence that the severing activity of ADF7 is vital for its in vivo functions. These observations suggest that ADF7 evolved to promote turnover of longitudinal actin cables by severing actin filaments in pollen tubes.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Citoesqueleto de Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Corriente Citoplasmática/genética , Genes Reporteros , Proteínas Fluorescentes Verdes , Modelos Moleculares , Datos de Secuencia Molecular , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión , Alineación de Secuencia , Tiazolidinas/farmacología
5.
Biochem Biophys Res Commun ; 435(1): 88-93, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23618852

RESUMEN

Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.


Asunto(s)
Perfilación de la Expresión Génica , Células Gigantes/metabolismo , Mutación , Physarum polycephalum/genética , Citoplasma/genética , Corriente Citoplasmática/genética , Expresión Génica/efectos de la radiación , Luz , Physarum polycephalum/citología , Physarum polycephalum/fisiología , Proteínas Protozoarias/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esporas Protozoarias/genética , Esporas Protozoarias/fisiología
6.
Curr Issues Mol Biol ; 14(2): 39-46, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22086198

RESUMEN

It has been assumed that diffusion of molecules in the bacterial cytoplasm is the mechanism that moves molecules in the absence of cytoplasmic streaming. However, is there an undiscovered mechanism present that mobilizes cytoplasm and its molecular contents, and delivers tRNAs to specific ribosomes at specific bacterial cytoplasmic locations? Mobilization of specific tRNA (and also mRNA transcripts and ribosomes) and cell division proteins to specific intracellular locations may suggest that instructions and/or mechanism(s) are needed. The alternative is that molecular crowding in the cytoplasm is sufficient for gentle contact between mRNA, ribosomes and tRNA. Or is it plausible that the bacterial cytoplasm (and its contents) are mobilized with the outcome being more gentle collisions between molecules than by a diffusion only mechanism? One hypothesis is that cytoplasmic and molecule mobilization and spatial organization are possibly driven by the photons in thermal infrared (IR) radiation and generation of exclusion zone (EZ) water in the cytoplasm.


Asunto(s)
Bacterias/genética , Citoplasma/metabolismo , Corriente Citoplasmática/genética , ARN Mensajero/genética , Ribosomas/genética , Bacterias/metabolismo , Citoplasma/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
7.
Development ; 138(6): 1087-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307100

RESUMEN

The N-terminal head domain of kinesin heavy chain (Khc) is well known for generating force for transport along microtubules in cytoplasmic organization processes during metazoan development, but the functions of the C-terminal tail are not clear. To address this, we studied the effects of tail mutations on mitochondria transport, determinant mRNA localization and cytoplasmic streaming in Drosophila. Our results show that two biochemically defined elements of the tail - the ATP-independent microtubule-binding sequence and the IAK autoinhibitory motif - are essential for development and viability. Both elements have positive functions in the axonal transport of mitochondria and determinant mRNA localization in oocytes, processes that are accomplished by biased saltatory movement of individual cargoes. Surprisingly, there were no indications that the IAK autoinhibitory motif acts as a general downregulator of Kinesin-1 in those processes. Time-lapse imaging indicated that neither tail region is needed for fast cytoplasmic streaming in oocytes, which is a non-saltatory bulk transport process driven solely by Kinesin-1. Thus, the Khc tail is not constitutively required for Kinesin-1 activation, force transduction or linkage to cargo. It might instead be crucial for more subtle elements of motor control and coordination in the stop-and-go movements of biased saltatory transport.


Asunto(s)
Corriente Citoplasmática/genética , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oocitos/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión/fisiología , Transporte Biológico/genética , Transporte Biológico/fisiología , Corriente Citoplasmática/fisiología , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Cinesinas/química , Cinesinas/genética , Cinesinas/fisiología , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Datos de Secuencia Molecular , Oocitos/fisiología , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética
8.
J Cell Sci ; 123(Pt 7): 1151-9, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20215403

RESUMEN

Hepatocyte growth factor (HGF) is found in tumor microenvironments, and interaction with its tyrosine kinase receptor Met triggers cell invasion and metastasis. It was previously shown that acidic extracellular pH stimulated peripheral lysosome trafficking, resulting in increased cathepsin B secretion and tumor cell invasion, which was dependent upon sodium-proton exchanger (NHE) activity. We now demonstrate that HGF induced the trafficking of lysosomes to the cell periphery, independent of HGF-induced epithelial-mesenchymal transition. HGF-induced anterograde lysosome trafficking depended upon the PI3K pathway, microtubules and RhoA, resulting in increased cathepsin B secretion and invasion by the cells. HGF-induced NHE activity via increased net acid production, and inhibition of NHE activity with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), or a combination of the NHE1-specific drug cariporide and the NHE3-specific drug s3226 prevented HGF-induced anterograde trafficking and induced retrograde trafficking in HGF-overexpressing cells. EIPA treatment reduced cathepsin B secretion and HGF-induced invasion by the tumor cells. Lysosomes were located more peripherally in Rab7-shRNA-expressing cells and these cells were more invasive than control cells. Overexpression of the Rab7 effector protein, RILP, resulted in a juxtanuclear location of lysosomes and reduced HGF-induced invasion. Together, these results suggest that the location of lysosomes is an inherently important aspect of invasion by tumor cells.


Asunto(s)
Corriente Citoplasmática , Factor de Crecimiento de Hepatocito/metabolismo , Lisosomas/metabolismo , Invasividad Neoplásica , Neoplasias de la Próstata/metabolismo , Catepsina B/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Clonación Molecular , Corriente Citoplasmática/efectos de los fármacos , Corriente Citoplasmática/genética , Factor de Crecimiento de Hepatocito/genética , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/patología , Inhibidores de la Bomba de Protones/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Transgenes/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
9.
Blood ; 110(10): 3637-47, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17664349

RESUMEN

Actin polymerization is crucial in throm-bopoiesis, platelet adhesion, and mega-karyocyte (MK) and platelet spreading. The Wiskott-Aldrich syndrome protein (WASp) homolog WAVE functions downstream of Rac and plays a pivotal role in lamellipodia formation. While MKs and platelets principally express WAVE1 and WAVE2, which are associated with Abi1, the physiologic significance of WAVE isoforms remains undefined. We generated WAVE2(-/-) embryonic stem (ES) cells because WAVE2-null mice die by embryonic day (E) 12.5. We found that while WAVE2(-/-) ES cells differentiated into immature MKs on OP9 stroma, they were severely impaired in terminal differentiation and in platelet production. WAVE2(-/-) MKs exhibited a defect in peripheral lamellipodia on fibrinogen even with phorbol 12-myristate 13-acetate (PMA) costimulation, indicating a requirement of WAVE2 for integrin alpha(IIb)beta(3)-mediated full spreading. MKs in which expression of Abi1 was reduced by small interfering RNA (siRNA) exhibited striking similarity to WAVE2(-/-) MKs in maturation and spreading. Interestingly, the knockdown of IRSp53, a Rac effector that preferentially binds to WAVE2, impaired the development of lamellipodia without affecting proplatelet production. In contrast, thrombopoiesis in vivo and platelet spreading on fibrinogen in vitro were intact in WAVE1-null mice. These observations clarify indispensable roles for the WAVE2/Abi1 complex in alpha(IIb)beta(3)-mediated lamellipodia by MKs and platelets through Rac and IRSp53, and additionally in thrombopoiesis independent of Rac and IRSp53.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Plaquetas/fisiología , Diferenciación Celular , Corriente Citoplasmática , Proteínas del Citoesqueleto/fisiología , Megacariocitos/citología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Plaquetas/metabolismo , Adhesión Celular , Diferenciación Celular/genética , Tamaño de la Célula , Células Cultivadas , Corriente Citoplasmática/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Embrión de Mamíferos , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
10.
Neurobiol Dis ; 22(2): 388-400, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16473015

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine repeat in the huntingtin gene (Htt). Mitochondrial defects and protein aggregates are characteristic of affected neurons. Recent studies suggest that these aggregates impair cellular transport mechanisms by interacting with cytoskeletal components and molecular motors. Here, we investigated whether mutant Htt alters mitochondrial trafficking and morphology in primary cortical neurons. We demonstrate that full-length mutant Htt was more effective than N-terminal mutant Htt in blocking mitochondrial movement, an effect that correlated with its heightened expression in the cytosolic compartment. Aggregates impaired the passage of mitochondria along neuronal processes, causing mitochondria to accumulate adjacent to aggregates and become immobilized. Furthermore, mitochondrial trafficking was reduced specifically at sites of aggregates while remaining unaltered in regions lacking aggregates. We conclude that in cortical neurons, an early event in HD pathophysiology is the aberrant mobility and trafficking of mitochondria caused by cytosolic Htt aggregates.


Asunto(s)
Corteza Cerebral/metabolismo , Enfermedad de Huntington/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Tampones (Química) , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Corriente Citoplasmática/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Citosol/metabolismo , Citosol/patología , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Mitocondrias/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Proteínas Nucleares/genética , Transporte de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Transfección
11.
J Cell Sci ; 118(Pt 16): 3705-16, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16105883

RESUMEN

Nuclear migration and positioning in Aspergillus nidulans depend on microtubules, the microtubule-dependent motor protein dynein, and auxiliary proteins, two of which are ApsA and ApsB. In apsA and apsB mutants nuclei are clustered and show various kinds of nuclear navigation defects, although nuclear migration itself is still possible. We studied the role of several components involved in nuclear migration through in vivo fluorescence microscopy using fluorescent-protein tagging. Because ApsA localizes to the cell cortex and mitotic spindles were immobile in apsA mutants, we suggest that astral microtubule-cortex interactions are necessary for oscillation and movement of mitotic spindles along hyphae, but not for post-mitotic nuclear migration. Mutation of apsA resulted in longer and curved microtubules and displayed synthetic lethality in combination with the conventional kinesin mutation DeltakinA. By contrast, ApsB localized to spindle-pole bodies (the fungal centrosome), to septa and to spots moving rapidly along microtubules. The number of cytoplasmic microtubules was reduced in apsB mutants in comparison to the wild type, indicating that cytoplasmic microtubule nucleation was affected, whereas mitotic spindle formation appeared normal. Mutation of apsB suppressed dynein null mutants, whereas apsA mutation had no effect. We suggest that nuclear positioning defects in the apsA and apsB mutants are due to different effects on microtbule organisation. A model of spindle-pole body led nuclear migration and the roles of dynein and microtubules are discussed.


Asunto(s)
Aspergillus nidulans/metabolismo , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Aspergillus nidulans/citología , Aspergillus nidulans/genética , Movimiento Celular/fisiología , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/ultraestructura , Corriente Citoplasmática/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Dineínas/metabolismo , Retroalimentación Fisiológica/genética , Colorantes Fluorescentes/metabolismo , Proteínas Fúngicas/genética , Proteínas de la Membrana/genética , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Mutación/fisiología , Proteínas Nucleares/genética
12.
Exp Cell Res ; 293(2): 275-82, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14729465

RESUMEN

Although Rho GTPases regulate multiple cellular events, their role in cell division is still obscure. Here we show that expression of a GTPase-activating protein (GAP)-deficient mutant (R386A) of the Rho regulator MgcRacGAP induces abnormal cortical activity during cytokinesis in U2OS cells. Multiple large blebs were observed in cells expressing MgcRacGAP R386A from the onset of anaphase to the late stage of cell division. When mitotic blebbing was excessive, cytokinesis was inhibited, and cells with micronuclei were generated. It has been reported that blebbing is caused by abnormal cortical activity. The MgcRacGAP R386A-induced abnormal cortical activity was inhibited by the dominant negative form of RhoA, but not Rac1 or Cdc42. Moreover, expression of constitutively active RhoA also induced drastic cortical activity during cytokinesis. Unlike apoptotic blebbing, MgcRacGAP R386A-induced blebbing was not inhibited by the ROCK inhibitor Y-27632, suggesting that MgcRacGAP regulates cortical activity during cytokinesis through a novel signaling pathway. We propose that MgcRacGAP plays a pivotal role in cytokinesis by regulating cortical movement through RhoA.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/deficiencia , Proteína de Unión al GTP rhoA/metabolismo , División Celular/genética , Línea Celular Tumoral , Extensiones de la Superficie Celular/genética , Extensiones de la Superficie Celular/metabolismo , Corriente Citoplasmática/genética , Inhibidores Enzimáticos/farmacología , Proteínas Activadoras de GTPasa/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA/genética
13.
Plant Cell ; 16(1): 60-73, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14688291

RESUMEN

Programmed cell death (PCD) functions in the developmental remodeling of leaf shape in higher plants, a process analogous to digit formation in the vertebrate limb. In this study, we provide a cytological characterization of the time course of events as PCD remodels young expanding leaves of the lace plant. Tonoplast rupture is the first PCD event in this system, indicated by alterations in cytoplasmic streaming, loss of anthocyanin color, and ultrastructural appearance. Nuclei become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling positive soon afterward but do not become morphologically altered until late stages of PCD. Genomic DNA is fragmented, but not into internucleosomal units. Other cytoplasmic changes, such as shrinkage and degradation of organelles, occur later. This form of PCD resembles tracheary element differentiation in cytological execution but requires unique developmental regulation so that discrete panels of tissue located equidistantly between veins undergo PCD while surrounding cells do not.


Asunto(s)
Apoptosis , Magnoliopsida/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Antocianinas/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Pared Celular/metabolismo , Corriente Citoplasmática/genética , Corriente Citoplasmática/fisiología , Fragmentación del ADN , Magnoliopsida/genética , Magnoliopsida/ultraestructura , Microscopía Electrónica , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Vacuolas/metabolismo
14.
Dev Biol ; 258(1): 70-5, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12781683

RESUMEN

We compared the redistribution of mitochondria in the early embryos of Caenorhabditis elegans (C. elegans) and Acrobeloides sp. PS1146 (Acrobeloides)--two nematode species where the mechanisms for embryonic axis specification are different even though subsequent development is remarkably similar. During the first cell cycle of C. elegans, mitochondria move with the bulk cytoplasmic flows that are directed toward the sperm pronucleus and aggregate at the posterior cortex during the period known as "pseudocleavage." In contrast, in Acrobeloides embryos, where prominent cytoplasmic rearrangements are absent, mitochondria that are initially distributed loosely around the pronuclei and the cytoplasm are relocated around the mitotic spindle prior to cell division. Interestingly, this rearrangement is reiterated only in the germline and not the somatic lineage. In both species, the location of the mitochondria immediately prior to cell division correlates with the known location of the germline determinants, P granules, leading us to speculate that they may be associated.


Asunto(s)
Caenorhabditis elegans/embriología , Linaje de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Mitocondrias/fisiología , Animales , Blastómeros/citología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Ciclo Celular , División Celular , Polaridad Celular , Corriente Citoplasmática/genética , Corriente Citoplasmática/fisiología , Embrión no Mamífero/embriología , Femenino , Genes de Helminto , Indicadores y Reactivos/metabolismo , Mutación , Rodaminas/metabolismo , Especificidad de la Especie , Distribución Tisular
15.
Oncogene ; 16(25): 3309-16, 1998 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-9681830

RESUMEN

Appropriate expression of HTLV-1 genes requires transcriptional transactivation by Tax and post-transcriptional regulation by Rex, both mediated by LTR encoded RNA sequences. Using a combination of deletion mutagenesis, Rex-reporter CAT assays, fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy it was established that in the absence of Rex, CAT mRNAs harboring HTLV-1 LTR sequences were unable to leave the nucleus. Deletion of the known U5 encoded cis-acting repressing sequence (CRS) led to a partial release of nuclear retention. A novel regulatory element overlapping the 3' Rex responsive element (RxRE) region was shown to prevent export and expression of these transcripts. Deletion of both the 5' LTR encoded CRS and 3' LTR encoded downstream repressive sequence (3' CRS) led to constitutive mRNA nuclear export and gene expression, independently of Rex. The locations of the two regulatory elements indicate that while the 5' CRS selectively acts to hinder export of unspliced transcripts, the 3' CRS has the capacity to induce nuclear retention of all HTLV-1 transcripts, and therefore could potentially contribute to viral latency in infected cells.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/metabolismo , ARN Viral/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Ribonucleoproteína Nuclear Pequeña U5/fisiología , Animales , Transporte Biológico/genética , Transporte Biológico/fisiología , Células COS , Núcleo Celular/química , Núcleo Celular/virología , Células Cultivadas , Citoplasma/química , Citoplasma/virología , Corriente Citoplasmática/genética , Regulación Viral de la Expresión Génica , Células HeLa , Virus Linfotrópico T Tipo 1 Humano/química , Humanos , Células Jurkat , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Ribonucleoproteína Nuclear Pequeña U5/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
16.
Mol Biol Cell ; 9(1): 75-88, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9436992

RESUMEN

The class I myosins play important roles in controlling many different types of actin-based cell movements. Dictyostelium cells either lacking or overexpressing amoeboid myosin Is have significant defects in cortical activities such as pseudopod extension, cell migration, and macropinocytosis. The existence of Dictyostelium null mutants with strong phenotypic defects permits complementation analysis as a means of exploring important functional features of the myosin I heavy chain. Mutant Dictyostelium cells lacking two myosin Is exhibit profound defects in growth, endocytosis, and rearrangement of F-actin. Expression of the full-length myoB heavy chain in these cells fully rescues the double mutant defects. However, mutant forms of the myoB heavy chain in which a serine at the consensus phosphorylation site has been altered to an alanine or in which the C-terminal SH3 domain has been removed fail to complement the null phenotype. The wild-type and mutant forms of the myoB heavy chain appeared to be properly localized when they were expressed in the myosin I null mutants. These results suggest that the amoeboid myosin I consensus phosphorylation site and SH3 domains do not play a role in the localization of myosin I, but are absolutely required for in vivo function.


Asunto(s)
Miosina Tipo I , Miosinas/metabolismo , Miosinas/fisiología , Dominios Homologos src/fisiología , Actinas/genética , Animales , Sitios de Unión/fisiología , División Celular/genética , Quimiotaxis/genética , Corriente Citoplasmática/genética , Dictyostelium , Proteínas Fúngicas/genética , Mutagénesis Sitio-Dirigida , Cadenas Pesadas de Miosina/genética , Miosinas/genética , Miosina Tipo IIB no Muscular , Octoxinol , Fenotipo , Fosforilación , Pinocitosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...