Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.784
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731978

RESUMEN

Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aß induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aß treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Calcio/metabolismo , Humanos , Ratones , Fosforilación , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Ratas
2.
Alcohol Alcohol ; 59(4)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742547

RESUMEN

AIMS: Continued alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This is modeled in mice by pairing negative stimuli with alcohol, such as adulterating alcohol solution with quinine. Mice consuming alcohol under these conditions are considered to be engaging in aversion-resistant intake. Previously, we have observed sex differences in this behavior, with females more readily expressing aversion-resistant consumption. We also identified three brain regions that exhibited sex differences in neuronal activation during quinine-alcohol drinking: ventromedial prefrontal cortex (vmPFC), posterior insular cortex (PIC), and ventral tegmental area (VTA). Specifically, male mice showed increased activation in vmPFC and PIC, while females exhibited increased activation in VTA. In this study, we aimed to identify what specific type of neurons are activated in these regions during quinine-alcohol drinking. METHOD: We assessed quinine-adulterated alcohol intake using the two-bottle choice procedure. We also utilized RNAscope in situ hybridization in the three brain regions that previously exhibited a sex difference to examine colocalization of Fos, glutamate, GABA, and dopamine. RESULT: Females showed increased aversion-resistant alcohol consumption compared to males. We also found that males had higher colocalization of glutamate and Fos in vmPFC and PIC, while females had greater dopamine and Fos colocalization in the VTA. CONCLUSIONS: Collectively, these experiments suggest that glutamatergic output from the vmPFC and PIC may have a role in suppressing, and dopaminergic activity in the VTA may promote, aversion-resistant alcohol consumption. Future experiments will examine neuronal circuits that contribute to sex differences in aversion resistant consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas , Neuronas , Quinina , Caracteres Sexuales , Animales , Quinina/farmacología , Femenino , Masculino , Ratones , Neuronas/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Ratones Endogámicos C57BL , Corteza Prefrontal/efectos de los fármacos , Mesencéfalo/metabolismo , Mesencéfalo/efectos de los fármacos , Corteza Insular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Etanol/farmacología , Ácido Glutámico/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713624

RESUMEN

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Corteza Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Animales , Neurogénesis/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Neuroglía/metabolismo , Neuroglía/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/citología , Linaje de la Célula , Humanos
4.
Sci Signal ; 17(835): eadj0032, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713765

RESUMEN

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.


Asunto(s)
Actinas , Proteínas Portadoras , Corteza Cerebral , Ratones Noqueados , Factor de Respuesta Sérica , Transactivadores , Animales , Corteza Cerebral/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/genética , Ratones , Actinas/metabolismo , Actinas/genética , Neuronas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Regulación de la Expresión Génica , Transducción de Señal
5.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38711407

RESUMEN

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Asunto(s)
Corteza Cerebral , Etanol , Ácidos Grasos Omega-3 , Óxido Nítrico , Ratas Wistar , Superóxido Dismutasa , Animales , Masculino , Ratas , Ácidos Grasos Omega-3/farmacología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Óxido Nítrico/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Antioxidantes/farmacología , Malondialdehído/metabolismo
6.
Acta Physiol (Oxf) ; 240(6): e14146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606882

RESUMEN

AIM: The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS: We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS: We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION: The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.


Asunto(s)
Homeostasis , Proteínas Represoras , Animales , Homeostasis/fisiología , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratones Noqueados , Transmisión Sináptica/fisiología , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/fisiopatología , Red Nerviosa/fisiología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología
7.
EMBO Rep ; 25(5): 2202-2219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600346

RESUMEN

Neural progenitor cells within the cerebral cortex undergo a characteristic switch between symmetric self-renewing cell divisions early in development and asymmetric neurogenic divisions later. Yet, the mechanisms controlling this transition remain unclear. Previous work has shown that early but not late neural progenitor cells (NPCs) endogenously express the autism-linked transcription factor Foxp1, and both loss and gain of Foxp1 function can alter NPC activity and fate choices. Here, we show that premature loss of Foxp1 upregulates transcriptional programs regulating angiogenesis, glycolysis, and cellular responses to hypoxia. These changes coincide with a premature destabilization of HIF-1α, an elevation in HIF-1α target genes, including Vegfa in NPCs, and precocious vascular network development. In vitro experiments demonstrate that stabilization of HIF-1α in Foxp1-deficient NPCs rescues the premature differentiation phenotype and restores NPC maintenance. Our data indicate that the endogenous decline in Foxp1 expression activates the HIF-1α transcriptional program leading to changes in the tissue environment adjacent to NPCs, which, in turn, might alter their self-renewal and neurogenic capacities.


Asunto(s)
Corteza Cerebral , Factores de Transcripción Forkhead , Subunidad alfa del Factor 1 Inducible por Hipoxia , Células-Madre Neurales , Proteínas Represoras , Transducción de Señal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Animales , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Neovascularización Fisiológica/genética , Diferenciación Celular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neurogénesis/genética , Glucólisis , Angiogénesis
8.
Nature ; 629(8010): 146-153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632406

RESUMEN

Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.


Asunto(s)
Astrocitos , Corteza Cerebral , Ácido Glutámico , Red Nerviosa , Neurotransmisores , Ácido gamma-Aminobutírico , Animales , Femenino , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/citología , Calcio/metabolismo , Señalización del Calcio , Comunicación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Red Nerviosa/citología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Factores de Tiempo
9.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588430

RESUMEN

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Asunto(s)
Corteza Cerebral , Neocórtex , Ratones , Animales , Corteza Cerebral/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Interneuronas/fisiología , Biomarcadores/metabolismo , Neuronas GABAérgicas/fisiología
10.
Exp Neurol ; 376: 114775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604438

RESUMEN

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.


Asunto(s)
Receptores de GABA-A , Animales , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ratones , Fenotipo , Sueño/fisiología , Sueño/genética , Masculino , Ratones Transgénicos , Tálamo/metabolismo , Tálamo/patología , Ratones Endogámicos C57BL , Electroencefalografía , Técnicas de Sustitución del Gen , Epilepsia/genética , Epilepsia/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Femenino
11.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608784

RESUMEN

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Enfermedad de Huntington , Neuronas , Sinapsis , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones Transgénicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Endogámicos C57BL
12.
Nat Commun ; 15(1): 3526, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664419

RESUMEN

Large-scale imaging of brain activity with high spatio-temporal resolution is crucial for advancing our understanding of brain function. The existing neuroimaging techniques are largely limited by restricted field of view, slow imaging speed, or otherwise do not have the adequate spatial resolution to capture brain activities on a capillary and cellular level. To address these limitations, we introduce fluorescence localization microscopy aided with sparsely-labeled red blood cells for cortex-wide morphological and functional cerebral angiography with 4.9 µm spatial resolution and 1 s temporal resolution. When combined with fluorescence calcium imaging, the proposed method enables extended recordings of stimulus-evoked neuro-vascular changes in the murine brain while providing simultaneous multiparametric readings of intracellular neuronal activity, blood flow velocity/direction/volume, and vessel diameter. Owing to its simplicity and versatility, the proposed approach will become an invaluable tool for deciphering the regulation of cortical microcirculation and neurovascular coupling in health and disease.


Asunto(s)
Eritrocitos , Microscopía Fluorescente , Animales , Eritrocitos/metabolismo , Eritrocitos/citología , Microscopía Fluorescente/métodos , Ratones , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Masculino , Ratones Endogámicos C57BL , Angiografía Cerebral/métodos , Calcio/metabolismo , Circulación Cerebrovascular/fisiología , Colorantes Fluorescentes/química , Acoplamiento Neurovascular/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Microcirculación
13.
Nat Commun ; 15(1): 3039, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589390

RESUMEN

Astrocytes are a direct target of neuromodulators and can influence neuronal activity on broad spatial and temporal scales in response to a rise in cytosolic calcium. However, our knowledge about how astrocytes are recruited during different animal behaviors remains limited. To measure astrocyte activity calcium in vivo during normative behaviors, we utilize a high-resolution, long working distance multicore fiber optic imaging system that allows visualization of individual astrocyte calcium transients in the cerebral cortex of freely moving mice. We define the spatiotemporal dynamics of astrocyte calcium changes during diverse behaviors, ranging from sleep-wake cycles to the exploration of novel objects, showing that their activity is more variable and less synchronous than apparent in head-immobilized imaging conditions. In accordance with their molecular diversity, individual astrocytes often exhibit distinct thresholds and activity patterns during explorative behaviors, allowing temporal encoding across the astrocyte network. Astrocyte calcium events were induced by noradrenergic and cholinergic systems and modulated by internal state. The distinct activity patterns exhibited by astrocytes provides a means to vary their neuromodulatory influence in different behavioral contexts and internal states.


Asunto(s)
Astrocitos , Calcio , Ratones , Animales , Astrocitos/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Diagnóstico por Imagen , Corteza Cerebral/metabolismo , Señalización del Calcio/fisiología
14.
Nat Commun ; 15(1): 2866, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570482

RESUMEN

Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.


Asunto(s)
Lesiones Encefálicas , Heridas Punzantes , Animales , Ratones , Masculino , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/metabolismo , Lesiones Encefálicas/metabolismo , Corteza Cerebral/metabolismo , Heridas Punzantes/complicaciones , Heridas Punzantes/metabolismo
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673780

RESUMEN

Cognitive impairment (CI) is a complication of chronic kidney disease (CKD) that is frequently observed among patients. The aim of this study was to evaluate the potential crosstalk between changes in cognitive function and the levels of Klotho in the brain cortex in an experimental model of CKD. To induce renal damage, Wistar rats received a diet containing 0.25% adenine for six weeks, while the control group was fed a standard diet. The animals underwent different tests for the assessment of cognitive function. At sacrifice, changes in the parameters of mineral metabolism and the expression of Klotho in the kidney and frontal cortex were evaluated. The animals with CKD exhibited impaired behavior in the cognitive tests in comparison with the rats with normal renal function. At sacrifice, CKD-associated mineral disorder was confirmed by the presence of the expected disturbances in the plasma phosphorus, PTH, and both intact and c-terminal FGF23, along with a reduced abundance of renal Klotho. Interestingly, a marked and significant decrease in Klotho was observed in the cerebral cortex of the animals with renal dysfunction. In sum, the loss in cerebral Klotho observed in experimental CKD may contribute to the cognitive dysfunction frequently observed among patients. Although further studies are required, Klotho might have a relevant role in the development of CKD-associated CI and represent a potential target in the management of this complication.


Asunto(s)
Corteza Cerebral , Disfunción Cognitiva , Glucuronidasa , Proteínas Klotho , Ratas Wistar , Insuficiencia Renal Crónica , Proteínas Klotho/metabolismo , Animales , Insuficiencia Renal Crónica/metabolismo , Corteza Cerebral/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratas , Masculino , Glucuronidasa/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Riñón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo
16.
Genes (Basel) ; 15(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674386

RESUMEN

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Asunto(s)
Síndrome de Down , Fluoxetina , Proteómica , Vesículas Sinápticas , Animales , Fluoxetina/farmacología , Ratones , Síndrome de Down/metabolismo , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/patología , Masculino , Proteómica/métodos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Trisomía/genética
17.
J Neurosci Methods ; 406: 110137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626853

RESUMEN

BACKGROUND: The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD: Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS: Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.


Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Criopreservación , Vesículas Extracelulares , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Vesículas Extracelulares/metabolismo , Criopreservación/métodos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Anciano , Masculino , Femenino , Astrocitos/metabolismo , Anciano de 80 o más Años , Separación Celular/métodos , Citometría de Flujo/métodos , Microglía/metabolismo
18.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654093

RESUMEN

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Asunto(s)
Corteza Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogénesis , Organoides , ARN Mensajero , Simportadores , Receptores alfa de Hormona Tiroidea , Femenino , Humanos , Embarazo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/metabolismo , Organoides/metabolismo , Primer Trimestre del Embarazo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
19.
J Stroke Cerebrovasc Dis ; 33(6): 106578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636320

RESUMEN

BACKGROUND: Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS: Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS: Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS: The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.


Asunto(s)
Acuaporina 4 , Astrocitos , Dipéptidos , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Microglía , Ratas Sprague-Dawley , Receptor Notch1 , Recuperación de la Función , Transducción de Señal , Animales , Acuaporina 4/metabolismo , Receptor Notch1/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Dipéptidos/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Factores de Tiempo , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/patología
20.
PLoS One ; 19(4): e0301355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683825

RESUMEN

Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3ß and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1ß, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3ß, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.


Asunto(s)
Corteza Cerebral , Diabetes Mellitus Experimental , Glucógeno Sintasa Quinasa 3 beta , Nanopartículas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina , Trifolium , Animales , Masculino , Ratas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Nanopartículas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Quercetina/administración & dosificación , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Trifolium/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...