RESUMEN
Nitrergic neurons (NNs) are inhibitory neurons capable of releasing nitric oxide (NO) that are labeled with nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. The rat primary somatosensory (S1) and motor (M1) cortices are a favorable model to investigate NN populations by comparing their morphology, since these areas share the border of forepaw representation. The distribution of the Type I NN of the forepaw representation in the S1 and M1 cortices of the rat in different laminar compartments and the morphological parameters related to the cell body and dendritic arborization were measured and compared. We observed that the neuronal density in the S1 (130 NN/mm3 ) was higher than the neuronal density in the M1 (119 NN/mm3 ). Most NN neurons were multipolar (S1 with 58%; M1 with 69%), and a minority of the NN neurons were horizontal (S1 with 6%; M1 with 12%). NN found in S1 had a higher verticality index than NN found in M1, and no significant differences were observed for the other morphological parameters. We also demonstrated significant differences in most of the morphological parameters of the NN between different cortical compartments of S1 and M1. Our results indicate that the NN of the forepaw in S1 and M1 corresponds to a neuronal population, where the functionality is independent of the different types of sensory and motor processing. However, the morphological differences found between the cortical compartments of S1 and M1, as well as the higher density of NNs found in S1, indicate that the release of NO varies between the areas.
Asunto(s)
Miembro Anterior/metabolismo , Corteza Motora/metabolismo , Neuronas Nitrérgicas/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Miembro Anterior/química , Miembro Anterior/inervación , Masculino , Corteza Motora/química , Corteza Motora/citología , NADP/análisis , NADP/metabolismo , Neuronas Nitrérgicas/química , Ratas , Ratas Wistar , Corteza Somatosensorial/química , Corteza Somatosensorial/citologíaRESUMEN
Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity.
Asunto(s)
Espinas Dendríticas/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Animales , Masculino , Corteza Motora/citología , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de PlataRESUMEN
The rostroventrolateral medulla contains two functional neuronal populations: (1) the parafacial respiratory group (pFRG) neurons and (2) the chemosensitive retrotrapezoid nucleus (RTN) neurons. Using anatomical and physiological techniques, we investigated the role of the RTN/pFRG in CO2-induced active expiration (AE) in urethane-anesthetized rats. Anterograde tracing using biotinylated dextran amine (BDA) revealed dense neuronal projections emanating from the RTN/pFRG to the caudal ventral respiratory group (cVRG), 60% of which contained vesicular glutamate transporter-2. The minority (16%) of the RTN projections to the cVRG emanated from Phox2b positive neurons. Hypercapnia (10% CO2) increased DiaEMG and elicited AbdEMG activity. Bilateral injections of muscimol (2mM) into the RTN/pFRG reduced the activation of DiaEMG (23±4%) and abolished AE-induced by chemoreflex stimulation. Taken together, these results support the presence of direct excitatory projections from RTN/pFRG neurons to cVRG expiratory premotor neurons, playing a role in the generation/modulation of AE.
Asunto(s)
Espiración/fisiología , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Neuronas/citología , Neuronas/fisiología , Abdomen/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Diafragma/efectos de los fármacos , Diafragma/fisiología , Espiración/efectos de los fármacos , Agonistas de Receptores de GABA-A/farmacología , Proteínas de Homeodominio/metabolismo , Hipercapnia/patología , Hipercapnia/fisiopatología , Inhalación/efectos de los fármacos , Inhalación/fisiología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Corteza Motora/citología , Corteza Motora/fisiología , Muscimol/farmacología , Neuronas/efectos de los fármacos , Estimulación Física , Ratas Wistar , Reflejo/efectos de los fármacos , Reflejo/fisiología , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
Control over spinal and brainstem somatomotor neurons is exerted by two sets of descending fibers, corticospinal/pyramidal and extrapyramidal. Although in nonhuman primates the effect of bilateral pyramidal lesions is mostly limited to an impairment of the independent use of digits in skilled manual actions, similar injuries in humans result in the locked-in syndrome, a state of mutism and quadriplegia in which communication can be established only by residual vertical eye movements. This behavioral contrast makes humans appear to be outliers compared with other primates because of our almost total dependence on the corticospinal/pyramidal system for the effectuation of movement. Here we propose, instead, that an increasing preponderance of the corticospinal/pyramidal system over motor control is an expected consequence of increasing brain size in primates because of the faster scaling of the number of neurons in the primary motor cortex over the brainstem and spinal cord motor neuron pools, explaining the apparent uniqueness of the corticalization of motor control in humans.
Asunto(s)
Evolución Biológica , Actividad Motora , Corteza Motora/citología , Neuronas/citología , Primates , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Recuento de Células , Humanos , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Primates/fisiología , Médula Espinal/citología , Médula Espinal/fisiologíaRESUMEN
Temporal information processing is critical for many complex behaviors including speech and music cognition, yet its neural substrate remains elusive. We examined the neurophysiological properties of medial premotor cortex (MPC) of two Rhesus monkeys during the execution of a synchronization-continuation tapping task that includes the basic sensorimotor components of a variety of rhythmic behaviors. We show that time-keeping in the MPC is governed by separate cell populations. One group encoded the time remaining for an action, showing activity whose duration changed as a function of interval duration, reaching a peak at similar magnitudes and times with respect to the movement. The other cell group showed a response that increased in duration or magnitude as a function of the elapsed time from the last movement. Hence, the sensorimotor loops engaged during the task may depend on the cyclic interplay between different neuronal chronometers that quantify the time passed and the remaining time for an action.
Asunto(s)
Macaca mulatta/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Algoritmos , Animales , Mapeo Encefálico , Señales (Psicología) , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Corteza Motora/anatomía & histología , Corteza Motora/citología , Movimiento/fisiología , Tiempo de Reacción/fisiología , Recompensa , Factores de TiempoRESUMEN
In the present study, we investigated how directional tuning of putative pyramidal cells is sharpened by inhibition from neighboring interneurons. First, different functional and electrophysiological criteria were used to identify putative pyramidal and interneuronal subtypes in a large database of motor cortical cells recorded during performance of the three-dimensional center-out task. Then we analyzed the relationship between the magnitude of inhibition and the tuning width, and a significant decrease of the latter as a function of the former was found in a population of putative pyramidal cells. In fact, the coupling of inhibition with narrow tuning was observed before and during movement execution on a cell-by-cell basis, indicating an important dynamic role of inhibition during movement control. Overall, these results suggest that local inhibition is involved in sculpting the directional specificity of a group of putative pyramidal neurons in the motor cortex.
Asunto(s)
Corteza Motora/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Orientación/fisiología , Desempeño Psicomotor/fisiología , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Conducta Animal , Análisis por Conglomerados , Femenino , Macaca mulatta , Masculino , Modelos Neurológicos , Corteza Motora/citología , Neuronas/clasificación , Dinámicas no Lineales , Distribución Normal , Tiempo de Reacción/fisiología , Factores de TiempoRESUMEN
El objetivo del presente estudio experimental fue evaluar el efecto de la estimulación vs. privación sensorio-motriz temprana sobre el desarrollo neuronal y conductual. Se utilizaron ratas albinas de la cepa Sprague-Dawley, las cuales fueron expuestas a 3 ambientes diferenciales (estimulado, control y deprivado), entre los días postnatales 5 y 21 (período crítico). Una vez realizada la evaluación conductual, los sujetos fueron sacrificados en día postnatal 22 y sus cerebros impregnados con le método de Golgi-Cox-Sholl, estudiándose bajo cámara lúcida dos variables estructurales en la corteza motora: desarrollo dendrítico basal/neurona y grado de citodiferenciación de grupos neuronianos. Los resultados obtenidos muestran que tanto la estimulación como la deprivación, realizada durante el período de lactancia, modifican el desarrollo neuronal en la corteza motora, tradicionalmente considerada menos plástica que las áreas sensoriales; resultados que son consistentes con la capacidad exploratoria analizada en el test de campo abierto
Asunto(s)
Animales , Ratas , Ambiente Controlado , Conducta Exploratoria/fisiología , Corteza Motora/citología , Neuronas Motoras/citología , Animales Lactantes , Estudios de Casos y Controles , Dendritas , División Celular/fisiología , Técnicas Histológicas , Método Simple Ciego , Microscopía , Sistema Nervioso/anatomía & histología , Privación SensorialRESUMEN
1. Acute effects of Karwinskia humboldtiana (Kh) ingestion were studied in some cerebral motor regions. 2. In motor cortex, widening of Virchow-Robin spaces and hyperchromasia occurred throughout the study. 3. In CA1 region of hippocampus, hyperchromasia, swelling of cell nuclei and neuronal shrinkage; were observed at the various stages. 4. In caudate nucleus, cell shrinkage and nuclear swelling occurred throughout the study. 5. Cell death images were observed in all areas studied. 6. It is suggested that a toxic effect is produced by Kh fruit, and that tissue damages may be closely related to the motor non-paralytic disturbances observed after its ingestion.