Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 78(12): 1160-1170, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675093

RESUMEN

Japanese encephalitis (JE) is a known CNS viral infection that often involves the thalamus early. To investigate the possible role of sensory peripheral nervous system (PNS) in early neuroinvasion, we developed a left hindlimb footpad-inoculation mouse model to recapitulate human infection by a mosquito bite. A 1-5 days postinfection (dpi) study, demonstrated focal viral antigens/RNA in contralateral thalamic neurons at 3 dpi in 50% of the animals. From 4 to 5 dpi, gradual increase in viral antigens/RNA was observed in bilateral thalami, somatosensory, and piriform cortices, and then the entire CNS. Infection of neuronal bodies and adjacent nerves in dorsal root ganglia (DRGs), trigeminal ganglia, and autonomic ganglia (intestine, etc.) was also observed from 5 dpi. Infection of explant organotypic whole brain slice cultures demonstrated no viral predilection for the thalamus, while DRG and intestinal ganglia organotypic cultures confirmed sensory and autonomic ganglia susceptibility to infection, respectively. Early thalamus and sensory-associated cortex involvement suggest an important role for sensory pathways in neuroinvasion. Our results suggest that JE virus neuronotropism is much more extensive than previously known, and that the sensory PNS and autonomic system are susceptible to infection.


Asunto(s)
Encéfalo/virología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Neuronas/virología , Sistema Nervioso Periférico/virología , Tálamo/virología , Animales , Encéfalo/patología , Células Cultivadas , Infecciones del Sistema Nervioso Central/patología , Infecciones del Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Ratones Endogámicos ICR , Neuronas/patología , Sistema Nervioso Periférico/patología , Corteza Piriforme/patología , Corteza Piriforme/virología , Corteza Somatosensorial/patología , Corteza Somatosensorial/virología , Tálamo/patología
2.
Neuroimage ; 197: 133-142, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31022567

RESUMEN

The elucidation of neural networks is essential to understanding the mechanisms of brain functions and brain disorders. Neurotropic virus-based trans-synaptic tracing tools have become an effective method for dissecting the structure and analyzing the function of neural-circuitry. However, these tracing systems rely on fluorescent signals, making it hard to visualize the panorama of the labeled networks in mammalian brain in vivo. One MRI method, Diffusion Tensor Imaging (DTI), is capable of imaging the networks of the whole brain in live animals but without information of anatomical connections through synapses. In this report, a chimeric gene coding for ferritin and enhanced green fluorescent protein (EGFP) was integrated into Vesicular stomatitis virus (VSV), a neurotropic virus that is able to spread anterogradely in synaptically connected networks. After the animal was injected with the recombinant VSV (rVSV), rVSV-Ferritin-EGFP, into the somatosensory cortex (SC) for four days, the labeled neural-network was visualized in the postmortem whole brain with a T2-weighted MRI sequence. The modified virus transmitted from SC to synaptically connected downstream regions. The results demonstrate that rVSV-Ferritin-EGFP could be used as a bimodal imaging vector for detecting synaptically connected neural-network with both ex vivo MRI and fluorescent imaging. The strategy in the current study has the potential to longitudinally monitor the global structure of a given neural-network in living animals.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Neuronas/citología , Corteza Somatosensorial/citología , Vesiculovirus/fisiología , Animales , Ferritinas/genética , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/virología , Neuronas/virología , Corteza Somatosensorial/virología , Vesiculovirus/genética
3.
PLoS One ; 9(12): e114529, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25541938

RESUMEN

Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest.


Asunto(s)
Macaca mulatta/virología , Opsinas/metabolismo , Optogenética/métodos , Corteza Somatosensorial/fisiología , Animales , Dependovirus/genética , Potenciales Evocados Somatosensoriales , Vectores Genéticos/administración & dosificación , Opsinas/genética , Prótesis e Implantes , Corteza Somatosensorial/virología , Tacto
4.
Brain Behav Immun ; 26(1): 83-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21821116

RESUMEN

Mice with a dysfunctional myxovirus resistance-1 (dMx1) gene transport intranasally-instilled PR8 influenza virus to the olfactory bulb (OB) within 4 h post-infection. To determine if the presence of a functional Mx1 (fMx1) gene would influence this brain viral localization and/or disease, we infected mature C57BL/6 dMx1 and fMx1 mice under the same conditions and observed sickness behaviors, viral nucleoprotein (NP) RNA expression and innate immune mediator (IIM) mRNA expression in selected tissues at 15 and 96 h post-infection. Virus invaded the OB and lungs comparably in both sub-strains at 15 and 96 h as determined by nested PCR. In contrast, virus was present in blood and somatosensory cortex of dMx1, but not fMx1 mice at 96 h. At 15 h, sickness behaviors were comparable in both sub-strains. By 96 h dMx1, but not fMx1, were moribund. In both 15 and 96 h lungs, viral NP was significantly elevated in the dMx1 mice compared to the fMx1 mice, as determined by quantitative PCR. OB expression of most IIM mRNAs was similar at both time periods in both sub-strains. In contrast, lung IIM mRNAs were elevated in fMx1 at 15 h, but by 96 h were consistently reduced compared to dMx1 mice. In conclusion, functional Mx1 did not alter OB invasion by virus but attenuated illness compared to dMx1 mice. Inflammation was similar in OBs and lungs of both strains at 15 h but by 96 h it was suppressed in lungs, but not in OBs, of fMx1 mice.


Asunto(s)
Encéfalo/fisiopatología , Encéfalo/virología , Proteínas de Unión al GTP/genética , Virus de la Influenza A , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/fisiopatología , Animales , Sangre/virología , Temperatura Corporal/fisiología , Peso Corporal/fisiología , Conducta de Enfermedad , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Proteínas de Resistencia a Mixovirus , Bulbo Olfatorio/virología , Infecciones por Orthomyxoviridae/virología , ARN Viral/biosíntesis , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Corteza Somatosensorial/virología
5.
Science ; 299(5612): 1585-8, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12624270

RESUMEN

The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.


Asunto(s)
Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Corteza Somatosensorial/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Electrofisiología , Técnicas de Transferencia de Gen , Potenciación a Largo Plazo , Neuronas/virología , Técnicas de Placa-Clamp , Ratas , Receptores AMPA/genética , Proteínas Recombinantes de Fusión/metabolismo , Virus Sindbis/genética , Corteza Somatosensorial/virología , Tacto , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA