Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.176
Filtrar
1.
FASEB J ; 38(9): e23650, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696238

RESUMEN

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Asunto(s)
Corteza Suprarrenal , Células Intersticiales del Testículo , Ratones Noqueados , Animales , Masculino , Ratones , Células Intersticiales del Testículo/metabolismo , Corteza Suprarrenal/metabolismo , Andrógenos/metabolismo , Testosterona/sangre , Testosterona/metabolismo , Conducta Animal , Ratones Endogámicos C57BL
2.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38573585

RESUMEN

Klotho plays a critical role in the regulation of ion and fluid homeostasis. A previous study reported that haplo-insufficiency of Klotho in mice results in increased aldosterone synthase (CYP11B2) expression, elevated plasma aldosterone, and high blood pressure. This phenotype was presumed to be the result of diminished Klotho expression in zona glomerulosa (zG) cells of the adrenal cortex; however, systemic effects on adrenal aldosterone production could not be ruled out. To examine whether Klotho expressed in the zG is indeed a critical regulator of aldosterone synthesis, we generated a tamoxifen-inducible, zG-specific mouse model of Klotho deficiency by crossing Klotho-flox mice with Cyp11b2-CreERT mice (zG-Kl-KO). Tamoxifen-treated Cyp11b2-CreERT animals (zG-Cre) served as controls. Rosa26-mTmG reporter mice were used for Cre-dependent lineage-marking. Two weeks after tamoxifen induction, the specificity of the zG-Cre line was verified using immunofluorescence analysis to show that GFP expression was restricted to the zG. RNA in situ hybridization revealed a 65% downregulation of Klotho messenger RNA expression in the zG of zG-Kl-KO female mice at age 12 weeks compared to control mice. Despite this significant decrease, zG-Kl-KO mice exhibited no difference in plasma aldosterone levels. However, adrenal CYP11B2 expression and the CYP11B2 promotor regulatory transcription factors, NGFIB and Nurr1, were enhanced. Together with in vitro experiments, these results suggest that zG-derived Klotho modulates Cyp11b2 but does not evoke a systemic phenotype in young adult mice on a normal diet. Further studies are required to investigate the role of adrenal Klotho on aldosterone synthesis in aged animals.


Asunto(s)
Corteza Suprarrenal , Hiperaldosteronismo , Femenino , Ratones , Animales , Zona Glomerular/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Aldosterona/metabolismo , Corteza Suprarrenal/metabolismo , Hiperaldosteronismo/genética , Tamoxifeno/farmacología
3.
Eur Thyroid J ; 13(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642580

RESUMEN

Background: Fatigue is a frequent adverse event during systemic treatments for advanced thyroid cancer, often leading to reduction, interruption, or discontinuation. We were the first group to demonstrate a correlation between fatigue and primary adrenal insufficiency (PAI). Aim: The objective was to assess the entire adrenal function in patients on systemic treatments. Methods: ACTH, cortisol and all the hormones produced by the adrenal gland were evaluated monthly in 36 patients (25 on lenvatinib, six on vandetanib, and five on selpercatinib). ACTH stimulation tests were performed in 26 cases. Results: After a median treatment period of 7 months, we observed an increase in ACTH values in 80-100% of patients and an impaired cortisol response to the ACTH test in 19% of cases. Additionally, dehydroepiandrosterone sulphate, ∆-4-androstenedione and 17-OH progesterone levels were below the median of normal values in the majority of patients regardless of the drug used. Testosterone in females and oestradiol in males were below the median of normal values in the majority of patients on lenvatinib and vandetanib. Finally, aldosterone was below the median of the normal values in most cases, whilst renin levels were normal. Metanephrines and normetanephrines were always within the normal range. Replacement therapy with cortisone acetate improved fatigue in 14/17 (82%) patients with PAI. Conclusion: Our data confirm that systemic treatments for advanced thyroid cancer can lead to impaired cortisol secretion. A reduction in the other hormones secreted by the adrenal cortex has been first reported and should be considered in the more appropriate management of these fragile patients.


Asunto(s)
Corteza Suprarrenal , Piperidinas , Neoplasias de la Tiroides , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/metabolismo , Insuficiencia Suprarrenal/tratamiento farmacológico , Hormona Adrenocorticotrópica/sangre , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Fatiga/etiología , Hidrocortisona , Compuestos de Fenilurea/efectos adversos , Compuestos de Fenilurea/uso terapéutico , Piperidinas/efectos adversos , Piperidinas/uso terapéutico , Quinazolinas/uso terapéutico , Quinolinas/uso terapéutico , Quinolinas/efectos adversos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología
4.
Adv Sci (Weinh) ; 11(18): e2307926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460156

RESUMEN

Prostanoids are endogenous lipid bioactive mediators that play essential roles in physiological processes such as glucocorticoid secretion. Here, it is found that the thromboxane (Tx)A2 receptor (TP) is highly expressed in the adrenal cortex of mice. Both global and adrenocortical-specific deletion of the TP receptor lead to increased adiposity in mice by elevating corticosterone synthesis. Mechanistically, the TP receptor deletion increases the phosphorylation of steroidogenic acute regulatory protein (StAR) and corticosterone synthesis in adrenal cortical cells by suppressing p-p38-mediated phosphorylation of 14-3-3γ adapter protein at S71. The activation of the p38 in the adrenal cortical cells by forced expression of the MKK6EE gene attenuates hypercortisolism in TP-deficient mice. These observations suggest that the TxA2/TP signaling regulates adrenal corticosterone homeostasis independent of the hypothalamic-pituitary-adrenal axis and the TP receptor may serve as a promising therapeutic target for hypercortisolism.


Asunto(s)
Corticosterona , Fosfoproteínas , Transducción de Señal , Tromboxano A2 , Animales , Ratones , Corticosterona/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Tromboxano A2/metabolismo , Corteza Suprarrenal/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Masculino , Ratones Endogámicos C57BL
5.
J Exp Zool A Ecol Integr Physiol ; 341(5): 587-596, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497306

RESUMEN

There is a need to fully know the physiology of Eurasian beaver due to its essential role in environmental homeostasis. However, a "human factor" impacts this, including stress conditions and environmental pollution. Adrenal glands protect these all. The regulation of endocrine processes by nonclassical androgen and estrogen signaling, the first and fastest control, is still a matter of research. The specific analyses performed here in mature female and male beaver adrenals contained: anatomical and histological examinations, expression and localization of membrane androgen receptor (zinc transporter, Zinc- and Iron-like protein 9; ZIP9) and membrane estrogen receptor coupled with G protein (GPER), and measurement of zinc (Zn2+) and copper (Ca2+) ion levels and corticosterone levels. We revealed normal anatomical localization, size, and tissue histology in female and male beavers, respectively. Equally, ZIP9 and GPER were localized in the membrane of all adrenal cortex cells. The protein expression of these receptors was higher (p < 0.001) in male than female adrenal cortex cells. Similarly, Zn2+ and Ca2+ ion levels were higher (p < 0.05, p < 0.01) in male than female adrenal cortex. The increased corticosterone levels (p < 0.001) were detected in the adrenal cortex of females when compared to males. The present study is the first to report the presence of nonclassical androgen and estrogen signaling and its possible regulatory function in the adrenal cortex of Eurasian beavers. We assume that this first-activated and fast-transmitted regulation can be important in the context of the effect of environmental physical and chemical stressors especially on adrenal cortex cells. The beaver adrenals may constitute an additional supplementary model for searching for universal mechanisms of adrenal cortex physiology and diseases.


Asunto(s)
Corteza Suprarrenal , Receptores Androgénicos , Receptores de Estrógenos , Roedores , Transducción de Señal , Animales , Femenino , Masculino , Receptores de Estrógenos/metabolismo , Receptores Androgénicos/metabolismo , Corteza Suprarrenal/metabolismo , Transducción de Señal/fisiología , Roedores/fisiología , Corticosterona/sangre , Corticosterona/metabolismo , Zinc/metabolismo , Cobre/metabolismo
6.
Pathol Res Pract ; 256: 155251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490097

RESUMEN

Aberrant adrenal function has been frequently reported in COVID-19 patients, but histopathological evidence remains limited. This retrospective autopsy study aims to scrutinize the impact of COVID-19 duration on adrenocortical zonational architecture and peripheral corticosteroid reactivity. The adrenal glands procured from 15 long intensive care unit (ICU)-stay COVID-19 patients, 9 short ICU-stay COVID-19 patients, and 20 matched controls. Subjects who had received glucocorticoid treatment prior to sampling were excluded. Applying hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining, we disclosed that the adrenocortical zonational structure was substantially disorganized in COVID-19 patients, which long ICU-stay patients manifested a higher prevalence of severe disorganization (67%) than short ICU-stay patients (11%; P = 0.0058). The adrenal cortex of COVID-19 patients exhibited a 40% decrease in the zona glomerulosa (ZG) area and a 74% increase in the zona fasciculata (ZF) area (both P < 0.0001) relative to controls. Furthermore, among long ICU-stay COVID-19 patients, the ZG area diminished by 31% (P = 0.0004), and the ZF area expanded by 27% (P = 0.0004) in comparison to short ICU-stay patients. The zona reticularis (ZR) area remained unaltered. Nuclear translocation of corticosteroid receptors in the liver and kidney of long ICU-stay COVID-19 patients was at least 43% lower than in short ICU-stay patients (both P < 0.05). These findings underscore the necessity for clinicians to monitor adrenal function in long-stay COVID-19 patients.


Asunto(s)
Corteza Suprarrenal , COVID-19 , Humanos , Enfermedad Crítica , Estudios Retrospectivos , Glándulas Suprarrenales , Corticoesteroides
7.
Vitam Horm ; 124: 297-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408801

RESUMEN

Mouse models have been widely used in the study of adrenal gland development and diseases. The X-zone is a unique structure of the mouse adrenal gland and lineage-tracing studies show that the X-zone is a remnant of the fetal adrenal cortex. Although the X-zone is considered analogous to the fetal zone in the human adrenal cortex, the functional significance of the X-zone has remained comparatively more obscure. The X-zone forms during the early postnatal stages of adrenal development and regresses later in a remarkable sexually dimorphic fashion. The formation and regression of the X-zone can be different in mice with different genetic backgrounds. Mouse models with gene mutations, hormone/chemical treatments, and/or gonadectomy can also display an aberrant development of the X-zone or alternatively a dysregulated X-zone regression. These models have shed light on the molecular mechanisms regulating the development and regression of these unique adrenocortical cells. This review paper briefly describes the development of the adrenal gland including the formation and regression processes of the X-zone. It also summarizes and lists mouse models that demonstrate different X-zone phenotypes.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Corteza Suprarrenal , Ratones , Humanos , Animales , Glándulas Suprarrenales
8.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38301271

RESUMEN

Cholesterol is the precursor of all steroids, but how cholesterol flux is controlled in steroidogenic tissues is poorly understood. The cholesterol exporter ABCG1 is an essential component of the reverse cholesterol pathway and its global inactivation results in neutral lipid redistribution to tissue macrophages. The function of ABCG1 in steroidogenic tissues, however, has not been explored. To model this, we inactivated Abcg1 in the mouse adrenal cortex, which led to an adrenal-specific increase in transcripts involved in cholesterol uptake and de novo synthesis. Abcg1 inactivation did not affect adrenal cholesterol content, zonation, or serum lipid profile. Instead, we observed a moderate increase in corticosterone production that was not recapitulated by the inactivation of the functionally similar cholesterol exporter Abca1. Altogether, our data imply that Abcg1 controls cholesterol uptake and biosynthesis and regulates glucocorticoid production in the adrenal cortex, introducing the possibility that ABCG1 variants may account for physiological or subclinical variation in stress response.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Corteza Suprarrenal , Colesterol , Animales , Ratones , Corteza Suprarrenal/metabolismo , Transporte Biológico , Colesterol/metabolismo , Corticosterona , Glucocorticoides , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo
9.
Vitam Horm ; 124: 429-447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408807

RESUMEN

The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.


Asunto(s)
Corteza Suprarrenal , Humanos , Corteza Suprarrenal/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Aldosterona/metabolismo , Activinas/genética , Activinas/metabolismo , ARN Mensajero/metabolismo
10.
Vitam Horm ; 124: 393-404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408805

RESUMEN

The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) ßarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and ßarrestins.


Asunto(s)
Corteza Suprarrenal , Aldosterona , Humanos , Aldosterona/metabolismo , Angiotensina II , Antagonistas de Receptores de Angiotensina/farmacología , Agonismo Inverso de Drogas , Inhibidores de la Enzima Convertidora de Angiotensina , Corteza Suprarrenal/metabolismo
11.
Cell Rep ; 43(2): 113715, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306273

RESUMEN

The zona fasciculata (zF) in the adrenal cortex contributes to multiple physiological actions through glucocorticoid synthesis. The size, proliferation, and glucocorticoid synthesis characteristics are all female biased, and sexual dimorphism is established by androgen. In this study, transcriptomes were obtained to unveil the sex differentiation mechanism. Interestingly, both the amount of mRNA and the expressions of nearly all genes were higher in females. The expression of Nr5a1, which is essential for steroidogenic cell differentiation, was also female biased. Whole-genome studies demonstrated that NR5A1 regulates nearly all gene expression directly or indirectly. This suggests that androgen-induced global gene suppression is potentially mediated by NR5A1. Using Nr5a1 heterozygous mice, whose adrenal cortex is smaller than the wild type, we demonstrated that the size of skeletal muscles is possibly regulated by glucocorticoid synthesized by zF. Taken together, considering the ubiquitous presence of glucocorticoid receptors, our findings provide a pathway for sex differentiation through glucocorticoid synthesis.


Asunto(s)
Corteza Suprarrenal , Andrógenos , Femenino , Animales , Ratones , Andrógenos/farmacología , Glucocorticoides , Caracteres Sexuales , Corticoesteroides , Músculo Esquelético
12.
Mol Cell Endocrinol ; 585: 112176, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341019

RESUMEN

Hyperaldosteronism is often associated with inappropriate aldosterone production and aldosterone synthase (Cyp11b2) expression. Normally, Cyp11b2 expression is limited to the adrenal zona glomerulosa (ZG) and regulated by angiotensin II which signals through Gq protein-coupled receptors. As cells migrate inwards, they differentiate into 11ß-hydroxylase-expressing zona fasciculata (ZF) cells lacking Cyp11b2. The mechanism causing ZG-specific aldosterone biosynthesis is still unclear. We investigated the effect of chronic Gq signaling using transgenic mice with a clozapine N-oxide (CNO)-activated human M3 muscarinic receptor (DREADD) coupled to Gq (hM3Dq) that was expressed throughout the adrenal cortex. CNO raised circulating aldosterone in the presence of a high sodium diet with greater response seen in females compared to males. Immunohistochemistry and transcriptomics indicated disrupted zonal Cyp11b2 expression while Wnt signaling remained unchanged. Chronic Gq-DREADD signaling also induced an intra-adrenal RAAS in CNO-treated mice. Chronic Gq signaling disrupted adrenal cortex zonal aldosterone production associated with ZF expression of Cyp11b2.


Asunto(s)
Corteza Suprarrenal , Hiperaldosteronismo , Masculino , Femenino , Humanos , Ratones , Animales , Zona Fascicular , Aldosterona/metabolismo , Corteza Suprarrenal/metabolismo , Zona Glomerular/metabolismo , Citocromo P-450 CYP11B2/genética , Vía de Señalización Wnt , Ratones Transgénicos
13.
Sci Rep ; 14(1): 3985, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368491

RESUMEN

Nucleobindin-derived peptides, nesfatin-1 [NESF-1] and nesfatin-1-like-peptide [NLP] have diverse roles in endocrine and metabolic regulation. While both peptides showed a stimulatory effect on the synthesis of proopiomelanocortin (POMC), the adrenocorticotropic hormone (ACTH) precursor in mouse corticotrophs, whether NESF-1 and NLP have any direct effect on glucocorticoid [GC] synthesis in the adrenal cortex remains unknown. The main aim of this study was to determine if NESF-1 and/or NLP act directly on adrenal cortex cells to regulate cortisol synthesis in vitro. Whether NLP injection affects stress-hormone gene expression in the adrenal gland and pituitary in vivo in mice was also assessed. In addition, cortisol synthetic pathway in Nucb1 knockout mice was studied. Human adrenal cortical [H295R] cells showed immunoreactivity for both NUCB1/NLP and NUCB2/NESF-1. NLP and NESF-1 decreased the abundance of steroidogenic enzyme mRNAs, and cortisol synthesis and release through the AC/PKA/CREB pathway in H295R cells. Similarly, intraperitoneal injection of NLP in mice decreased the expression of enzymes involved in glucocorticoid (GC) synthesis in the adrenal gland while increasing the expression of Pomc, Pcsk1 and Crhr1 in the pituitary. Moreover, the melanocortin 2 receptor (Mc2r) mRNA level was enhanced in the adrenal gland samples of NLP injected mice. However, the global genetic disruption in Nucb1 did not affect most steroidogenic enzyme mRNAs, and Pomc, Pcsk2 and Crhr1 mRNAs in mice adrenal gland and pituitary gland, respectively. Collectively, these data provide the first evidence for a direct inhibition of cortisol synthesis and secretion by NLP and NESF-1. NUCB peptides might still elicit a net stimulatory effect on GC synthesis and secretion through their positive effects on ACTH-MC2R pathway in the pituitary.


Asunto(s)
Corteza Suprarrenal , Hidrocortisona , Humanos , Ratones , Animales , Glucocorticoides , Proopiomelanocortina/metabolismo , Péptidos , Hormona Adrenocorticotrópica/farmacología , Corteza Suprarrenal/metabolismo
14.
Steroids ; 203: 109366, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242273

RESUMEN

The adrenal gland produces steroid hormones that act in the homeostasis of organisms. During aging, alterations in the hormonal balance affect the adrenal glands, but these have not yet been fully described due to the lack of adequate animal models. The adrenal gland of the Mongolian gerbil has a morphology similar to the primate's adrenal gland, which makes it a possible animal model for endocrine studies. Therefore, the current study aimed to study the morphophysiology of the adrenal gland under the effect of aging. For this purpose, males Meriones unguiculatus, aged three, six, nine, twelve, and fifteen months were used. Morphometric, immunohistochemical, and hormonal analyses were performed. It was observed that during aging the adrenal gland presents hypertrophy of the fasciculata and reticularis zones. Lipofuscin accumulation was observed during aging, in addition to changes in proliferation, cell death, and cell receptors. The analyses also showed that the gerbil presents steroidogenic enzymes and the production of steroid hormones, such as DHEA, like that found in humans. The data provide the first comprehensive assessment of the morphophysiology of the Mongolian gerbil adrenal cortex during aging, indicating that this species is a possible experimental model for studies of the adrenal gland and aging.


Asunto(s)
Corteza Suprarrenal , Humanos , Animales , Masculino , Gerbillinae/anatomía & histología , Corteza Suprarrenal/metabolismo , Glándulas Suprarrenales/metabolismo , Corticoesteroides/farmacología , Hormonas/metabolismo , Envejecimiento , Esteroides/farmacología
15.
Psychoneuroendocrinology ; 160: 106683, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086320

RESUMEN

Mitochondria within the adrenal cortex play a key role in synthesizing steroid hormones. The adrenal cortex is organized in three functionally specialized zones (glomerulosa, fasciculata, and reticularis) that produce different classes of steroid hormones in response to various stimuli, including psychosocial stress. Given that the functions and morphology of mitochondria are dynamically related and respond to stress, we applied transmission electron microscopy (TEM) to examine potential differences in mitochondrial morphology under basal and chronic psychosocial stress conditions. We used the chronic subordinate colony housing (CSC) paradigm, a murine model of chronic psychosocial stress. Our findings quantitatively define how mitochondrial morphology differs among each of the three adrenal cortex zones under basal conditions, and show that chronic psychosocial stress mainly affected mitochondria in the zona glomerulosa, shifting their morphology towards the more typical glucocorticoid-producing zona fasciculata mitochondrial phenotype. Analysis of adrenocortical lipid droplets that provide cholesterol for steroidogenesis showed that chronic psychosocial stress altered lipid droplet diameter, without affecting droplet number or inter-organellar mitochondria-lipid droplet interactions. Together, our findings support the hypothesis that each adrenal cortex layer is characterized by morphologically distinct mitochondria and that this adrenal zone-specific mitochondrial morphology is sensitive to environmental stimuli, including chronic psychosocial stressors. Further research is needed to define the role of these stress-induced changes in mitochondrial morphology, particularly in the zona glomerulosa, on stress resilience and related behaviors.


Asunto(s)
Corteza Suprarrenal , Ratones , Animales , Corteza Suprarrenal/metabolismo , Corticoesteroides/metabolismo , Mitocondrias , Colesterol/metabolismo , Estrés Psicológico
16.
Horm Metab Res ; 56(1): 78-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884032

RESUMEN

Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.


Asunto(s)
Corteza Suprarrenal , Disruptores Endocrinos , Corteza Suprarrenal/metabolismo , Corticoesteroides/metabolismo , Disruptores Endocrinos/toxicidad , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Esteroides/metabolismo
17.
Protoplasma ; 261(3): 487-496, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38052957

RESUMEN

The importance and regulation of adrenal androgen production and signaling are not completely understood and are scarcely studied. In addition, there is still a search for appropriate animal models and experimental systems for the investigation of adrenal physiology and disease. Therefore, the main objective of the study was to evaluate the effect of luteinizing hormone (LH) signaling and selenium (Se2+) exposure on androgen adrenal signaling via canonical androgen receptor (AR), and membrane androgen receptor acting as zinc transporter (zinc- and iron-like protein 9; ZIP9). For herein evaluations, adrenals isolated from transgenic mice with elevated LH receptor signaling (KiLHRD582G) and adrenals obtained from rabbits used for ex vivo adenal cortex culture and exposure to Se2+ were utilized. Tissues were assessed for morphological, morphometric, and Western blot analyses and testosterone and zinc level measurements.Comparison of adrenal cortex histology and morphometric analysis in KiLHRD582G mice and Se2+-treated rabbits revealed cell hypertrophy. No changes in the expression of proliferating cell nuclear antigen (PCNA) were found. In addition, AR expression was decreased (p < 0.001) in both KiLHRD582G mouse and Se2+-treated rabbit adrenal cortex while expression of ZIP9 showed diverse changes. Its expression was increased (P < 0.001) in KiLHRD582G mice and decreased (P < 0.001) in Se2+-treated rabbits but only at the dose 10 ug/100 mg/ tissue. Moreover, increased testosterone levels (P < 0.05) and zinc levels were detected in the adrenal cortex of KiLHRD582G mice whereas in rabbit adrenal cortex treated with Se2+, the effect was the opposite (P < 0.001).


Asunto(s)
Corteza Suprarrenal , Selenio , Ratones , Animales , Conejos , Andrógenos , Receptores Androgénicos/metabolismo , Receptores de HL , Selenio/farmacología , Testosterona , Corteza Suprarrenal/metabolismo , Receptores Acoplados a Proteínas G , Zinc
18.
Horm Metab Res ; 56(1): 16-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918821

RESUMEN

Primary adrenal insufficiency (AI) is an endocrine disorder in which hormones of the adrenal cortex are produced to an insufficient extent. Since receptors for adrenal steroids have a wide distribution, initial symptoms may be nonspecific. In particular, the lack of glucocorticoids can quickly lead to a life-threatening adrenal crisis. Therefore, current guidelines suggest applying a low threshold for testing and to rule out AI not before serum cortisol concentrations are higher than 500 nmol/l (18 µg/dl). To ease the diagnostic, determination of morning cortisol concentrations is increasingly used for making a diagnosis whereby values of>350 nmol/l are considered to safely rule out Addison's disease. Also, elevated corticotropin concentrations (>300 pg/ml) are indicative of primary AI when cortisol levels are below 140 nmol/l (5 µg/dl). However, approximately 10 percent of our patients with the final diagnosis of primary adrenal insufficiency would clearly have been missed for they presented with normal cortisol concentrations. Here, we present five such cases to support the view that normal to high basal concentrations of cortisol in the presence of clearly elevated corticotropin are indicative of primary adrenal insufficiency when the case history is suggestive of Addison's disease. In all cases, treatment with hydrocortisone had been started, after which the symptoms improved. Moreover, autoantibodies to the adrenal cortex had been present and all patients underwent a structured national education program to ensure that self-monitored dose adjustments could be made as needed.


Asunto(s)
Enfermedad de Addison , Corteza Suprarrenal , Insuficiencia Suprarrenal , Humanos , Hidrocortisona , Enfermedad de Addison/diagnóstico , Enfermedad de Addison/tratamiento farmacológico , Glucocorticoides/uso terapéutico , Hormona Adrenocorticotrópica , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/tratamiento farmacológico
19.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139285

RESUMEN

The adrenal gland is paired peripheral end organs of the neuroendocrine system and is responsible for producing crucial stress hormones from its two functional compartments, the adrenal cortex, and the adrenal medulla under stimuli. Left-right asymmetry in vertebrates exists from the central nervous system to peripheral paired endocrine glands. The sided difference in the cerebral cortex is extensively investigated, while the knowledge of asymmetry of paired endocrine glands is still poor. The present study aims to investigate the asymmetries of bilateral adrenal glands, which play important roles in stress adaptation and energy homeostasis via steroid hormones produced from the distinct functional zones. Left and right adrenal glands from male C57BL/6J mice were initially histologically analyzed, and high-throughput RNA sequencing was then used to detect the gene transcriptional difference between left and right adrenal glands. Subsequently, the enrichment of functional pathways and ceRNA regulatory work was validated. The results demonstrated that the left adrenal gland had higher tissue mass and levels of energy expenditure, whereas the right adrenal gland appeared to be more potent in glucocorticoid secretion. Further analysis of adrenal stem/progenitor cell markers predicted that Shh signaling might play an important role in the left-right asymmetry of adrenal glands. Of the hub miRNAs, miRNA-466i-5p was identified in the left-right differential innervation of the adrenal glands. Therefore, the present study provides evidence that there are asymmetries between the left and right adrenal glands in glucocorticoid production and neural innervation, in which Shh signaling and miRNA-466i-5p play an important role.


Asunto(s)
Corteza Suprarrenal , MicroARNs , Animales , Ratones , Masculino , Glucocorticoides , Ratones Endogámicos C57BL , Glándulas Suprarrenales/fisiología
20.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139309

RESUMEN

Steroid hormone production via the adrenal cortex, gonads, and placenta (so-called glandular steroidogenesis) is responsible for the endocrine control of the body's homeostasis and is organized by a feedback regulatory mechanism based on the hypothalamus-pituitary-steroidogenic gland axis. On the other hand, recently discovered extraglandular steroidogenesis occurring locally in different tissues is instead linked to paracrine or autocrine signaling, and it is independent of the control by the hypothalamus and pituitary glands. Bone cells, such as bone-forming osteoblasts, osteoblast-derived osteocytes, and bone-resorbing osteoclasts, respond to steroid hormones produced by both glandular and extraglandular steroidogenesis. Recently, new techniques to identify steroid hormones, as well as synthetic steroids and steroidogenesis inhibitors, have been introduced, which greatly empowered steroid hormone research. Based on recent literature and new advances in the field, here we review the local role of steroid hormones in regulating bone homeostasis and skeletal lesion formation. The novel idea of extraglandular steroidogenesis occurring within the skeletal system raises the possibility of the development of new therapies for the treatment of bone diseases.


Asunto(s)
Corteza Suprarrenal , Esteroides , Embarazo , Femenino , Humanos , Corticoesteroides , Gónadas , Huesos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...