Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
BMC Genomics ; 25(1): 347, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580927

RESUMEN

BACKGROUND: The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS: The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS: This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.


Asunto(s)
Ascomicetos , Corylus , Corylus/genética , Ascomicetos/genética , Fenotipo , Tamaño del Genoma
2.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325326

RESUMEN

European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.


Asunto(s)
Corylus , Resistencia a la Enfermedad , Haplotipos , Enfermedades de las Plantas , Corylus/genética , Corylus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Anotación de Secuencia Molecular , Genoma de Planta , Cromosomas de las Plantas/genética , Mapeo Cromosómico
3.
Food Chem ; 438: 137952, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38007952

RESUMEN

Hazelnut, one of the most popular tree nuts, is widely found in processed food and even very small amounts can trigger severe allergic reactions in susceptible people. Herein, we developed a sensitive and rapid method based on CRISPR and qPCR capable of detecting low-abundance hazelnut in processed food. The assay, known as CRISPR-based nucleic acid test method (Crinac) can detect 1 % of hazelnut in a mixture and allows the species to be identified in a complex processed sample. The detection process can be completed within 60 min. Contributed to amplification via PCR and CRISPR/Cas12a, enables end-fluorescence measurement for the quantification of hazelnut, thus reducing assay time and eliminating the need for costly real-time fluorescence PCR instruments. The assay based on CRISPR/Cas12 and PCR has potential as a sensitive and reliable analytical tool for the detection of food authenticity.


Asunto(s)
Corylus , Proteínas de Plantas , Humanos , Proteínas de Plantas/análisis , Corylus/genética , Sistemas CRISPR-Cas , Análisis de los Alimentos/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
4.
Plant Biotechnol J ; 22(2): 472-483, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37870930

RESUMEN

The native, perennial shrub American hazelnut (Corylus americana) is cultivated in the Midwestern United States for its significant ecological benefits, as well as its high-value nut crop. Implementation of modern breeding methods and quantitative genetic analyses of C. americana requires high-quality reference genomes, a resource that is currently lacking. We therefore developed the first chromosome-scale assemblies for this species using the accessions 'Rush' and 'Winkler'. Genomes were assembled using HiFi PacBio reads and Arima Hi-C data, and Oxford Nanopore reads and a high-density genetic map were used to perform error correction. N50 scores are 31.9 Mb and 35.3 Mb, with 90.2% and 97.1% of the total genome assembled into the 11 pseudomolecules, for 'Rush' and 'Winkler', respectively. Gene prediction was performed using custom RNAseq libraries and protein homology data. 'Rush' has a BUSCO score of 99.0 for its assembly and 99.0 for its annotation, while 'Winkler' had corresponding scores of 96.9 and 96.5, indicating high-quality assemblies. These two independent assemblies enable unbiased assessment of structural variation within C. americana, as well as patterns of syntenic relationships across the Corylus genus. Furthermore, we identified high-density SNP marker sets from genotyping-by-sequencing data using 1343 C. americana, C. avellana and C. americana × C. avellana hybrids, in order to assess population structure in natural and breeding populations. Finally, the transcriptomes of these assemblies, as well as several other recently published Corylus genomes, were utilized to perform phylogenetic analysis of sporophytic self-incompatibility (SSI) in hazelnut, providing evidence of unique molecular pathways governing self-incompatibility in Corylus.


Asunto(s)
Corylus , Corylus/genética , Filogenia , Fitomejoramiento , Cromosomas , Genómica
5.
Plant Physiol Biochem ; 205: 108167, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977029

RESUMEN

The increasing interest in European hazelnut (Corylus avellana L.) cultivation registered in the last years has led to a significant increase in worldwide hazelnut growing areas, also involving regions characterized by a marginal presence of hazelnut orchards. Despite this increasement, world production still relies on the cultivation of few varieties, most of which are particularly suitable to the environment where they have been selected. Therefore, it is necessary to develop new cultivars with high environmental plasticity capable of providing constant and high-quality productions in the new environments and under the climatic change conditions of traditional growing areas. Over the years, many molecular markers for genetic breeding programs have been developed and omics sciences also provided further information about the genetics of this species. These data could be of support to the application of new plant breeding techniques (NPBTs), which would allow the development of cultivars with the desired characteristics in a shorter time than traditional techniques. However, the application of these methodologies is subordinated to the development of effective regeneration protocols which, to date, have been set up exclusively for seed-derived explants. A further aspect to be exploited is represented by the possibility of cultivating hazelnut cells and tissues in vitro to produce secondary metabolites of therapeutic interest. This review aims to consolidate the state of the art on biotechnologies and in vitro culture techniques applied on this species, also describing the various studies that over time allowed the identification of genomic regions that control traits of interest.


Asunto(s)
Corylus , Corylus/genética , Corylus/metabolismo , Fitomejoramiento , Fenotipo , Semillas , Biotecnología
6.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241987

RESUMEN

Virgin olive oil (VOO), characterized by its unique aroma, flavor, and health benefits, is subject to adulteration with the addition of oils obtained from other edible species. The consumption of adulterated olive oil with nut species, such as hazelnut or almond, leads to health and safety issues for consumers, due to their high allergenic potential. To detect almond and hazelnut in olive oil, several amplification systems have been analyzed by qPCR assay with a SYBR Green post-PCR melting curve analysis. The systems selected were Cora1F2/R2 and Madl, targeting the genes coding the allergenic protein Cor a 1 (hazelnut) and Pru av 1 (almond), respectively. These primers revealed adequate specificity for each of the targeted species. In addition, the result obtained demonstrated that this methodology can be used to detect olive oil adulteration with up to 5% of hazelnut or almond oil by a single qPCR assay, and with a level as low as 2.5% by a nested-qPCR assay. Thus, the present research has shown that the SYBR-based qPCR assay can be a rapid, precise, and accurate method to detect adulteration in olive oil.


Asunto(s)
Corylus , Prunus dulcis , Aceite de Oliva/análisis , Corylus/genética , Prunus dulcis/genética , Contaminación de Alimentos/análisis , Aceites de Plantas/análisis , Alérgenos/genética , Alérgenos/análisis
7.
Anal Chim Acta ; 1259: 341168, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37100473

RESUMEN

A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1, a limit of detection (LOD) < 19.9 amol L-1, and a sensitivity of 13.4 ± 0.6 m°. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg-1) of hazelnut in wheat material (corresponding to 1.6 mg kg-1 of protein) and a sensitivity of -17.2 ± 0.5 m° for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.


Asunto(s)
Corylus , Hipersensibilidad a los Alimentos , Humanos , Alérgenos/genética , Corylus/genética , Corylus/química , Inmunoglobulina E , Proteínas de Plantas/genética , Proteínas de Plantas/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Mol Genet Genomics ; 298(2): 413-426, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36595074

RESUMEN

Hazelnut (Corylus avellana L.) is an economically and socially important product for Turkey, the country that leads global production of this crop. The preservation of Turkish hazelnut genetic diversity and informed breeding of new cultivars are crucial for maintaining quality and crop yield stability. In this study, genotyping by random amplicon sequencing (GRAS-Di) was used to identify single-nucleotide polymorphisms (SNPs) in a panel of 96 individuals representing the Turkish national hazelnut collection. The resulting 7609 high-quality SNPs were physically mapped to the Tombul cultivar reference genome and used for population structure and diversity analyses. These analyses revealed that cultivars are not less diverse than wild accessions and that 44% of the panel had admixed ancestry. The results also indicated that recently released Turkish cultivars are highly similar to each other, suggesting that diversity analysis is an important tool that should be employed to prevent future genetic bottlenecks in this crop. A minimal marker algorithm was used to select a set of seven SNP markers that were capable of differentiating the panel accessions. These fingerprinting markers should be useful for the propagation of true-to-type elite cultivars that can be used to renew Turkey's aging hazelnut orchards.


Asunto(s)
Corylus , Humanos , Corylus/genética , Polimorfismo de Nucleótido Simple/genética , Turquía , Fitomejoramiento
9.
Folia Biol (Praha) ; 69(3): 99-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38206775

RESUMEN

Hazelnut (Corylus), which has high commercial and nutritional benefits, is an important tree for producing nuts and nut oil consumed as ingredient especially in chocolate. While Corylus avellana L. (Euro-pean hazelnut, Betulaceae) and Corylus colurna L. (Turkish hazelnut, Betulaceae) are the two common hazelnut species in Europe, C. avellana L. (Tombul hazelnut) is grown as the most widespread hazelnut species in Turkey, and C. colurna L., which is the most important genetic resource for hazelnut breeding, exists naturally in Anatolia. We generated the transcriptome data of these two Corylus species and used these data for gene discovery and gene expression profiling. Total RNA from young leaves, flowers (male and female), buds, and husk shoots of C. avellana and C. colurna were used for two different libraries and were sequenced using Illumina HiSeq4000 with 100 bp paired-end reads. The transcriptome data 10.48 and 10.30 Gb of C. avellana and C. colurna, respectively, were assembled into 70,265 and 88,343 unigenes, respectively. These unigenes were functionally annotated using the TRAPID platform. We identified 25,312 and 27,051 simple sequen-ce repeats (SSRs) for C. avellana and C. colurna, respectively. TL1, GMPM1, N, 2MMP, At1g29670, CHIB1 unigenes were selected for validation with qPCR. The first de novo transcriptome data of C. co-lurna were used to compare data of C. avellana of commercial importance. These data constitute a valuable extension of the publicly available transcriptomic resource aimed at breeding, medicinal, and industrial research studies.


Asunto(s)
Corylus , Corylus/genética , Corylus/metabolismo , Perfilación de la Expresión Génica , Nueces , Turquía
10.
Tree Physiol ; 42(7): 1463-1480, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35137225

RESUMEN

Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.


Asunto(s)
Ascomicetos , Corylus , Micorrizas , Corylus/genética , Corylus/microbiología , Genotipo , Micorrizas/fisiología
11.
Mol Phylogenet Evol ; 168: 107413, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031460

RESUMEN

Historical geo-climatic changes have shaped the geographical distributions and genetic diversity of numerous plant taxa in East Asia, which promote species divergence and ultimately speciation. Here, we integrated multiple approaches, including molecular phylogeography, ecological niche modeling, and morphological traits to examine the nucleotide diversity and interspecific divergence within Corylus heterophylla complex (C. heterophylla, C. kweichowensis, and C. yunnanensis). These three sibling taxa harbored similar high levels of nucleotide diversity at the species level. The molecular data (SCNG and cpDNA) unanimously supported the division of C. heterophylla complex into two major clades, with C. yunnanensis diverged earlier from the complex, whereas C. heterophylla and C. kweichowensis could hardly be separated. The split between the two clades (c. 12.89 Ma) coincided with the formation of Sichuan Basin in the middle Miocene, while the divergence among and within the five subclades (YUN1-YUN3, HK1-HK2) occurred from the late Miocene to the Pleistocene. C. heterophylla of northern China experienced glacial contraction and interglacial expansion during the Quaternary, whereas C. kweichowensis and C. yunnanensis of southern China presented population expansion even during the last glacial maximum. Despite of high levels of genetic admixture between C. heterophylla and C. kweichowensis, significant ecological and morphological discrepancy as well as incomplete geographic isolation indicated that adaptive evolution triggered by divergent selection may have played important roles in incipient ecological speciation.


Asunto(s)
Corylus , Corylus/genética , ADN de Cloroplastos/genética , Ecosistema , Variación Genética , Filogenia , Filogeografía
12.
Phytopathology ; 112(4): 956-960, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34645322

RESUMEN

Xanthomonas arboricola pv. corylina is the causal agent of bacterial blight of hazelnut. The bacterium has been listed as an A2 quarantine pathogen in Europe since 1978 and on the regulated non-quarantine pest list since 2019. Three isolates from various geographic regions and isolated at different times were sequenced using a hybrid approach with short- and long-read technologies to generate closed genome and plasmid sequences in order to better understand the biology of this pathogen.


Asunto(s)
Corylus , Xanthomonas , Corylus/genética , Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Xanthomonas/genética
13.
Plant Biol (Stuttg) ; 24(1): 104-116, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34724309

RESUMEN

The Corylus genus contains several important nut producing species and exhibits sporophytic self-incompatibility (SSI). However, the underlying molecular mechanisms of SSI in Corylus remain largely unknown. To clarify whether Corylus and Brassica share the same SSI molecular mechanism. We cloned ChaTHL1/2, ChaMLPK, ChaARC1, ChaEX70A1 genes from Ping'ou hybrid hazelnut using RACE techniques and tested the interaction between the ChaARC1 and ChaSRK1/2. We also examined the pistil-pollen interactions using scanning electron microscopy. We found no differences in the stigma surface within 1 h after compatible or incompatible pollination. Compatible pollen tubes penetrated the stigma surface, while incompatible pollen did not penetrate the stigma 4 h after pollination. Bioinformatics analysis revealed that ChaTHL1/2, ChaMLPK, ChaARC1 and ChaEX70A1 have corresponding functional domains. Quantitative real-time PCR (qRT-PCR) analysis showed that ChaTHL1/2, ChaMLPK, ChaARC1 and ChaEX70A1 were not regularly expressed in compatible or incompatible pollination. Furthermore, the expression patterns of ARC1, THL1/2, MLPK and Exo70A1 were quite distinct between Corylus and Brassica. According to yeast two-hybrid assays, ChaSRK1/2 did not interact with ChaARC1, confirming that the SRK-ARC1 signalling pathway implicated in the SSI response of Brassica was not conserved in Corylus. These results further reinforce the conclusion that, notwithstanding the similarity of the genetic basis, the SSI mechanism of Corylus does not conform in many respects with that of Brassica. Our findings could be helpful to better explore the potential mechanism of SSI system in Corylus.


Asunto(s)
Corylus , Clonación Molecular , Corylus/genética , Flores/genética , Proteínas de Plantas/genética , Polen/genética , Saccharomyces cerevisiae
14.
Methods Mol Biol ; 2289: 179-198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270071

RESUMEN

This chapter deals with induction of haploidy via parthenogenesis in Persian walnut and via microspore embryogenesis in almond and hazelnut. Haploid induction through in situ parthenogenesis using pollination with irradiated pollen to stimulate the embryogenic development of the egg cell, followed by in vitro culture of the immature haploid embryos. Microspore embryogenesis allows the induction of immature pollen grains (microspores), to move away from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos in this case). Unlike other fruit crops (such as Citrus), regeneration of entire plants has not yet been obtained in our studied nut crops; however, it gives the methodology should be used to continue the roadmap.


Asunto(s)
Corylus/genética , Juglans/genética , Nueces/genética , Prunus dulcis/genética , Productos Agrícolas/genética , Haploidia , Partenogénesis/genética , Polen/genética , Polinización/genética , Técnicas de Cultivo de Tejidos/métodos
15.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33964151

RESUMEN

The European hazelnut (Corylus avellana L.; 2n = 2x = 22) is a worldwide economically important tree nut that is cross-pollinated due to sporophytic incompatibility. Therefore, any individual plant is highly heterozygous. Cultivars are clonally propagated using mound layering, rooted suckers, and micropropagation. In recent years, the interest in this crop has increased, due to a growing demand related to the recognized health benefits of nut consumption. C. avellana cv "Tonda Gentile delle Langhe" ("TGdL") is well-known for its high kernel quality, and the premium price paid for this cultivar is an economic benefit for producers in northern Italy. Assembly of a high-quality genome is a difficult task in many plant species because of the high level of heterozygosity. We assembled a chromosome-level genome sequence of "TGdL" with a two-step approach. First, 10X Genomics Chromium Technology was used to create a high-quality sequence, which was then assembled into scaffolds with cv "Tombul" genome as the reference. Eleven pseudomolecules were obtained, corresponding to 11 chromosomes. A total of 11,046 scaffolds remained unplaced, representing 11% of the genome (46,504,161 bp). Gene prediction, performed with Maker-P software, identified 27,791 genes (AED ≤0.4 and 92% of BUSCO completeness), whose function was analyzed with BlastP and InterProScan software. To characterize "TGdL" specific genetic mechanisms, Orthofinder was used to detect orthologs between hazelnut and closely related species. The "TGdL" genome sequence is expected to be a powerful tool to understand hazelnut genetics and allow detection of markers/genes for important traits to be used in targeted breeding programs.


Asunto(s)
Corylus , Corylus/genética , Fitomejoramiento , Nueces , Fenotipo , Genómica
16.
Gigascience ; 10(4)2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33871007

RESUMEN

BACKGROUND: Corylus heterophylla Fisch. is a species of the Betulaceae family native to China. As an economically and ecologically important nut tree, C. heterophylla can survive in extremely low temperatures (-30 to -40 °C). To deepen our knowledge of the Betulaceae species and facilitate the use of C. heterophylla for breeding and its genetic improvement, we have sequenced the whole genome of C. heterophylla. FINDINGS: Based on >64.99 Gb (∼175.30×) of Nanopore long reads, we assembled a 370.75-Mb C. heterophylla genome with contig N50 and scaffold N50 sizes of 2.07 and 31.33 Mb, respectively, accounting for 99.23% of the estimated genome size (373.61 Mb). Furthermore, 361.90 Mb contigs were anchored to 11 chromosomes using Hi-C link data, representing 97.61% of the assembled genome sequences. Transcriptomes representing 4 different tissues were sequenced to assist protein-coding gene prediction. A total of 27,591 protein-coding genes were identified, of which 92.02% (25,389) were functionally annotated. The phylogenetic analysis showed that C. heterophylla is close to Ostrya japonica, and they diverged from their common ancestor ∼52.79 million years ago. CONCLUSIONS: We generated a high-quality chromosome-level genome of C. heterophylla. This genome resource will promote research on the molecular mechanisms of how the hazelnut responds to environmental stresses and serves as an important resource for genome-assisted improvement in cold and drought resistance of the Corylus genus.


Asunto(s)
Corylus , Cromosomas , Corylus/genética , Anotación de Secuencia Molecular , Filogenia , Fitomejoramiento
17.
Ann Bot ; 127(7): 875-886, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33564860

RESUMEN

BACKGROUND AND AIMS: Hybridization increases species adaptation and biodiversity but also obscures species boundaries. In this study, species delimitation and hybridization history were examined within one Chinese hazel species complex (Corylus chinensis-Corylus fargesii). Two species including four varieties have already been described for this complex, with overlapping distributions. METHODS: A total of 322 trees from 44 populations of these four varieties across their ranges were sampled for morphological and molecular analyses. Climatic datasets based on 108 geographical locations were used to evaluate their niche differentiations. Flowering phenology was also observed for two co-occurring species or varieties. KEY RESULTS: Four statistically different phenotypic clusters were revealed, but these clusters were highly inconsistent with the traditional taxonomic groups. All the clusters showed statistically distinct niches, with complete or partial geographical isolation. Only two clusters displayed a distributional overlap, but they had distinct flowering phenologies at the site where they co-occurred. Population-level evidence based on the genotypes of ten simple sequence repeat loci supported four phenotypic clusters. In addition, one cluster was shown to have an admixed genetic composition derived from the other three clusters through repeated historical hybridizations. CONCLUSIONS: Based on our new evidence, it is better to treat the four clusters identified here as four independent species. One of them was shown to have an admixed genetic composition derived from the other three through repeated historical hybridizations. This study highlights the importance of applying integrative and statistical methods to infer species delimitations and hybridization history. Such a protocol should be adopted widely for future taxonomic studies.


Asunto(s)
Corylus , Biodiversidad , Corylus/genética , Geografía , Hibridación Genética , Repeticiones de Microsatélite/genética , Filogenia , Especificidad de la Especie
18.
Plant J ; 105(5): 1413-1430, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33249676

RESUMEN

The European hazelnut (Corylus avellana L.) is a tree crop of economic importance worldwide, but especially for northern Turkey, where the majority of production takes place. Hazelnut production is currently challenged by environmental stresses, such as a recent outbreak of severe powdery mildew disease; furthermore, allergy to hazelnuts is an increasing health concern in some regions. In order to provide a foundation for using the available hazelnut genetic resources for crop improvement, we produced a fully assembled genome sequence and annotation for a hazelnut species, from C. avellana cv. 'Tombul', one of the most important Turkish varieties. A hybrid sequencing strategy, combining short reads, long reads and proximity ligation methods, enabled us to resolve heterozygous regions and produce a high-quality 370-Mb assembly that agrees closely with cytogenetic studies and genetic maps of the 11 C. avellana chromosomes, and covers 97.8% of the estimated genome size. The genome includes 27 270 high-confidence protein-coding genes, over 20 000 of which were functionally annotated based on homology with known plant proteins. We focused particularly on gene families encoding hazelnut allergens, and the Mildew resistance Locus O (MLO) proteins that are an important susceptibility factor for powdery mildew. The complete assembly enabled us to differentiate between members of these families and to identify homologues that may be important in mildew disease and hazelnut allergy. These findings provide examples of how the genome can be used to guide research and to develop effective strategies for crop improvement in C. avellana.


Asunto(s)
Corylus/metabolismo , Proteínas de Plantas/metabolismo , Corylus/genética , Tamaño del Genoma/genética , Proteínas de Plantas/genética
19.
Nutrients ; 12(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708541

RESUMEN

Hazelnuts (Corylus avellana L.) have an important role in human nutrition and health. However, they are a common cause of food allergy. Due to hazelnut varietal diversity, variety-dependent differences in the IgE-binding properties may be suspected, which could allow therapeutic strategies based on the use of hypoallergenic varieties to induce desensitization. In a proteogenomic approach, we aimed to evaluate the allergenic potential of a genetically diverse set of hazelnuts (n = 13 varieties). Minor differences were found at the level of genes encoding important allergens, namely Cor a 8, Cor a 9, and Cor a 14. Nevertheless, IgE-reactivity was similar for all varieties using sera from seven allergic individuals. The predominant IgE-reactive proteins were Cor a 9 (100%) and Cor a 1.04 (60%), with the former being the most frequently identified by a two-dimensional gel electrophoresis (2-DE)-based proteomic approach. Therefore, it seems that the conventional exclusion diet will hold its ground for the time being.


Asunto(s)
Corylus/genética , Corylus/inmunología , Hipersensibilidad a los Alimentos/etiología , Variación Genética , Hipersensibilidad a la Nuez/etiología , Proteínas de Plantas/efectos adversos , Adolescente , Adulto , Anciano , Alérgenos/genética , Antígenos de Plantas , Preescolar , Corylus/efectos adversos , Femenino , Humanos , Inmunoglobulina E/inmunología , Masculino , Persona de Mediana Edad , Proteómica , Adulto Joven
20.
BMC Dev Biol ; 20(1): 13, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32605594

RESUMEN

BACKGROUND: Hazels (Corylus spp.) are economically important nut-producing species in which ovule development determines seed plumpness, one of the key parameters reflecting nut quality. microRNAs (miRNAs) play important roles in RNA silencing and the post-transcriptional regulation of gene expression. However, very little is currently known regarding the miRNAs involved in regulating ovule growth and development. RESULTS: In this study, we accordingly sought to determine the important miRNAs involved in ovule development and growth in hazel. We examined ovules at four developmental stages, namely, ovule formation (Ov1), early ovule growth (Ov2), rapid ovule growth (Ov3), and ovule maturity (Ov4). On the basis of small RNA and mRNA sequencing using the Illumina sequencing platform, we identified 970 miRNAs in hazel, of which 766 and 204 were known and novel miRNAs, respectively. In Ov1-vs-Ov2, Ov1-vs-Ov3, Ov1-vs-Ov4, Ov2-vs-Ov3, Ov2-vs-Ov4, and Ov3-vs-Ov4 paired comparisons, 471 differentially expressed microRNAs (DEmiRNAs) and their 3117 target differentially expressed messenger RNAs (DEmRNAs) formed 11,199 DEmiRNA/DEmRNA pairs, with each DEmiRNA changing the expression of an average of 6.62 target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of all DEmRNAs revealed 29 significantly enriched KEGG pathways in the six paired comparisons, including protein export (ko03060), fatty acid elongation (ko00062), starch and sucrose metabolism (ko00500), fatty acid biosynthesis (ko00061), and amino sugar and nucleotide sugar metabolism (ko00520). Our results indicate that DEmiRNA/DEmRNA pairs showing opposite change trends were related to stress tolerance, embryo and seed development, cell proliferation, auxin transduction, and the biosynthesis of proteins, starch, and fats may participate in ovule growth and development. CONCLUSIONS: These findings contribute to a better understanding of ovule development at the level of post-transcriptional regulation, and lay the foundation for further functional analyses of hazelnut ovule growth and development.


Asunto(s)
Corylus/metabolismo , MicroARNs/metabolismo , Óvulo Vegetal/metabolismo , ARN Mensajero/metabolismo , Corylus/genética , Perfilación de la Expresión Génica , MicroARNs/genética , Óvulo Vegetal/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...