Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 458: 140238, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968705

RESUMEN

Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Aromatizantes , Glútenes , Triticum , Glútenes/metabolismo , Glútenes/química , Glútenes/análisis , Triticum/química , Triticum/metabolismo , Triticum/microbiología , Aromatizantes/metabolismo , Aromatizantes/química , Hidrólisis , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Odorantes/análisis , Gusto
2.
J Agric Food Chem ; 72(23): 13186-13195, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814711

RESUMEN

Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.


Asunto(s)
Proteínas Bacterianas , Corynebacterium glutamicum , Estabilidad de Enzimas , Ingeniería de Proteínas , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Cinética , Calor
3.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635392

RESUMEN

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Asunto(s)
Proteínas Bacterianas , Corynebacterium glutamicum , Proteómica , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometría de Masas en Tándem , Cromatografía Liquida , Acilación , Química Clic
4.
Protein Expr Purif ; 195-196: 106091, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35338005

RESUMEN

Cell surface protein B (CspB) from Corynebacterium glutamicum has been developed as a reversible pH-responsive tag for protein purification. CspB fusion proteins precipitate at acidic pH, after that they completely dissolve at neutral pH. This property has been used in a non-chromatographic protein purification method named pH-responsive Precipitation-Redissolution of CspB tag Purification (pPRCP). However, it is difficult to apply pPRCP to proteins that are unstable under acidic conditions. In an effort to shift the precipitation pH to a milder range, we investigated the solution conditions of CspB-fused Teriparatide (CspB50TEV-Teriparatide) during the process of pH-responsive precipitation using pPRCP. The purified CspB50TEV-Teriparatide in buffer without additives precipitated at pH 5.3. By contrast, CspB50TEV-Teriparatide in buffer with 0.5 M Na2SO4 precipitated at pH 6.6 because of the kosmotropic effect. Interestingly, the pH at which precipitation occurred was independent of the protein concentration. The precipitated CspB50TEV-Teriparatide was fully redissolved at above pH 8.0 in the presence or absence of salt. The discovery that proteins can be precipitated at a mild pH will allow pPRCP to be applied to acid-sensitive proteins.


Asunto(s)
Corynebacterium glutamicum , Teriparatido , Precipitación Química , Cromatografía de Afinidad , Corynebacterium glutamicum/química , Concentración de Iones de Hidrógeno , Proteínas/metabolismo , Teriparatido/metabolismo
5.
Methods Mol Biol ; 2306: 227-238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954950

RESUMEN

This book chapter provides readers the step-by-step instruction for cell growth, lipid isolation, and lipid analysis to obtain the lipidome of Corynebacterium glutamicum (C. glutamicum) in the genus Corynebacterium, a biotechnologically important bacterium. We separate the lipid families by preparative HPLC with an analytical C-8 column, followed by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high-resolution mass measurement to define the structures of cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), α-D-mannopyranosyl-(1 â†’ 4)-α-D-glucuronyl diacylglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), and acyl trehalose monomycolate (acyl-TMM) whose structures have been previously mis-assigned or not defined by mass spectrometric means. We also define the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in the cell wall. The similarity of the lipidome to that in the Mycobacterium genera is consistent with the notion that Corynebacterium and Mycobacterium are gram-positive bacteria belonging to the suborder Corynebacterineae.


Asunto(s)
Corynebacterium glutamicum/crecimiento & desarrollo , Lipidómica/métodos , Lípidos/análisis , Técnicas Bacteriológicas , Cromatografía Líquida de Alta Presión , Corynebacterium glutamicum/química , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
6.
J Gen Appl Microbiol ; 67(4): 125-133, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33132239

RESUMEN

Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. Here we showed that mrx3 deletion strains of C. glutamicum was involved in the protection against oxidative stress. Recombinant Mrx3 not only catalytically reduced the disulfide bonds in ribonucleotide reductase (RNR), insulin and 5,5'-dithiobis-(2-nitro-benzoicacid) (DTNB), but also reduced the mixed disulphides between mycothiol (MSH) and substrate, which was exclusively linked to the thioredoxin reductase (TrxR) electron transfer pathway by a dithiol mechanism. Site-directed mutagenesis confirmed that the conserved Cys17 and Cys20 in Mrx3 were necessary to maintain its activity. The mrx3 deletion mutant showed decreased resistance to various stress, and these sensitive phenotypes were almost fully restored in the complementary strain. The physiological roles of Mrx3 in resistance to various stress were further supported by the induced expression of mrx3 under various stress conditions, directly under the control of the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. Thus, we presented the first evidence that Mrx3 protected against various oxidative stresses by acting as a disulfide oxidoreductase behaving like Trx.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Glutarredoxinas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Eliminación de Gen , Genes Bacterianos , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Estrés Fisiológico
7.
J Basic Microbiol ; 60(11-12): 950-961, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33025611

RESUMEN

Plant-growth-promoting rhizobacteria (PGPR) should effectively colonize along the plant root to enhance the plant and soil health. The present investigation aims to improve the PGPR-mediated plant health benefits through above-ground foliar management. A green fluorescent protein-tagged PGPR strain, Pseudomonas chlororaphis (ZSB15-M2) was inoculated in a nonautoclaved agricultural soil before rice culturing. Salicylic acid and cell extracts of Corynebacterium glutamicum and Saccharomyces cerevisiae as a supply of hormonal and inducer compounds were applied on the foliage of the 10-days-old rice plants and subsequently observed the colonizing ability of ZSB15-M2. The cell extracts of Corynebacteria and yeast showed a 100-fold increase in the ZSB15-M2 population in the rhizosphere of rice, whereas salicylic acid had a 10-fold increase in relation to mock control. The rice root exudates collected after the spraying of salicylic acid and microbial extracts showed significantly enhanced release of total carbon, total protein, total sugar, total amino nitrogen, total nitrogen, and phenol content. In vitro assays revealed that these root exudates collected after exogenous spray of these chemicals enhanced the chemotactic motility and biofilm formation of ZSB15-M2 compared to the control plant's root exudate. Metabolomic analysis of root exudates collected from these rice plants by gas chromatography-mass spectrometry revealed that the Corynebacteria and yeast cell extracts enhanced the divergence of metabolites of rice root exudate. Further, due to these cumulative effects in the rice rhizosphere, the total chlorophyll, total protein, total nitrogen, and total phosphorus of rice were significantly improved. These observations provide insights into the rhizosphere functioning of rice plants as modulated by above-ground treatments with improved colonization of inoculant strains as well as the plant growth.


Asunto(s)
Inoculantes Agrícolas/efectos de los fármacos , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Inoculantes Agrícolas/fisiología , Biopelículas/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Corynebacterium glutamicum/química , Metaboloma/efectos de los fármacos , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/microbiología , Exudados de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Pseudomonas chlororaphis/efectos de los fármacos , Pseudomonas chlororaphis/fisiología , Rizosfera , Saccharomyces cerevisiae/química , Microbiología del Suelo
8.
Microbiologyopen ; 9(10): e1113, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32864855

RESUMEN

Pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate-dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate-dependent 2-oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH-ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty-four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2-E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2-E3 subcomplex. Our in vitro reconstituted system showed CgE1p- and CgE1o-dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2-E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2-E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact-sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Cinética , Unión Proteica , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
9.
ACS Synth Biol ; 9(9): 2378-2389, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32813974

RESUMEN

4-Hydroxyisoleucine (4-HIL), a promising drug for treating diabetes, can be synthesized from the self-produced l-isoleucine (Ile) by expressing the Ile dioxygenase gene ido in Corynebacterium glutamicum. However, the requirement of three substrates, Ile, α-ketoglutarate (α-KG), and O2, makes such de novo biosynthesis difficult to be fulfilled effectively under static engineering conditions. In this study, dynamic control of 4-HIL biosynthesis by the Ile biosensor Lrp-PbrnFE was researched. The native PbrnFE promoter of natural Ile biosensor was still weak even under Ile induction. Through tetA dual genetic selection, several modified stronger PbrnFEN promoters were obtained from the synthetic library of the Ile biosensor. Dynamic regulation of ido expression by modified Ile biosensors increased the 4-HIL titer from 24.7 mM to 28.9-74.4 mM. The best strain ST04 produced even a little more 4-HIL than the static strain SN02 overexpressing ido by the strong PtacM promoter (69.7 mM). Further dynamic modulation of α-KG supply in ST04 by expressing different PbrnFEN-controlled odhI decreased the 4-HIL production but increased the l-glutamate or Ile accumulation. However, synergistic modulation of α-KG supply and O2 supply in ST04 by different combinations of PbrnFEN-odhI and PbrnFEN-vgb improved the 4-HIL production significantly, and the highest titer (135.3 mM) was obtained in ST17 strain regulating all the three genes by PbrnFE7. This titer was higher than those of all the static metabolic engineered C. glutamicum strains ever constructed. Therefore, dynamic regulation by modified Ile biosensor is a predominant strategy for enhancing 4-HIL de novo biosynthesis in C. glutamicum.


Asunto(s)
Técnicas Biosensibles/métodos , Corynebacterium glutamicum/genética , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Isoleucina/biosíntesis , Isoleucina/química , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Proteína Reguladora de Respuesta a la Leucina/genética , Ingeniería Metabólica , Mutagénesis , Regiones Promotoras Genéticas
10.
Biochimie ; 178: 158-169, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32659445

RESUMEN

Uncommon lipids in biotechnologically important Corynebacterium glutamicum and pathogen Corynebacterium striatum in genus Corynebacterium are isolated and identified by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high resolution mass measurement. We redefined several lipid structures that were previously mis-assigned or not defined, including cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), (α-d-mannopyranosyl)-(1 â†’ 4)-(α-D-glucuronyl diacyglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), acyl trehalose monomycolate (acyl-TMM). We also report the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in which many isomeric structures are present. The LIT MSn approaches afford identification of the functional group, the fatty acid substituents and their regiospecificity in the molecules, revealing the biodiversities of the lipid species in two Corynebacterium strains that have played very different and important roles in human nutrition and health.


Asunto(s)
Corynebacterium glutamicum/química , Corynebacterium/química , Lípidos/química , Lípidos/aislamiento & purificación , Factores Cordón/química , Diglicéridos/química , Humanos , Metabolismo de los Lípidos , Lípidos/clasificación , Fosfatidilgliceroles/química , Espectrometría de Masa por Ionización de Electrospray
11.
Int J Biol Macromol ; 162: 903-912, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32593757

RESUMEN

L-glutamate (Glu) is the major excitatory transmitter in mammalian brain. Inadequate concentration of Glu in the brain correlates to mood disorder. In industry, Glu is used as a flavour enhancer in food and in foodstuff processing. A high concentration of Glu has several effects on human health such as hypersensitive effects, headache and stomach pain. The presence of Glu in food can be detected by different analytical methods based on chromatography, or capillary electrophoresis or amperometric techniques. We have isolated and characterized a glutamate-binding protein (GluB) from the Gram-positive bacteria Corynebacterium glutamicum. Together with GluC protein, GluD protein and the cytoplasmic protein GluA, GluB permits the transport of Glu in/out of cell. In this study, we have investigated the binding features of GluB as well as the effect of temperature on its structure both in the absence and in the presence of Glu. The results have showed that GluB has a high affinity and selectivity versus Glu (nanomolar range) and the presence of the ligand induces a higher thermal stability of the protein structure.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Corynebacterium glutamicum/química , Glutamina/química , Proteínas de Unión Periplasmáticas/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Corynebacterium glutamicum/metabolismo , Glutamina/metabolismo , Proteínas de Unión Periplasmáticas/metabolismo
12.
Nat Commun ; 11(1): 1641, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242019

RESUMEN

The mechanisms of Z-ring assembly and regulation in bacteria are poorly understood, particularly in non-model organisms. Actinobacteria, a large bacterial phylum that includes the pathogen Mycobacterium tuberculosis, lack the canonical FtsZ-membrane anchors and Z-ring regulators described for E. coli. Here we investigate the physiological function of Corynebacterium glutamicum SepF, the only cell division-associated protein from Actinobacteria known to interact with the conserved C-terminal tail of FtsZ. We show an essential interdependence of FtsZ and SepF for formation of a functional Z-ring in C. glutamicum. The crystal structure of the SepF-FtsZ complex reveals a hydrophobic FtsZ-binding pocket, which defines the SepF homodimer as the functional unit, and suggests a reversible oligomerization interface. FtsZ filaments and lipid membranes have opposing effects on SepF polymerization, indicating that SepF has multiple roles at the cell division site, involving FtsZ bundling, Z-ring tethering and membrane reshaping activities that are needed for proper Z-ring assembly and function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/citología , Corynebacterium glutamicum/metabolismo , Proteínas del Citoesqueleto/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , División Celular , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Dimerización , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Alineación de Secuencia
13.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32060028

RESUMEN

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras del Nitrógeno/genética , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras del Nitrógeno/química , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Alineación de Secuencia
14.
Proteins ; 88(1): 237-241, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294849

RESUMEN

Protein CGL2373 from Corynebacterium glutamicum was previously proposed to be a member of the polyketide_cyc2 family, based on amino-acid sequence and secondary structure features derived from NMR chemical shift assignments. We report here the solution NMR structure of CGL2373, which contains three α-helices and one antiparallel ß-sheet and adopts a helix-grip fold. This structure shows moderate similarities to the representative polyketide cyclases, TcmN, WhiE, and ZhuI. Nevertheless, unlike the structures of these homologs, CGL2373 structure looks like a half-open shell with a much larger pocket, and key residues in the representative polyketide cyclases for binding substrate and catalyzing aromatic ring formation are replaced with different residues in CGL2373. Also, the gene cluster where the CGL2373-encoding gene is located in C. glutamicum contains additional genes encoding nucleoside diphosphate kinase, folylpolyglutamate synthase, and valine-tRNA ligase, different from the typical gene cluster encoding polyketide cyclase in Streptomyces. Thus, although CGL2373 is structurally a polyketide cyclase-like protein, the function of CGL2373 may differ from the known polyketide cyclases and needs to be further investigated. The solution structure of CGL2373 lays a foundation for in silico ligand screening and binding site identifying in future functional study.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium glutamicum/ultraestructura , Complejos Multienzimáticos/ultraestructura , Conformación Proteica , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Corynebacterium glutamicum/química , Cristalografía por Rayos X , Complejos Multienzimáticos/genética , Policétidos/química , Policétidos/metabolismo , Estructura Secundaria de Proteína , Streptomyces/genética
15.
Biochem J ; 476(21): 3141-3159, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689352

RESUMEN

MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)-uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882-ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to ß-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR-uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/metabolismo , Antibacterianos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Farmacorresistencia Bacteriana , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/genética
16.
Bioengineered ; 10(1): 561-573, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648597

RESUMEN

Currently, the mechanism of temperature-sensitive production of glutamate in Corynebacterium glutamicum has not been clarified. We first found the murA and murB genes were potentially related to temperature-sensitive secretion of glutamate, which were not existed in a temperature-sensitive mutant. When replenishing murA or/and murB in the mutant, the temperature sensitivity was weakened. While, their knockout in a wild-type strain resulted in temperature-sensitive secretion of glutamate. Peptidoglycan analysis showed that deletion of murA and murB decreased the peptidoglycan synthesis. Comparative metabolomics analysis suggested that the variation in cell wall structure resulted in decreased overall cellular metabolism but increased carbon flow to glutamate synthesis, which was a typical metabolism pattern in industrial temperature-sensitive producing strains. This study clarifies the mechanism between murA and murB deletion and the temperature-sensitive secretion of glutamate in C. glutamcium, and provides a reference for the metabolic engineering of cell wall to obtain increased bioproduction of chemicals.


Asunto(s)
Proteínas Bacterianas/genética , Deshidrogenasas de Carbohidratos/genética , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/genética , Eliminación de Secuencia , Proteínas Bacterianas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Ácido Glutámico/metabolismo , Peptidoglicano/metabolismo , Temperatura
17.
J Agric Food Chem ; 67(31): 8527-8535, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31298526

RESUMEN

l-Valine belongs to the branched-chain amino acids (BCAAs) and is an essential amino acid that is crucial for all living organisms. l-Valine is industrially produced by the nonpathogenic bacterium Corynebacterium glutamicum and is synthesized by the BCAA biosynthetic pathway. Ketol-acid reductoisomerase (KARI) is the second enzyme in the BCAA pathway and catalyzes the conversion of (S)-2-acetolactate into (R)-2,3-dihydroxy-isovalerate, or the conversion of (S)-2-aceto-2-hydroxybutyrate into (R)-2,3-dihydroxy-3-methylvalerate. To elucidate the enzymatic properties of KARI from C. glutamicum (CgKARI), we successfully produced CgKARI protein and determined its crystal structure in complex with NADP+ and two Mg2+ ions. Based on the complex structure, docking simulations, and site-directed mutagenesis experiments, we revealed that CgKARI belongs to Class I KARI and identified key residues involved in stabilization of the substrate, metal ions, and cofactor. Furthermore, we confirmed the difference in the binding of metal ions that depended on the conformational change.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Cetoácido Reductoisomerasa/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Cristalografía por Rayos X , Cetoácido Reductoisomerasa/genética , Cetoácido Reductoisomerasa/metabolismo , Metales/química , Metales/metabolismo , Simulación del Acoplamiento Molecular , NADP/química , NADP/metabolismo
18.
Enzyme Microb Technol ; 129: 109357, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31307581

RESUMEN

Corynebacterium glutamicum acetohydroxyacid synthase (AHAS), composed of two subunits IlvB and IlvN, catalyzes the first reaction in the biosynthetic pathway of branched-chain amino acids. It either condenses two pyruvates to yield acetolactate, leading to the biosynthesis of L-valine and L-leucine, or condenses pyruvate with 2-ketobutyrate to yield acetohydroxybutyrate, leading to L-isoleucine biosynthesis. However, the mechanism for the substrate specificity of C. glutamicum AHAS remains unknown. In this study, AHASs from an L-valine-producing C. glutamicum VWB-1 and an L-isoleucine-producing C. glutamicum IWJ001 were analyzed. The amino acid sequence of IlvN from both strains are the same, but the 138th and 404th residues of IlvB from the two strains are different; they are alanine and valine in IWJ001 (IlvB138A404V), but valine and alanine in VWB-1 (IlvB138V404A). When IlvB138A404V and IlvB138V404A were overexpressed in wild type C. glutamicum ATCC14067 and its △alr△aceE△ilvA△leuA mutant YTW-104, the latter led to much more L-valine production than the former. AHAS activity studies also showed that the 138th valine was important for binding the 2nd substrate pyruvate but not the 404th alanine. YTW-104/pJYW4-ilvB138V404A-ilvNCE could produce 25.93 g/L L-valine. The results indicate that the 138th valine of IlvB in AHAS could play an important role, leading to the increased L-valine biosynthesis in C. glutamicum.


Asunto(s)
Acetolactato Sintasa/química , Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Butiratos/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Isoleucina/metabolismo , Ácido Pirúvico/metabolismo , Especificidad por Sustrato , Valina/metabolismo
19.
Biochim Biophys Acta Bioenerg ; 1860(10): 148033, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226315

RESUMEN

Respiration in aerobic Actinobacteria involves a cytochrome bc1-aa3 supercomplex with a diheme cytochrome c1, first isolated from Corynebacterium glutamicum. Synthesis of a functional cytochrome c oxidase requires incorporation of CuA, CuB, heme a, and heme a3. In contrast to eukaryotes and α-proteobacteria, this process is poorly understood in Actinobacteria. Here, we analyzed the role of a Surf1 homolog of C. glutamicum in the formation of a functional bc1-aa3 supercomplex. Deletion of the surf1 gene (cg2460) in C. glutamicum caused a growth defect and cytochrome spectra revealed reduced levels of cytochrome c and a and an increased level of cytochrome d. Membranes of the Δsurf1 strain had lost the ability to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine, suggesting that Surf1 is essential for the formation of a functional cytochrome aa3 oxidase. In contrast to the wild type, a bc1-aa3 supercomplex could not be purified from solubilized membranes of the Δsurf1 mutant. A transcriptome comparison revealed that the genes of the SigC regulon including those for cytochrome bd oxidase were upregulated in the Δsurf1 strain as well as the copper deprivation-inducible gene ctiP. Complementation studies showed that the Surf1 homologs of Corynebacterium diphtheriae, Mycobacterium smegmatis and Mycobacterium tuberculosis could at least partially abolish the growth defect of the C. glutamicum Δsurf1 mutant, suggesting that Surf1 is a conserved assembly factor for actinobacterial cytochrome aa3 oxidase.


Asunto(s)
Actinobacteria/química , Complejo IV de Transporte de Electrones/biosíntesis , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Proteínas Bacterianas , Corynebacterium glutamicum/química , Grupo Citocromo c , Citocromos c1 , Complejo III de Transporte de Electrones , Oxidorreductasas/fisiología
20.
J Am Chem Soc ; 141(23): 9262-9272, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31081628

RESUMEN

Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide-sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.


Asunto(s)
Pared Celular/química , Corynebacterium glutamicum/química , Glucolípidos/química , Mycobacterium smegmatis/química , Corynebacterium glutamicum/efectos de los fármacos , Galactanos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Mycobacterium smegmatis/efectos de los fármacos , Polisacáridos/química , Compuestos de Espiro/farmacología , Tiazinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA