Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.736
Filtrar
1.
J Ethnopharmacol ; 336: 118716, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39179055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng flowers, which are the buds of the traditional Chinese medicinal herb Sanqi, are widely used in China for their cough-ameliorating properties, with demonstrated therapeutic effects in the treatment of both acute and chronic coughs. However, both the antitussive mechanism and active compound basis of P. notoginseng flowers remain poorly understood. AIM OF THE STUDY: We investigated the antitussive effects of P. notoginseng flowers, identified the bioactive constituents responsible for alleviating cough symptoms, and elucidated the underlying pharmacological mechanisms. MATERIALS AND METHODS: We analyzed the major chemical constituents of aqueous extracts of P. notoginseng flowers using liquid chromatography-mass spectrometry and quantitatively analyzed the key component, 20S-ginsenoside Rh2, using high-performance liquid chromatography. Using a cough reflex model in healthy mice and an ovalbumin-induced, highly sensitive guinea pig cough model, we verified the suppressive effects of P. notoginseng flowers and their saponin constituents on coughing. Furthermore, we explored the mechanisms of action of the key ion channels, NaV1.7 and TRPV1, using whole-cell patch-clamp techniques and molecular docking. Finally, the therapeutic mechanisms of P. notoginseng flowers on pathological cough were revealed using hematoxylin and eosin staining, immunohistochemistry, and western blotting. RESULTS: The active components of P. notoginseng flowers were primarily protopanaxadiol-type saponins, among which 20S-ginsenoside Rh2 had the highest content (51.46 mg/g). In the mouse model, P. notoginseng flowers exhibited antitussive effects comparable to those of pentoxyverine citrate. Although its main saponin component, 20S-ginsenoside Rh2, showed slightly weaker effects, it still demonstrated concentration-dependent inhibition of channel activity. The whole-cell patch-clamp technique and virtual molecular docking showed that Rh2 might exert its effects by directly binding to the NaV1.7 and TRPV1 channels. In the guinea pig model, P. notoginseng flowers and their saponin components not only reduced cough frequency and prolonged the latency period before cough onset, but also significantly inhibited tracheal and pulmonary inflammation and the overexpression of TRPV1. CONCLUSIONS: 20S-Ginsenoside Rh2, the major bioactive saponin in P. notoginseng flowers, exhibits potent antitussive effects. The potential mechanism of action of 20S-Ginsenoside Rh2 in the treatment of cough may involve inhibiting NaV1.7 and TRPV1 channel currents through direct binding to core protein active sites and downregulating TRPV1 expression.


Asunto(s)
Antitusígenos , Tos , Regulación hacia Abajo , Flores , Ginsenósidos , Canal de Sodio Activado por Voltaje NAV1.7 , Panax notoginseng , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Cobayas , Flores/química , Tos/tratamiento farmacológico , Ginsenósidos/farmacología , Antitusígenos/farmacología , Masculino , Ratones , Panax notoginseng/química , Regulación hacia Abajo/efectos de los fármacos , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Células HEK293 , Simulación del Acoplamiento Molecular , Cricetulus , Modelos Animales de Enfermedad , Células CHO , Saponinas/farmacología , Ovalbúmina
2.
Protein Expr Purif ; 225: 106596, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39218246

RESUMEN

Optimizations of the gene expression cassette combined with the selection of an appropriate signal peptide are important factors that must be considered to enhance heterologous protein expression in Chinese Hamster Ovary (CHO) cells. In this study, we investigated the effectiveness of different signal peptides on the production of recombinant human chorionic gonadotropin (r-hCG) in CHO-K1 cells. Four optimized expression constructs containing four promising signal peptides were stably transfected into CHO-K1 cells. The generated CHO-K1 stable pool was then evaluated for r-hCG protein production. Interestingly, human serum albumin and human interleukin-2 signal peptides exhibited relatively greater extracellular secretion of the r-hCG with an average yield of (16.59 ± 0.02 µg/ml) and (14.80 ± 0.13 µg/ml) respectively compared to the native and murine IgGκ light chain signal peptides. The stably transfected CHO pool was further used as the cell substrate to develop an optimized upstream process followed by a downstream phase of the r-hCG. Finally, the biological activity of the purified r-hCG was assessed using in vitro bioassays. The combined data highlight that the choice of signal peptide can be imperative to ensure an optimal secretion of a recombinant protein in CHO cells. In addition, the stable pool technology was a viable approach for the production of biologically active r-hCG at a research scale with acceptable bioprocess performances and consistent product quality.


Asunto(s)
Gonadotropina Coriónica , Cricetulus , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Humanos , Gonadotropina Coriónica/genética , Gonadotropina Coriónica/biosíntesis , Gonadotropina Coriónica/farmacología , Cricetinae , Señales de Clasificación de Proteína/genética , Expresión Génica , Transfección
3.
Fluids Barriers CNS ; 21(1): 74, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289695

RESUMEN

BACKGROUND: The most crucial area to focus on when thinking of novel pathways for drug delivery into the CNS is the blood brain barrier (BBB). A number of nanoparticulate formulations have been shown in earlier research to target receptors at the BBB and transport therapeutics into the CNS. However, no mechanism for CNS entrance and movement throughout the CNS parenchyma has been proposed yet. Here, the truncated mini low-density lipoprotein receptor-related protein 1 mLRP1_DIV* was presented as blood to brain transport carrier, exemplified by antibodies and immunoliposomes using a systematic approach to screen the receptor and its ligands' route across endothelial cells in vitro. METHODS: The use of mLRP1_DIV* as liposomal carrier into the CNS was validated based on internalization and transport assays across an in vitro model of the BBB using hcMEC/D3 and bEnd.3 cells. Trafficking routes of mLRP1_DIV* and corresponding cargo across endothelial cells were analyzed using immunofluorescence. Modulation of γ-secretase activity by immunoliposomes loaded with the γ-secretase modulator BB25 was investigated in co-cultures of bEnd.3 mLRP1_DIV* cells and CHO cells overexpressing human amyloid precursor protein (APP) and presenilin 1 (PSEN1). RESULTS: We showed that while expressed in vitro, mLRP1_DIV* transports both, antibodies and functionalized immunoliposomes from luminal to basolateral side across an in vitro model of the BBB, followed by their mLRP1_DIV* dependent release of the cargo. Importantly, functionalized liposomes loaded with the γ-secretase modulator BB25 were demonstrated to effectively reduce toxic Aß42 peptide levels after mLRP1_DIV* mediated transport across a co-cultured endothelial monolayer. CONCLUSION: Together, the data strongly suggest mLRP1_DIV* as a promising tool for drug delivery into the CNS, as it allows a straight transport of cargo from luminal to abluminal side across an endothelial monolayer and it's release into brain parenchyma in vitro, where it exhibits its intended therapeutic effect.


Asunto(s)
Barrera Hematoencefálica , Cricetulus , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Humanos , Células CHO , Células Endoteliales/metabolismo , Liposomas , Transporte Biológico/fisiología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Transporte de Proteínas/fisiología , Transporte de Proteínas/efectos de los fármacos , Ratones , Técnicas de Cocultivo
4.
Appl Microbiol Biotechnol ; 108(1): 467, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292268

RESUMEN

Epigenetic regulation plays a central role in the regulation of a number of cellular processes such as proliferation, differentiation, cell cycle, and apoptosis. In particular, small molecule epigenetic modulators are key elements that can effectively influence gene expression by precisely regulating the epigenetic state of cells. To identify useful small-molecule regulators that enhance the expression of recombinant proteins in Chinese hamster ovary (CHO) cells, we examined a novel dual-HDAC/LSD1 inhibitor I-4 as a supplement for recombinant CHO cells. Treatment with 2 µM I-4 was most effective in increasing monoclonal antibody production. Despite cell cycle arrest at the G1/G0 phase, which inhibits cell growth, the addition of the inhibitor at 2 µM to monoclonal antibody-expressing CHO cell cultures resulted in a 1.94-fold increase in the maximal monoclonal antibody titer and a 2.43-fold increase in specific monoclonal antibody production. In addition, I-4 significantly increased the messenger RNA levels of the monoclonal antibody and histone H3 acetylation and methylation levels. We also investigated the effect on HDAC-related isoforms and found that interference with the HDAC5 gene increased the monoclonal antibody titer by 1.64-fold. The results of this work provide an effective method of using epigenetic regulatory strategies to enhance the expression of recombinant proteins in CHO cells. KEY POINTS: • HDAC/LSD1 dual-target small molecule inhibitor can increase the expression level of recombinant monoclonal antibodies in CHO cells. • By affecting the acetylation and methylation levels of histones in CHO cells and downregulating HDAC5, the production of recombinant monoclonal antibodies increased. • It provides an effective pathway for applying epigenetic regulation strategies to enhance the expression of recombinant proteins.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Epigénesis Genética , Proteínas Recombinantes , Células CHO , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Histonas/genética , Acetilación , Cricetinae , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Metilación
5.
Sci Rep ; 14(1): 20885, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242794

RESUMEN

Delivering foreign molecules and genetic material into cells is a crucial process in life sciences and biotechnology, resulting in great interest in effective cell transfection methods. Importantly, physical transfection methods allow delivery of molecules of different chemical composition and are, thus, very flexible. Here, we investigated the influence of microwave radiation on the transfection and survival of mammalian cells. We made use of an optimized microwave-poration device and analyzed its performance (frequency and electric field strength) in comparison with simulations. We, then, tested the effect of microwave irradiation on cells and found that 18 GHz had the least impact on cell survival, viability, cell division and genotoxicity while 10 GHz drastically impacted cell physiology. Using live-cell fluorescence microscopy and image analysis, we tested the uptake of small chemical substances, which was most efficient at 18 GHz and correlated with electric field strength and frequency. Finally, we were able to obtain cellular uptake of molecules of very different chemical composition and sizes up to whole immunoglobulin antibodies. In conclusion, microwave-induced poration enables the uptake of widely different substances directly into mammalian cells growing as adherent cultures and with low physiological impact.


Asunto(s)
Membrana Celular , Supervivencia Celular , Microondas , Membrana Celular/metabolismo , Animales , Humanos , Transfección , Células CHO , Cricetulus
6.
Sci Rep ; 14(1): 20856, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242806

RESUMEN

At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.


Asunto(s)
Cricetulus , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Vectores Genéticos/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Cricetinae , Proteína Fluorescente Roja , Medios de Cultivo/química
7.
Drug Dev Res ; 85(6): e22258, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39253992

RESUMEN

The 2-nitroimidazole based 99mTc-radiopharmaceuticals are widely explored for imaging tumor hypoxia. Radiopharmaceuticals for targeting hypoxia are often lipophilic and therefore, show significant uptake in liver and other vital organs. In this context, lipophilic radiopharmaceuticals with design features enabling faster clearance from liver may be more desirable. A dipicolylamine-NCS bifunctional chelator that could generate a thiourea-bridge up on conjugation to primary amine bearing molecule was used to synthesize a 2-nitroimidazole-dipicolyl amine ligand for radiolabeling with 99mTc(CO)3 core. Corresponding Re(CO)3-analogue was prepared to establish the structure of 2-nitroimidazole-99mTc(CO)3 complex prepared in trace level. The 2-nitroimidazole-99mTc(CO)3 complex showed a hypoxic to normoxic ratio of ~2.5 in CHO cells at 3 h. In vivo, the complex showed accumulation and retention in tumor with high tumor to blood and tumor to muscle ratio. The study demonstrated the utility of metabolizable thiourea-bridge in 2-nitroimidazole-99mTc(CO)3 complex in inducing faster clearance of the radiotracer from liver. The dipicolylamine-NCS bifunctional chelator reported herein can also be used for radiolabeling other class of target specific molecules with 99mTc(CO)3 core.


Asunto(s)
Radiofármacos , Tiourea , Hipoxia Tumoral , Animales , Radiofármacos/farmacocinética , Células CHO , Tiourea/análogos & derivados , Tiourea/farmacocinética , Tiourea/química , Cricetulus , Ratones , Nitroimidazoles/farmacocinética , Nitroimidazoles/química , Compuestos de Organotecnecio/farmacocinética , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/administración & dosificación , Distribución Tisular , Ácidos Picolínicos/farmacocinética , Ácidos Picolínicos/química , Humanos , Tecnecio
8.
MAbs ; 16(1): 2400414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39245969

RESUMEN

During the development process of therapeutic monoclonal antibodies (mAbs), it is crucial to control (critical) quality attributes such as N-glycosylation influencing pharmacokinetics (PK) and Fc effector functions. Previous reports have shown that mAbs containing high-mannose N-glycans are cleared faster from blood circulation, leading to reduced half-lives. The high-mannose N-glycan content of mAbs can be influenced during the cell culture process by factors such as cell lines, process conditions, and media. Furthermore, mAbs have either one high mannose N-glycan (asymmetrical high-mannose glyco-pair) or two high mannose N-glycans (symmetrical high-mannose glyco-pair). The hypothesis that the mannose receptor (MR, CD206) accelerates clearance by facilitating their internalization and subsequent lysosomal degradation is widespread. However, the interaction between MR and mAbs has not been explicitly demonstrated. This study aimed to investigate this interaction, providing the first systematic demonstration of MR binding to the Fc region of mAbs with high-mannose N-glycans. Two novel analytical methods, MR surface plasmon resonance and MR affinity chromatography, were developed and applied to investigate the MR-mAb interaction. The interaction is found to be dependent on high-mannose content, but is independent of the mAb format or sequence. However, different glyco-pairs exhibited varying binding affinities to the MR, with the symmetrical high-mannose glyco-pair showing the strongest binding properties. These findings strengthen the hypothesis for the MR-mediated mAb interaction and contribute to a deeper understanding of the MR-mAb interaction, which could affect the criticality of high-mannose containing mAbs development strategies of IgG-based molecules and improve their PK profiles.


Asunto(s)
Anticuerpos Monoclonales , Lectinas Tipo C , Receptor de Manosa , Lectinas de Unión a Manosa , Manosa , Polisacáridos , Receptores de Superficie Celular , Polisacáridos/metabolismo , Polisacáridos/química , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Lectinas Tipo C/metabolismo , Manosa/metabolismo , Manosa/química , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/inmunología , Animales , Glicosilación , Cricetulus , Células CHO , Resonancia por Plasmón de Superficie , Unión Proteica
9.
PLoS One ; 19(9): e0305312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39259753

RESUMEN

The primate-specific chemokine CCL18 is a potent chemoattractant for T cells and is expressed at elevated levels in several inflammatory diseases. However, the cognate receptor for CCL18 remains unconfirmed. Here, we describe attempts to validate a previous report that the chemokine receptor CCR8 is the human CCL18 receptor (Islam et al. J Exp Med. 2013, 210:1889-98). Two mouse pre-B cell lines (4DE4 and L1.2) exogenously expressing CCR8 exhibited robust migration in response to the known CCR8 ligand CCL1 but not to CCL18. Similarly, CCL1 but not CCL18 induced internalization of CCR8 on 4DE4 cells. CCR8 expressed on Chinese hamster ovarian (CHO) cells mediated robust G protein activation, inhibition of cAMP synthesis and ß-arrestin2 recruitment in response to CCL1 but not CCL18. Several N- and C-terminal variants of CCL18 also failed to stimulate CCR8 activation. On the other hand, and as previously reported, CCL18 inhibited CCL11-stimulated migration of 4DE4 cells expressing the receptor CCR3. These data suggest that CCR8, at least in the absence of unidentified cofactors, does not function as a high affinity receptor for CCL18.


Asunto(s)
Quimiocinas CC , Cricetulus , Receptores CCR8 , Animales , Cricetinae , Humanos , Ratones , Línea Celular , Movimiento Celular , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Células CHO , AMP Cíclico/metabolismo , Receptores CCR8/metabolismo , Receptores CCR8/genética
10.
Radiol Oncol ; 58(3): 406-415, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39287162

RESUMEN

BACKGROUND: Administering gadolinium-based contrast agent before electroporation allows the contrast agent to enter the cells and enables MRI assessment of reversibly electroporated regions. The aim of this study was evaluation of contrast agent entrapment in Chinese hamster ovary (CHO) cells and comparison of these results with those determined by standard in vitro methods for assessing cell membrane permeability, cell membrane integrity and cell survival following electroporation. MATERIALS AND METHODS: Cell membrane permeabilization and cell membrane integrity experiments were performed using YO-PRO-1 dye and propidium iodide, respectively. Cell survival experiments were performed by assessing metabolic activity of cells using MTS assay. The entrapment of gadolinium-based contrast agent gadobutrol inside the cells was evaluated using T1 relaxometry of cell suspensions 25 min and 24 h after electroporation and confirmed by inductively coupled plasma mass spectrometry. RESULTS: Contrast agent was detected 25 min and 24 h after the delivery of electric pulses in cells that were reversibly electroporated. In addition, contrast agent was present in irreversibly electroporated cells 25 min after the delivery of electric pulses but was no longer detected in irreversibly electroporated cells after 24 h. Inductively coupled plasma mass spectrometry showed a proportional decrease in gadolinium content per cell with shortening of T1 relaxation time (R 2 = 0.88 and p = 0.0191). CONCLUSIONS: Our results demonstrate that the contrast agent is entrapped in cells exposed to reversible electroporation but exits from cells exposed to irreversible electroporation within 24 h, thus confirming the hypothesis on which detection experiments in vivo were based.


Asunto(s)
Supervivencia Celular , Medios de Contraste , Cricetulus , Electroporación , Imagen por Resonancia Magnética , Compuestos Organometálicos , Animales , Electroporación/métodos , Células CHO , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/farmacocinética , Cricetinae , Permeabilidad de la Membrana Celular
11.
J Chromatogr A ; 1735: 465281, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39243589

RESUMEN

Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.


Asunto(s)
Anticuerpos Monoclonales , Simulación por Computador , Contaminación de Medicamentos , Fragmentos Fc de Inmunoglobulinas , Flujo de Trabajo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Cricetulus , Interacciones Hidrofóbicas e Hidrofílicas , Células CHO , Animales
12.
Biochemistry (Mosc) ; 89(8): 1392-1401, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39245452

RESUMEN

Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.


Asunto(s)
Channelrhodopsins , Chlorophyta , Chlorophyta/genética , Chlorophyta/metabolismo , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Células CHO , Cricetulus , Optogenética/métodos , Luz
13.
Oncol Rep ; 52(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39219278

RESUMEN

CD44 is a type I transmembrane glycoprotein associated with poor prognosis in various solid tumors. Since CD44 plays a critical role in tumor development by regulating cell adhesion, survival, proliferation and stemness, it has been considered a target for tumor therapy. Anti­CD44 monoclonal antibodies (mAbs) have been developed and applied to antibody­drug conjugates and chimeric antigen receptor­T cell therapy. Anti-pan­CD44 mAbs, C44Mab­5 and C44Mab­46, which recognize both CD44 standard (CD44s) and variant isoforms were previously developed. The present study generated a mouse IgG2a version of the anti­pan­CD44 mAbs (5­mG2a and C44Mab­46­mG2a) to evaluate the antitumor activities against CD44­positive cells. Both 5­mG2a and C44Mab­46­mG2a recognized CD44s­overexpressed CHO­K1 (CHO/CD44s) cells and esophageal tumor cell line (KYSE770) in flow cytometry. Furthermore, both 5­mG2a and C44Mab­46­mG2a could activate effector cells in the presence of CHO/CD44s cells and exhibited complement-dependent cytotoxicity against both CHO/CD44s and KYSE770 cells. Furthermore, the administration of 5­mG2a and C44Mab­46­mG2a significantly suppressed CHO/CD44s and KYSE770 xenograft tumor development compared with the control mouse IgG2a. These results indicate that 5­mG2a and C44Mab­46­mG2a could exert antitumor activities against CD44­positive cancers and be a promising therapeutic regimen for tumors.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Neoplasias Esofágicas , Receptores de Hialuranos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Receptores de Hialuranos/inmunología , Receptores de Hialuranos/metabolismo , Ratones , Humanos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Células CHO , Proliferación Celular/efectos de los fármacos , Femenino , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico
14.
Cells ; 13(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273052

RESUMEN

The complex structure of monoclonal antibodies (mAbs) expressed in Chinese hamster ovary (CHO) cells may result in the accumulation of unfolded proteins, triggering endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). If the protein folding ability cannot maintain ER homeostasis, the cell will shut down protein translation and ultimately induce apoptosis. We co-overexpressed HsQSOX1b and survivin proteins in the antibody-producing cell line CHO-PAb to obtain a new cell line, CHO-PAb-QS. Compared with CHO-PAb cells, the survival time of CHO-PAb-QS cells in batch culture was extended by 2 days, and the antibody accumulation and productivity were increased by 52% and 45%, respectively. The proportion of (HC-LC)2 was approximately doubled in the CHO-PAb-QS cells, which adapted to the accelerated disulfide bond folding capacity by upregulating the UPR's strength and increasing the ER content. The results of the apoptosis assays indicated that the CHO-PAb-QS cell line exhibited more excellent resistance to apoptosis induced by ER stress. Finally, CHO-PAb-QS cells exhibited mild oxidative stress but did not significantly alter the redox status. This study demonstrated that strategies based on HsQSOX1b and survivin co-overexpression could facilitate protein disulfide bond folding and anti-apoptosis ability, enhancing antibody production efficiency in CHO cell lines.


Asunto(s)
Apoptosis , Cricetulus , Disulfuros , Pliegue de Proteína , Células CHO , Animales , Disulfuros/metabolismo , Disulfuros/química , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Formación de Anticuerpos , Anticuerpos Monoclonales , Cricetinae , Survivin/metabolismo , Humanos , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
15.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273139

RESUMEN

CD44 regulates cell adhesion, proliferation, survival, and stemness and has been considered a tumor therapy target. CD44 possesses the shortest CD44 standard (CD44s) and a variety of CD44 variant (CD44v) isoforms. Since the expression of CD44v is restricted in epithelial cells and carcinomas compared to CD44s, CD44v has been considered a promising target for monoclonal antibody (mAb) therapy. We previously developed an anti-CD44v10 mAb, C44Mab-18 (IgM, kappa), to recognize the variant exon 10-encoded region. In the present study, a mouse IgG2a version of C44Mab-18 (C44Mab-18-mG2a) was generated to evaluate the antitumor activities against CD44-positive cells compared with the previously established anti-pan CD44 mAb, C44Mab-46-mG2a. C44Mab-18-mG2a exhibited higher reactivity compared with C44Mab-46-mG2a to CD44v3-10-overexpressed CHO-K1 (CHO/CD44v3-10) and oral squamous cell carcinoma cell lines (HSC-2 and SAS) in flow cytometry. C44Mab-18-mG2a exerted a superior antibody-dependent cellular cytotoxicity (ADCC) against CHO/CD44v3-10. In contrast, C44Mab-46-mG2a showed a superior complement-dependent cytotoxicity (CDC) against CHO/CD44v3-10. A similar tendency was observed in ADCC and CDC against HSC-2 and SAS. Furthermore, administering C44Mab-18-mG2a or C44Mab-46-mG2a significantly suppressed CHO/CD44v3-10, HSC-2, and SAS xenograft tumor growth compared with the control mouse IgG2a. These results indicate that C44Mab-18-mG2a could be a promising therapeutic regimen for CD44v10-positive tumors.


Asunto(s)
Anticuerpos Monoclonales , Carcinoma de Células Escamosas , Receptores de Hialuranos , Neoplasias de la Boca , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/inmunología , Ratones , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Humanos , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Células CHO , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Cricetulus , Antineoplásicos Inmunológicos/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C
16.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273634

RESUMEN

Host cell proteins (HCPs) are one of the process-related impurities that need to be well characterized and controlled throughout biomanufacturing processes to assure the quality, safety, and efficacy of monoclonal antibodies (mAbs) and other protein-based biopharmaceuticals. Although ELISA remains the gold standard method for quantification of total HCPs, it lacks the specificity and coverage to identify and quantify individual HCPs. As a complementary method to ELISA, the LC-MS/MS method has emerged as a powerful tool to identify and profile individual HCPs during the downstream purification process. In this study, we developed a sensitive, robust, and reproducible analytical flow ultra-high-pressure LC (UHPLC)-high-resolution accurate mass (HRAM) data-dependent MS/MS method for HCP identification and monitoring using an Orbitrap Ascend BioPharma Tribrid mass spectrometer. As a case study, the developed method was applied to an in-house trastuzumab product to assess HCP clearance efficiency of the newly introduced POROS™ Caprylate Mixed-Mode Cation Exchange Chromatography resin (POROS Caprylate mixed-mode resin) by monitoring individual HCP changes between the trastuzumab sample collected from the Protein A pool (purified by Protein A chromatography) and polish pool (purified by Protein A first and then further purified by POROS Caprylate mixed-mode resin). The new method successfully identified the total number of individual HCPs in both samples and quantified the abundance changes in the remaining HCPs in the polish purification sample.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/química , Células CHO , Animales , Trastuzumab/química , Trastuzumab/análisis , Humanos
17.
Virol J ; 21(1): 215, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261951

RESUMEN

BACKGROUND: Dengue virus (DENV) causes the most significant mosquito-borne viral disease with a wide spectrum of clinical manifestation, including neurological symptoms associated with lethal dengue diseases. Dopamine receptors are expressed in central nervous system, and dopamine antagonists have been reported to exhibit antiviral activity against DENV infection in vivo and in vitro. Although identification of host-cell receptor is critical to understand dengue neuropathogenesis and neurotropism, the involvement of dopamine receptors in DENV infection remains unclear. RESULTS: We exploited the sensitivity and precision of force spectroscopy to address whether dopamine type-2 receptors (D2R) directly interact with DENV particles at the first step of infection. Using optical tweezers, we quantified and characterized DENV binding to D2R expressed on Chinese hamster ovary (CHO) cells. Our finding suggested that the binding was D2R- and DENV-dependent, and that the binding force was in the range of 50-60 pN. We showed that dopamine antagonists prochlorperazine (PCZ) and trifluoperazine (TFP), previously reported to inhibit dengue infection, interrupt the DENV-D2R specific binding. CONCLUSIONS: This study demonstrates that D2R could specifically recognize DENV particles and function as an attachment factor on cell surfaces for DENV. We propose D2R as a host receptor for DENV and as a potential therapeutic target for anti-DENV drugs.


Asunto(s)
Cricetulus , Virus del Dengue , Pinzas Ópticas , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Virus del Dengue/fisiología , Virus del Dengue/efectos de los fármacos , Animales , Células CHO , Dengue/virología , Unión Proteica , Humanos , Acoplamiento Viral/efectos de los fármacos , Cricetinae , Antagonistas de Dopamina/farmacología
18.
SLAS Discov ; 29(6): 100176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122117

RESUMEN

Agonists of the secretin receptor have potential applications for diseases of the cardiovascular, gastrointestinal, and metabolic systems, yet no clinically-active non-peptidyl agonists of this receptor have yet been developed. In the current work, we have identified a new small molecule lead compound with this pharmacological profile. We have prepared and characterized a systematic structure-activity series around this thiadiazole scaffold to better understand the molecular determinants of its activity. We were able to enhance the in vitro activity and to maintain the specificity of the parent compound. We found the most active candidate to be quite stable in plasma, although it was metabolized by hepatic microsomes. This chemical probe should be useful for in vitro studies and needs to be tested for in vivo pharmacological activity. This could be an important lead toward the development of a first-in-class orally active agonist of the secretin receptor, which could be useful for multiple disease states.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , Tiadiazoles , Humanos , Relación Estructura-Actividad , Tiadiazoles/farmacología , Tiadiazoles/química , Receptores de la Hormona Gastrointestinal/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CHO , Cricetulus , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos
19.
Biotechnol J ; 19(8): e2300635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167554

RESUMEN

Scalable single-use adherent cell-based biomanufacturing platforms are essential for unlocking the full potential of cell and gene therapies. The primary objective of this study is to design and develop a novel fixed bed bioreactor platform tailored specifically for scaling up adherent cell culture. The bioreactor comprises a packed bed of vertically stacked woven polyethylene terephthalate mesh discs, sandwiched between two-fluid guide plates. Leveraging computational fluid dynamics modeling, we optimized bioreactor design to achieve uniform flow with minimal shear stress. Residence time distribution measurements demonstrated excellent flow uniformity with plug flow characteristics. Periodic media sampling coupled with offline analysis revealed minimal gradients of crucial metabolites (glucose, glutamine, lactate, and ammonia) across the bioreactor during cell growth. Furthermore, the bioreactor platform demonstrated high performance in automated cell harvesting, with ≈96% efficiency and ≈98% viability. It also exhibited linear scalability in both operational parameters and performance for cell culture and adeno-associated virus vector production. We developed mathematical models based on oxygen uptake rates to accurately predict cell growth curves and estimate biomass in real-time. This study demonstrates the effectiveness of the developed fixed-bed bioreactor platform in enabling scalable adherent cell-based biomanufacturing with high productivity and process control.


Asunto(s)
Biomasa , Reactores Biológicos , Técnicas de Cultivo de Célula , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Animales , Glucosa/metabolismo , Adhesión Celular , Proliferación Celular , Hidrodinámica , Células CHO , Cricetulus , Humanos , Diseño de Equipo
20.
Biotechnol J ; 19(8): e2400311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167557

RESUMEN

In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors - nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) - were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.


Asunto(s)
Cricetulus , NAD , Niacinamida , Células CHO , Animales , NAD/metabolismo , Niacinamida/metabolismo , Niacinamida/análogos & derivados , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Niacina/metabolismo , Compuestos de Piridinio/metabolismo , Cricetinae , Técnicas de Cultivo de Célula/métodos , Anticuerpos Monoclonales/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA