Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711012

RESUMEN

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Asunto(s)
Carotenoides , Crocus , Flores , Metabolómica , Crocus/genética , Crocus/metabolismo , Carotenoides/metabolismo , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Metaboloma
2.
Mol Biol Rep ; 51(1): 605, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700570

RESUMEN

BACKGROUND: Cultivation of Crocus sativus (saffron) faces challenges due to inconsistent flowering patterns and variations in yield. Flowering takes place in a graded way with smaller corms unable to produce flowers. Enhancing the productivity requires a comprehensive understanding of the underlying genetic mechanisms that govern this size-based flowering initiation and commitment. Therefore, samples enriched with non-flowering and flowering apical buds from small (< 6 g) and large (> 14 g) corms were sequenced. METHODS AND RESULTS: Apical bud enriched samples from small and large corms were collected immediately after dormancy break in July. RNA sequencing was performed using Illumina Novaseq 6000 to access the gene expression profiles associated with size dependent flowering. De novo transcriptome assembly and analysis using flowering committed buds from large corms at post-dormancy and their comparison with vegetative shoot primordia from small corms pointed out the major role of starch and sucrose metabolism, Auxin and ABA hormonal regulation. Many genes with known dual responses in flowering development and circadian rhythm like Flowering locus T and Cryptochrome 1 along with a transcript showing homology with small auxin upregulated RNA (SAUR) exhibited induced expression in flowering buds. Thorough prediction of Crocus sativus non-coding RNA repertoire has been carried out for the first time. Enolase was found to be acting as a major hub with protein-protein interaction analysis using Arabidopsis counterparts. CONCLUSION: Transcripts belong to key pathways including phenylpropanoid biosynthesis, hormone signaling and carbon metabolism were found significantly modulated. KEGG assessment and protein-protein interaction analysis confirm the expression data. Findings unravel the genetic determinants driving the size dependent flowering in Crocus sativus.


Asunto(s)
Crocus , Flores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Meristema , Transducción de Señal , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Crocus/genética , Crocus/crecimiento & desarrollo , Crocus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica/métodos , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Azúcares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Physiol Plant ; 176(2): e14285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606764

RESUMEN

AIMS: Geophytic plants have evolved to develop underground storage organs (USO) in the active growing season to withstand harsh environments as well as to coordinate growth and reproduction when conditions are favourable. Saffron is an autumn flowering geophyte and an expensive spice crop restricted to certain geographical locations in the world. Saffron, being sterile, does not produce seeds and thus propagates only through corms, the quality of which determines its yield. Corm development in saffron is unexplored and the underlying molecular mechanism is still elusive. In this study, we performed an extensive characterisation of the transcriptional dynamics in the source (leaf) and sink (corm) tissues during corm development in saffron. KEY RESULTS: Via morphological and transcriptome studies, we identified molecular factors regulating corm development process in saffron, which defined corm development into three stages: the initiation stage demonstrates enhanced vegetative growth aboveground and swelling of shoot base belowground due to active cell division & carbohydrate storage; the bulking stage comprises of increased source and sink strength, active photosynthesis, circadian gating and starch accumulation; the maturation stage represents reduced source and sink strength, lowered photosynthesis, sugar transport, starch synthesis and cell cycle arrest. UTILITY: The global view of transcriptional changes in source and sink identifies similar and new molecular factors involved in the saffron corm development process compared to USO formation in other geophytes and provides a valuable resource for dissecting the molecular network underlying the corm development. We propose a hypothetical model based on data analysis, of how molecular factors via environmental cues can regulate the corm development process in saffron.


Asunto(s)
Crocus , Crocus/genética , Crocus/metabolismo , Transcriptoma/genética , Hojas de la Planta , Almidón/metabolismo
4.
Anal Methods ; 16(9): 1347-1356, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334707

RESUMEN

Saffron (Crocus sativus L.) is a valuable Chinese herb with high medicinal value. Saffron pistils are used as medicine, so increasing the number of flowers can increase the yield. Plant hormones have essential roles in the growth and development of saffron, as well as the response to biotic and abiotic stresses (especially in floral initiation), which may directly affect the number of flowers. Quantitative analysis of plant hormones provides a basis for more efficient research on their synthesis, transportation, metabolism, and action. However, starch (which interferes with extraction) is present in high levels, and hormone levels are extremely low, in saffron corms, thereby hampering accurate determination of plant-hormone levels in saffron. Herein, we screened an efficient and convenient pre-treatment method for plant materials containing abundant amounts of starch. Also, we proposed an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of abscisic acid (ABA) and auxin (IAA). Then, the method was applied for the detection of hormone-content differences between flowering and non-flowering top buds, as well as between lateral and top buds. Our method showed high sensitivity, reproducibility, and reliability. Specifically, good linearity in the range 2-100 ng ml-1 was achieved in the determination of ABA and IAA, and the correlation coefficient (R2) was >0.9982. The relative standard deviation was 2.956-14.51% (intraday) and 9.57-18.99% (interday), and the recovery range was 89.04-101.1% (n = 9). The matrix effect was 80.38-90.50% (n = 3). The method was thoroughly assessed employing various "green" chemistry evaluation tools: Blue Applicability Grade Index (BAGI), Complementary Green Analytical Procedure Index (Complex GAPI) and Red Green Blue 12 Algorithm (RGB12). These tools revealed the good greenness, analytical performance, applicability, and overall sustainability alignment of our method. Quantitative results showed that, compared with saffron with a flowering phenotype cultivated at 25 °C, the contents of IAA and ABA in the terminal buds of saffron cultivated at 16 °C decreased significantly. When cultivated at 25 °C, the IAA and ABA contents in the terminal buds of saffron were 1.54- and 4.84-times higher than those in the lateral buds, respectively. A simple, rapid, and accurate UPLC-MS/MS method was established to determine IAA and ABA contents. Using this method, a connection between the contents of IAA and ABA and the flowering phenotype was observed in the quantification results. Our data lay a foundation for studying the flowering mechanism of saffron.


Asunto(s)
Crocus , Plantas Medicinales , Reguladores del Crecimiento de las Plantas/análisis , Reguladores del Crecimiento de las Plantas/metabolismo , Crocus/química , Crocus/genética , Reproducibilidad de los Resultados , Cromatografía Liquida , Espectrometría de Masas en Tándem , Plantas Medicinales/metabolismo , Ácido Abscísico/análisis , Ácido Abscísico/metabolismo , Almidón , Hormonas
5.
Plant Cell Rep ; 43(2): 42, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246927

RESUMEN

KEY MESSAGE: Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.


Asunto(s)
Crocus , Fusarium , Crocus/genética , Perfilación de la Expresión Génica , Metabolismo Secundario
6.
Genome ; 67(2): 43-52, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922517

RESUMEN

Saffron, the stigma of Crocus sativus L., is the most expensive spice used for culinary, medicinal, dye, and cosmetics purposes. It is highly adulterated because of its limited production and high commercial value. In this study, 104 saffron market samples collected from 16 countries were tested using morphology, high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), and deoxyribonucleic acid (DNA) barcoding. Overall, 45 samples (43%) were adulterated. DNA barcoding identified the highest number of adulterated saffron (44 samples), followed by HPTLC (39 samples), HPLC (38 samples), and morphology (32 samples). Only DNA barcoding identified the adulterated samples containing saffron and other plants' parts as bulking agents. In addition, DNA barcoding identified 20 adulterant plant species, which will help develop quality control methods and market surveillance. Some of the adulterant plants are unsafe for human consumption. The HPLC method helped identify the saffron samples adulterated with synthetic safranal. HPLC and HPTLC methods will help identify the samples adulterated with other parts of the saffron plant (auto-adulteration).


Asunto(s)
Crocus , Humanos , Crocus/genética , Crocus/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Código de Barras del ADN Taxonómico , Contaminación de Medicamentos , Plantas/genética
7.
Plant J ; 118(1): 58-72, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100533

RESUMEN

Crocins are glucosylated apocarotenoids present in flowers and fruits of a few plant species, including saffron, gardenia, and Buddleja. The biosynthesis of crocins in these plants has been unraveled, and the enzymes engineered for the production of crocins in heterologous systems. Mullein (Verbascum sp.) has been identified as a new source of crocins and picrocrocin. In this work, we have identified eight enzymes involved in the cleavage of carotenoids in two Verbascum species, V. giganteum and V. sinuatum. Four of them were homologous to the previously identified BdCCD4.1 and BdCCD4.3 from Buddleja, involved in the biosynthesis of crocins. These enzymes were analyzed for apocarotenogenic activity in bacteria and Nicotiana benthamiana plants using a virus-driven system. Metabolic analyses of bacterial extracts and N. benthamiana leaves showed the efficient activity of these enzymes to produce crocins using ß-carotene and zeaxanthin as substrates. Accumulations of 0.17% of crocins in N. benthamiana dry leaves were reached in only 2 weeks using a recombinant virus expressing VgCCD4.1, similar to the amounts previously produced using the canonical saffron CsCCD2L. The identification of these enzymes, which display a particularly broad substrate spectrum, opens new avenues for apocarotenoid biotechnological production.


Asunto(s)
Crocus , Ciclohexenos , Glucósidos , Terpenos , Verbascum , Verbascum/metabolismo , Crocus/genética , Crocus/química , Vitamina A/metabolismo , Carotenoides/metabolismo
8.
Plant Cell Rep ; 43(1): 20, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150028

RESUMEN

KEY MESSAGE: CstMYB1R1 acts as a positive regulator of Crocus anthocyanin biosynthesis and abiotic stress tolerance which was experimentally demonstrated through molecular analysis and over-expression studies in Crocus and Nicotiana. Regulatory mechanics of flavonoid/anthocyanin biosynthesis in Crocus floral tissues along the diurnal clock has not been studied to date. MYB proteins represent the most dominant, functionally diverse and versatile type of plant transcription factors which regulate key metabolic and physiological processes in planta. Transcriptome analysis revealed that MYB family is the most dominant transcription factor family in C. sativus. Considering this, a MYB-related REVEILLE-8 type transcription factor, CstMYB1R1, was explored for its possible role in regulating Crocus flavonoid and anthocyanin biosynthetic pathway. CstMYB1R1 was highly expressed in Crocus floral tissues, particularly tepals and its expression was shown to peak at dawn and dusk time points. Anthocyanin accumulation also peaked at dawn and dusk and was minimum at night. Moreover, the diurnal expression pattern of CstMYB1R1 was shown to highly correlate with Crocus ANS/LDOX gene expression among the late anthocyanin pathway genes. CstMYB1R1 was shown to be nuclear localized and transcriptionally active. CstMYB1R1 over-expression in Crocus tepals enhanced anthocyanin levels and upregulated transcripts of Crocus flavonoid and anthocyanin biosynthetic pathway genes. Yeast one hybrid (Y1H) and GUS reporter assay confirmed that CstMYB1R1 interacts with the promoter of Crocus LDOX gene to directly regulate its transcription. In addition, the expression of CstMYB1R1 in Nicotiana plants significantly enhanced flavonoid and anthocyanin levels and improved their abiotic stress tolerance. The present study, thus, confirmed positive role of CstMYB1R1 in regulating Crocus anthocyanin biosynthetic pathway in a diurnal clock-specific fashion together with its involvement in the regulation of abiotic stress response.


Asunto(s)
Crocus , Crocus/genética , Antocianinas , Regulación de la Expresión Génica , Flavonoides , Nicotiana/genética , Estrés Fisiológico/genética
9.
Plant Cell Physiol ; 64(11): 1407-1418, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37705247

RESUMEN

Crocus sativus has emerged as an important crop because it is the only commercial source of saffron that contains unique apocarotenoids. Saffron is composed of dried stigmas of Crocus flower and constitutes the most priced spice of the world. Crocus floral organs are dominated by different classes of metabolites. While stigmas are characterized by the presence of apocarotenoids, tepals are rich in flavonoids and anthocyanins. Therefore, an intricate regulatory network might play a role in allowing different compounds to dominate in different organs. Work so far done on Crocus is focussed on apocarotenoid metabolism and its regulation. There are no reports describing the regulation of flavonoids and anthocyanins in Crocus tepals. In this context, we identified an R2R3 transcription factor, CstMYB16, which resembles subgroup 4 (SG4) repressors of Arabidopsis. CstMYB16 is nuclear localized and acts as a repressor. Overexpression of CstMYB16 in Crocus downregulated anthocyanin biosynthesis. The C2/EAR motif was responsible for the repressor activity of CstMYB16. CstMYB16 binds to the promoter of the anthocyanin biosynthetic pathway gene (LDOX) and reduces its expression. CstMYB16 also physically interacts with CstPIF4, which in turn is regulated by temperature and circadian clock. Thus, CstPIF4 integrates these signals and forms a repressor complex with CstMYB16, which is involved in the negative regulation of anthocyanin biosynthesis in Crocus. Independent of CstPIF4, CstMYB16 also represses CstPAP1 expression, which is a component of the MYB-bHLH-WD40 (MBW) complex and positively controls anthocyanin biosynthesis. This is the first report on identifying and describing regulators of anthocyanin biosynthesis in Crocus.


Asunto(s)
Arabidopsis , Crocus , Crocus/genética , Crocus/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Temperatura , Flavonoides/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Medicine (Baltimore) ; 102(32): e34514, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565925

RESUMEN

Polycystic ovary syndrome (PCOS) is a hormonal disorder that affects women of reproductive age, characterized by a range of symptoms, including irregular menstrual cycles, excess male hormones (androgens), metabolic abnormalities such as hyperinsulinemia, hyperlipidemia, and metabolic disturbances like glucose imbalance. Botanical supplements are perceived first and safe choice over available regimens to regulate PCOS. There are several reports available stating that apocarotenoids, carotenoids, and whole extracts of Crocus sativus were identified to have a potential role in the management of women health. This study aimed to propose a network pharmacology-based method to determine the potential therapeutic pathways of phytoconstituents (apocarotenoids and carotenoids) of UHPLC-PDA standardized stigma-based Crocus sativus extract (CSE) for the management of PCOS. Furthermore, to validate the potential targets and signaling pathways, these apocarotenoids, and carotenoids were screened for molecular docking and in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions. The information regarding PCOS-related genes was retrieved from the PCOS knowledge database (PCOSKB), resulting in an established network between putative targets of PCOS and Crocus sativus extract phytochemicals to prevail the mechanism of action. Based on the screening conditions, 4 prominent targets namely, serine/threonine kinase 1 (AKT1), signal transducer and activator of transcription (STAT3), mitogen-activated protein kinase 3 (MAPK3), and mitogen-activated protein kinase 1 (MAPK1), were identified through network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that MAP kinase and serine-threonine pathways were found prominent targets in PCOS. Further, a molecular docking study shows that crocetin, picrocrocin, and safranal had the best binding affinity for the identified targets. In silico ADMET results revealed that carotenoids and apocarotenoids were found to have the maximum bioavailability and were able to cross the blood-brain barrier without any toxic effects. The combined results revealed that the apocarotenoids and carotenoids of Crocus sativus extract could act on various targets to regulate multiple pathways related to PCOS.


Asunto(s)
Crocus , Síndrome del Ovario Poliquístico , Femenino , Masculino , Humanos , Crocus/química , Crocus/genética , Crocus/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Carotenoides/farmacología , Carotenoides/uso terapéutico
11.
J Environ Manage ; 345: 118572, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421720

RESUMEN

Intercropping can favour the yield of the main crop. However, because of the potential competition among woody crops, this system is rarely used by farmers. To increase knowledge about the intercropping system, we have explored three different combinations of alley cropping in rainfed olive groves compared to conventional management (CP): (i) Crocus sativus (D-S); (ii) Vicia sativa/Avena sativa in annual rotation (D-O); and (iii) Lavandula x intermedia (D-L). Different soil chemical properties were analyzed to evaluate the effects of alley cropping, while 16S rRNA amplification and enzymatic activities were determined to study the changes that occurred in soil microbial communities and activity. In addition, the influence of intercropping on the potential functionality of the soil microbial community was measured. Data revealed that the intercropping systems highly affected the microbial community and soil properties. The D-S cropping system increased soil total organic carbon and total nitrogen that were correlated with the bacterial community, indicating that both parameters were the main drivers shaping the structure of the bacterial community. The D-S soil cropping system had significantly higher relative abundances of the phyla Bacteroidetes, Proteobacteria, and Patescibacteria compared to the other systems and the genera Adhaeribacter, Arthrobacter, Rubellimicrobium, and Ramlibacter, related to C and N functions. D-S soil was also related to the highest relative abundances of Pseudoarthrobacter and Haliangium, associated with the plant growth-promoting effect, antifungal activity, and a potential P solubilizer. A potentially increase of C fixation and N fixation in soils was also observed in the D-S cropping system. These positive changes were related to the cessation of tillage and the development of a spontaneous cover crop, which increased soil protection. Thus, management practices that contribute to increasing soil cover should be encouraged to improve soil functionality.


Asunto(s)
Crocus , Olea , Suelo/química , Olea/genética , Crocus/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Productos Agrícolas , Microbiología del Suelo
12.
Plant Cell Rep ; 42(1): 91-106, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36350395

RESUMEN

KEY MESSAGE: The saffron phenylpropane synthesis pathway and Fusarium oxysporum cell wall-degrading enzymes play key roles in their early interactions. Saffron (Crocus sativus) is a highly important crop with diverse medicinal properties. F. oxysporum is a widely-distributed soil-borne fungus, causing the serious saffron rot disease. Currently, there is no effective management strategy to control this disease because of no resistant cultivars and limited information about the resistance and pathogenic mechanisms. In this study, we first characterized the infection process and physiological responses of saffron infected by F. oxysporum. The molecular mechanism of these infection interactions was revealed by dual RNA-seq analysis. On the 3rd day of infection, the hyphae completely entered, colonized and spread in the corm cells; while on the 6th day of infection, hyphae had appeared in the xylem cells, blocking these vessels. Transcriptome results indicate that within the host, phenylpropanoid metabolism, plant hormone signal transduction and plant pathogen interaction pathways were activated during infection. These pathways were conducive to the enhancement of cell wall, the occurrence of hypersensitivity, and the accumulation of various antibacterial proteins and phytoantitoxins. Meanwhile, in the fungus, many up-regulated genes were related to F. oxysporum cell wall degrading enzymes, toxin synthesis and pathogenicity gene, showing its strong pathogenicity. This study provides new ideas for the control of saffron corm rot, and also provides a theoretical basis for mining the key functional genes.


Asunto(s)
Crocus , Fusarium , RNA-Seq , Crocus/genética , Transcriptoma/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
BMC Vet Res ; 18(1): 449, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36564739

RESUMEN

BACKGROUND: Cryptosporidium is the most common protozoan that can infect a wide variety of animals, including mammals and birds. Fecal samples of six saffron finches, Sicalis flaveola, from a commercial establishment were screened for the presence of Cryptosporidium by the modified Ziehl-Neelsen technique and nested PCR of the 18S rRNA gene followed by sequencing of the amplified fragments. RESULTS: The species Cryptosporidium galli was identified in all six saffron fiches, in addition to Cryptosporidium andersoni in one of the birds, indicating a mixed infection. Only two birds had feathers that were ruffled and dirty with feces. Concomitant infection with Isospora spp. was observed in all birds. CONCLUSIONS: Saffron finches are a possible host of C. andersoni and this is the first report of this species in a captive bird and the third report of parasitism by C. galli in Sicalis flaveola.


Asunto(s)
Crocus , Criptosporidiosis , Cryptosporidium , Pinzones , Passeriformes , Animales , Cryptosporidium/genética , Crocus/genética , Filogenia , Heces , ADN Protozoario/genética , Mamíferos/genética
14.
World J Microbiol Biotechnol ; 39(1): 9, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36369477

RESUMEN

Saffron crocus is a sterile plant species that propagates vegetatively, and consequently, narrow genetic variation is detected in this species. Besides the narrow genetic variation, there is significant phenotypic variation in different traits in this plant. Here we tested this hypothesis that plant microbiome is a major contributor to the phenotypic variation. We focused our analysis on culturable bacteria that were dominant in saffron fields with high stigma yield compared to the fields with low stigma yield. Following this strategy, four rhizospheric (Cupriavidus metallidurans, Bacillus sp., Solibacillus sp., and Planococcus sp.) and two endophytic bacteria (Serratia oryzae and S. odorifera) were identified. The effects of the bacteria on the growth and development of the model plant Arabidopsis were assessed both in agar plate and pot assays. Results showed that these bacteria influence the vegetative growth and flowering time of Arabidopsis. In the next step, corms of saffron were inoculated with these bacteria and the growth and development of the saffron plants were monitored for five months. Remarkably, inoculation of the bacteria had significant influence on vegetative growth, flowering time, and stigma yield of saffron crocus. Furthermore, one of the bacteria, C. metallidurans, is reported here for the first time as a naturally occurring plant-associated bacteria. Altogether our results suggest that plant microbiome is an important factor in phenotypic variation in saffron crocus.


Asunto(s)
Arabidopsis , Crocus , Microbiota , Crocus/genética , Crocus/microbiología , Bacterias/genética , Adaptación Fisiológica
15.
Mol Biol Rep ; 49(12): 11695-11703, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181582

RESUMEN

BACKGROUND: Saffron (Crocus sativus) is high valued spice crop, but due to its sterile nature, the crop is propagated exclusively through corms. Thus, the genetic base of this crop is very narrow, however, frequency of phenotypic variability is observed; and suggested the potential role of epigenetics in saffron crop growth and development. METHODS AND RESULTS: To facilitate epigenetic studies in saffron, we developed 1525 methylation-specific PCR (MSP) markers using MethPrimer. For this purpose, we used 6767 EST sequences of saffron available on the NCBI database. We also mine CpG islands (2555) and found that 32.7% of EST sequences had CpG islands. Out of 1525 MSP markers developed during the present study, 725 covered the CpG islands and 800 were without CpG islands. PCR amplification was found successful for 82% of MSP markers. A preliminary analysis suggested that 53.7% of genomic sites were methylated and more prominent (60% methylations) in non-CpG island regions, although, more comprehensive studies are required to validate it further. CONCLUSIONS: The epigenetic resource developed during the present study will strengthen the epigenetic studies like epiQTL mapping, epiGWAS to explore the molecular mechanisms and genomic/epigenomic regions associated with phenotype; and further may be utilized for saffron improvement programs through epibreeding.


Asunto(s)
Crocus , Crocus/genética , Metilación , Reacción en Cadena de la Polimerasa/métodos , Epigenómica , Epigénesis Genética/genética , Metilación de ADN/genética , Islas de CpG/genética
16.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142456

RESUMEN

Chromoplasts and chloroplasts contain carotenoid pigments as all-trans- and cis-isomers, which function as accessory light-harvesting pigments, antioxidant and photoprotective agents, and precursors of signaling molecules and plant hormones. The carotenoid pathway involves the participation of different carotenoid isomerases. Among them, D27 is a ß-carotene isomerase showing high specificity for the C9-C10 double bond catalyzing the interconversion of all-trans- into 9-cis-ß-carotene, the precursor of strigolactones. We have identified one D27 (CsD27-1) and two D27-like (CsD27-2 and CsD27-3) genes in saffron, with CsD27-1 and CsD27-3, clearly differing in their expression patterns; specifically, CsD27-1 was mainly expressed in the undeveloped stigma and roots, where it is induced by Rhizobium colonization. On the contrary, CsD27-2 and CsD27-3 were mainly expressed in leaves, with a preferential expression of CsD27-3 in this tissue. In vivo assays show that CsD27-1 catalyzes the isomerization of all-trans- to 9-cis-ß-carotene, and could be involved in the isomerization of zeaxanthin, while CsD27-3 catalyzes the isomerization of all-trans- to cis-ζ-carotene and all-trans- to cis-neurosporene. Our data show that CsD27-1 and CsD27-3 enzymes are both involved in carotenoid isomerization, with CsD27-1 being specific to chromoplast/amyloplast-containing tissue, and CsD27-3 more specific to chloroplast-containing tissues. Additionally, we show that CsD27-1 is co-expressed with CCD7 and CCD8 mycorrhized roots, whereas CsD27-3 is expressed at higher levels than CRTISO and Z-ISO and showed circadian regulation in leaves. Overall, our data extend the knowledge about carotenoid isomerization and their implications in several physiological and ecological processes.


Asunto(s)
Crocus , zeta Caroteno , Antioxidantes , Carotenoides/metabolismo , Crocus/genética , Crocus/metabolismo , Isomerasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zeaxantinas , beta Caroteno/metabolismo , zeta Caroteno/metabolismo
17.
Plant Biotechnol J ; 20(11): 2202-2216, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35997958

RESUMEN

Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves. We demonstrate that co-expression of GjCCD4a with phytoene synthase and ß-carotene hydroxylase genes is an optimal combination for heterologous production of crocetin, crocins and picrocrocin in citrus callus. By profiling apocarotenoids and using in vitro assays, we show that GjCCD4a cleaved ß-carotene, in planta, and produced crocetin dialdehyde via C30 ß-apocarotenoid intermediate. GjCCD4a also cleaved C27 ß-apocarotenoids, providing a new route for C17 -dialdehyde biosynthesis. Callus lines overexpressing GjCCD4a contained higher number of plastoglobuli in chromoplast-like plastids and increased contents in phytoene, C17:0 fatty acid (FA), and C18:1 cis-9 and C22:0 FA esters. GjCCD4a showed a wider substrate specificity and higher efficiency in Nicotiana leaves, leading to the accumulation of up to 1.6 mg/g dry weight crocins. In summary, we established a system for investigating CCD enzymatic activity in planta and an efficient biotechnological platform for crocins production in green and non-green crop tissues/organs.


Asunto(s)
Crocus , Dioxigenasas , Gardenia , Dioxigenasas/genética , Zeaxantinas , Carotenoides , Crocus/química , Crocus/genética , Nicotiana/genética
18.
BMC Res Notes ; 15(1): 214, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725612

RESUMEN

OBJECTIVE: Isolating high-quality RNA is a basic requirement while performing high throughput sequencing, microarray, and various other molecular investigations. However, it has been quite challenging to isolate RNA with absolute purity from plants like Crocus sativus that are rich in secondary metabolites, polysaccharides, and other interfering compounds which often irreversibly co-precipitate with the RNA. While many methods have been proposed for RNA extraction including CTAB, TriZol, and SDS-based methods, which invariably yield less and poor quality RNA and hence it necessitated the isolation of high-quality RNA suitable for high throughput applications. RESULTS: In the present study we made certain adjustments to the available protocols including modifications in the extraction buffer itself and the procedure employed. Our method led to the isolation of clear and non-dispersive total RNA with an RNA Integrity Number (RIN) value greater than 7.5. The quality of the RNA was further assessed by qPCR-based amplification of mRNA and mature miRNAs such as Cs-MIR166c and Cs-MIR396a.


Asunto(s)
Crocus , MicroARNs , Crocus/genética , Crocus/metabolismo , Plantas , Polisacáridos , ARN Mensajero
19.
PLoS One ; 17(6): e0269747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704623

RESUMEN

Crocus istanbulensis (B.Mathew) Ruksans is one of the most endangered Crocus species in the world and has an extremely limited distribution range in Istanbul. Our recent field work indicates that no more than one hundred individuals remain in the wild. In the present study, we used genome skimming to determine the complete chloroplast (cp) genome sequences of six C. istanbulensis individuals collected from the locus classicus. The cp genome of C. istanbulensis has 151,199 base pairs (bp), with a large single-copy (LSC) (81,197 bp), small single copy (SSC) (17,524 bp) and two inverted repeat (IR) regions of 26,236 bp each. The cp genome contains 132 genes, of which 86 are protein-coding (PCGs), 8 are rRNA and 38 are tRNA genes. Most of the repeats are found in intergenic spacers of Crocus species. Mononucleotide repeats were most abundant, accounting for over 80% of total repeats. The cp genome contained four palindrome repeats and one forward repeat. Comparative analyses among other Iridaceae species identified one inversion in the terminal positions of LSC region and three different gene (psbA, rps3 and rpl22) arrangements in C. istanbulensis that were not reported previously. To measure selective pressure in the exons of chloroplast coding sequences, we performed a sequence analysis of plastome-encoded genes. A total of seven genes (accD, rpoC2, psbK, rps12, ccsA, clpP and ycf2) were detected under positive selection in the cp genome. Alignment-free sequence comparison showed an extremely low sequence diversity across naturally occurring C. istanbulensis specimens. All six sequenced individuals shared the same cp haplotype. In summary, this study will aid further research on the molecular evolution and development of ex situ conservation strategies of C. istanbulensis.


Asunto(s)
Crocus , Genoma del Cloroplasto , Crocus/genética , Evolución Molecular , Orden Génico , Genoma del Cloroplasto/genética , Humanos , Filogenia
20.
Physiol Plant ; 174(3): e13712, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35561087

RESUMEN

Reactive oxygen species (ROS) behave as signaling molecules and induce biosynthesis of many secondary metabolites, including apocarotenoids, which play critical roles in stress tolerance through radical scavenging. However, the mechanism that regulates ROS responsive apocarotenoid metabolism and subsequent stress response is unknown. In this study, an R2R3-MYB transcription factor (CstMYB14) was identified from Crocus sativus L., which acts as a regulator of apocarotenoid biosynthesis. CstMYB14 expression increases in response to H2 O2 in a concentration and time-dependent manner. CstMYB14 localizes to the nucleus and acts as a transcriptional activator. Over-expression of CstMYB14 in Crocus stigmas enhanced apocarotenoid biosynthesis. Yeast-one-hybrid demonstrated binding of CstMYB14 to promoters of two apocarotenoid pathway genes (phytoene synthase and carotenoid cleavage dioxygenase 2). Nicotiana benthamiana plants overexpressing CstMYB14 showed better growth and higher stress tolerance than wild type plants. Higher antioxidant activity in CstMYB14-Ox plants indicated that stress tolerance might be due to ROS scavenging. These results establish a molecular link between ROS signaling, apocarotenoid metabolism and stress tolerance. Further, CstMYB14 is shown to act as a key regulator which modulates ROS responsive biosynthesis of apocarotenoids which in turn impart stress tolerance through ROS scavenging.


Asunto(s)
Crocus , Dioxigenasas , Crocus/genética , Crocus/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...