Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Exp Cell Res ; 399(2): 112455, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33400935

RESUMEN

During meiosis, homologous chromosomes exchange genetic material. This exchange or meiotic recombination is mediated by a proteinaceous scaffold known as the Synaptonemal complex (SC). Any defects in its formation produce failures in meiotic recombination, chromosome segregation and meiosis completion. It has been proposed that DNA repair events that will be resolved by crossover between homologous chromosomes are predetermined by the SC. Hence, structural analysis of the organization of the DNA in the SC could shed light on the process of crossover interference. In this work, we employed an ultrastructural DNA staining technique on mouse testis and followed nuclei of pachytene cells. We observed structures organized similarly to the SCs stained with conventional techniques. These structures, presumably the DNA in the SCs, are delineating the edges of both lateral elements and no staining was observed between them. DNA in the LEs resembles two parallel tracks. However, a bubble-like staining pattern in certain regions of the SC was observed. Furthermore, this staining pattern is found in SCs formed between non-homologous chromosomes, in SCs formed between sister chromatids and in SCs without lateral elements, suggesting that this particular organization of the DNA is determined by the synapsis of the chromosomes despite their lack of homology or the presence of partially formed SCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Meiosis/fisiología , Complejo Sinaptonémico/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestructura , Emparejamiento Cromosómico/fisiología , ADN/química , ADN/ultraestructura , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Complejo Sinaptonémico/fisiología , Complejo Sinaptonémico/ultraestructura
2.
Genes (Basel) ; 11(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371494

RESUMEN

Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.


Asunto(s)
Inestabilidad Cromosómica , Reparación del ADN , Anemia de Fanconi/genética , Envejecimiento/genética , Proteína BRCA1/fisiología , Proteína BRCA2/fisiología , Trastornos de Fallo de la Médula Ósea/etiología , Ciclo Celular , Cromátides/ultraestructura , Aberraciones Cromosómicas , Cromosomas Humanos/ultraestructura , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Anemia de Fanconi/complicaciones , Anemia de Fanconi/diagnóstico , Proteína del Grupo de Complementación C de la Anemia de Fanconi/deficiencia , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/fisiología , Humanos , Infertilidad/genética , Síndromes Neoplásicos Hereditarios/genética , Fenotipo , Procesamiento Proteico-Postraduccional , Ubiquitinación
3.
PLoS Biol ; 18(8): e3000817, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32813728

RESUMEN

During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas/ultraestructura , Meiosis , Complejo Sinaptonémico/ultraestructura , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Análisis Citogenético , Hibridación Fluorescente in Situ , Fase S/genética , Complejo Sinaptonémico/metabolismo , Cohesinas
4.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
5.
PLoS Genet ; 16(7): e1008918, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730246

RESUMEN

Holocentric chromosomes possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes [1]. They have been described for the first time in cytogenetic experiments dating from 1935 and, since this first observation, the term holocentric chromosome has referred to chromosomes that: i. lack the primary constriction corresponding to centromere observed in monocentric chromosomes [2]; ii. possess multiple kinetochores dispersed along the chromosomal axis so that microtubules bind to chromosomes along their entire length and move broadside to the pole from the metaphase plate [3]. These chromosomes are also termed holokinetic, because, during cell division, chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes [4-6]. Holocentric chromosomes evolved several times during both animal and plant evolution and are currently reported in about eight hundred diverse species, including plants, insects, arachnids and nematodes [7,8]. As a consequence of their diffuse kinetochores, holocentric chromosomes may stabilize chromosomal fragments favouring karyotype rearrangements [9,10]. However, holocentric chromosome may also present limitations to crossing over causing a restriction of the number of chiasma in bivalents [11] and may cause a restructuring of meiotic divisions resulting in an inverted meiosis [12].


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas/genética , Cinetocoros/ultraestructura , Meiosis/genética , Animales , Caenorhabditis elegans/citología , Centrómero/genética , Centrómero/ultraestructura , Cromátides/genética , Cromátides/ultraestructura , Segregación Cromosómica/genética , Cromosomas/ultraestructura , Cariotipo , Plantas/genética
6.
PLoS One ; 15(1): e0220348, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31935221

RESUMEN

In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , Células Epiteliales/enzimología , Fibroblastos/enzimología , Acetiltransferasas/metabolismo , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Transformada , Proliferación Celular , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Rotura Cromosómica , Segregación Cromosómica , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Ectromelia/enzimología , Ectromelia/genética , Ectromelia/patología , Células Epiteliales/patología , Fibroblastos/patología , Expresión Génica , Humanos , Hipertelorismo/enzimología , Hipertelorismo/genética , Hipertelorismo/patología , Ratones , Mitosis , Modelos Biológicos , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Cohesinas
7.
Artículo en Inglés | MEDLINE | ID: mdl-31699341

RESUMEN

18F-FDG PET/CT imaging is used in the diagnosis of diseases, including cancers. The principal photons used for imaging are 511 ke V gamma photons resulting from positron annihilation. The absorbed dose varies among body organs, depending on administered radioactivity and biological clearance. We have attempted to evaluate DNA double-strand breaks (DSB) and toxicity induced in V79 lung fibroblast cells in vitro by 18F-FDG, at doses which might result from PET procedures. Cells were irradiated by 18F-FDG at doses (14.51 and 26.86 mGy), comparable to absorbed doses received by critical organs during PET procedures. The biological endpoints measured were formation of γ-H2AX foci, mitochondrial stress, chromosomal aberrations, and cell cycle perturbation. Irradiation induced DSB (γH2AX assay), mitochondrial depolarization, and both chromosome and chromatid types of aberrations. At higher radiation doses, increased aneuploidy and reduced mitotic activity were also seen. Thus, significant biological effects were observed at the doses delivered by the 18F-FDG exposure and the effects increased with dose.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Fibroblastos/efectos de la radiación , Radioisótopos de Flúor/toxicidad , Fluorodesoxiglucosa F18/toxicidad , Rayos gamma/efectos adversos , Radiofármacos/toxicidad , Aneuploidia , Animales , Bencimidazoles , Carbocianinas , Ciclo Celular/efectos de la radiación , Línea Celular , Cromátides/efectos de la radiación , Cromátides/ultraestructura , Cromosomas/efectos de la radiación , Cromosomas/ultraestructura , Cricetulus , Roturas del ADN de Doble Cadena , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/ultraestructura , Histonas/genética , Cariotipificación , Pulmón/citología , Masculino , Potencial de la Membrana Mitocondrial/efectos de la radiación , Mitosis/efectos de la radiación
8.
EMBO Rep ; 20(8): e47905, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31290587

RESUMEN

The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.


Asunto(s)
Anafase , Cinetocoros/ultraestructura , Metafase , Microtúbulos/ultraestructura , Oocitos/ultraestructura , Secuencia de Aminoácidos , Animales , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Femenino , Humanos , Cinetocoros/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Oocitos/metabolismo , Espermatocitos/metabolismo , Espermatocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
9.
Nat Struct Mol Biol ; 26(8): 732-743, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358945

RESUMEN

Many stem cells undergo asymmetric division to produce a self-renewing stem cell and a differentiating daughter cell. Here we show that, similarly to H3, histone H4 is inherited asymmetrically in Drosophila melanogaster male germline stem cells undergoing asymmetric division. In contrast, both H2A and H2B are inherited symmetrically. By combining super-resolution microscopy and chromatin fiber analyses with proximity ligation assays on intact nuclei, we find that old H3 is preferentially incorporated by the leading strand, whereas newly synthesized H3 is enriched on the lagging strand. Using a sequential nucleoside analog incorporation assay, we detect a high incidence of unidirectional replication fork movement in testes-derived chromatin and DNA fibers. Biased fork movement coupled with a strand preference in histone incorporation would explain how asymmetric old and new H3 and H4 are established during replication. These results suggest a role for DNA replication in patterning epigenetic information in asymmetrically dividing cells in multicellular organisms.


Asunto(s)
División Celular Asimétrica/fisiología , Replicación del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histonas/genética , Células Madre Germinales Adultas/metabolismo , Animales , División Celular Asimétrica/genética , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas de Drosophila/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Masculino , Testículo/metabolismo , Transgenes
10.
Nat Commun ; 9(1): 834, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483514

RESUMEN

The formation of haploid gametes from diploid germ cells requires the regulated two-step release of sister chromatid cohesion (SCC) during the meiotic divisions. Here, we show that phosphorylation of cohesin subunit REC-8 by Aurora B promotes SCC release at anaphase I onset in C. elegans oocytes. Aurora B loading to chromatin displaying Haspin-mediated H3 T3 phosphorylation induces spatially restricted REC-8 phosphorylation, preventing full SCC release during anaphase I. H3 T3 phosphorylation is locally antagonized by protein phosphatase 1, which is recruited to chromosomes by HTP-1/2 and LAB-1. Mutating the N terminus of HTP-1 causes ectopic H3 T3 phosphorylation, triggering precocious SCC release without impairing earlier HTP-1 roles in homolog pairing and recombination. CDK-1 exerts temporal regulation of Aurora B recruitment, coupling REC-8 phosphorylation to oocyte maturation. Our findings elucidate a complex regulatory network that uses chromosome axis components, H3 T3 phosphorylation, and cell cycle regulators to ensure accurate chromosome segregation during oogenesis.


Asunto(s)
Aurora Quinasa B/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Organismos Hermafroditas/genética , Oocitos/metabolismo , Anafase , Animales , Aurora Quinasa B/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromátides/ultraestructura , Cromatina/metabolismo , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Regulación de la Expresión Génica , Organismos Hermafroditas/citología , Organismos Hermafroditas/metabolismo , Histonas/genética , Histonas/metabolismo , Oocitos/citología , Oogénesis/genética , Fosforilación , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cohesinas
11.
EMBO Rep ; 19(1): 43-56, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29138236

RESUMEN

Sister-chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non-catalytic N-terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl-Pds5B interaction at centromeres. Here, we show that the C-terminal kinase domain of Haspin (Haspin-KD) binds and phosphorylates the YSR motif of Wapl (Wapl-YSR), thereby directly inhibiting the YSR motif-dependent interaction of Wapl with Pds5B. Cells expressing a Wapl-binding-deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho-mimetic mutation in Wapl-YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin-KD to centromeres partly bypasses the need for Haspin-Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase-dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Anafase , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Profase , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
12.
Nat Commun ; 8: 15346, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28516917

RESUMEN

Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC-APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Meiosis , Oocitos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Securina/genética , Separasa/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Femenino , Regulación de la Expresión Génica , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Puntos de Control de la Fase M del Ciclo Celular , Edad Materna , Ratones , Oocitos/citología , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Securina/metabolismo , Separasa/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
13.
Mol Cell ; 64(1): 134-147, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716481

RESUMEN

Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Anafase , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Expresión Génica , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
14.
Mol Cell ; 63(6): 1044-54, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27618487

RESUMEN

Cohesin is a ring-shaped protein complex that is capable of embracing DNA. Most of the ring circumference is comprised of the anti-parallel intramolecular coiled coils of the Smc1 and Smc3 proteins, which connect globular head and hinge domains. Smc coiled coil arms contain multiple acetylated and ubiquitylated lysines. To investigate the role of these modifications, we substituted lysines for arginines to mimic the unmodified state and uncovered genetic interaction between the Smc arms. Using scanning force microscopy, we show that wild-type Smc arms associate with each other when the complex is not on DNA. Deacetylation of the Smc1/Smc3 dimers promotes arms' dissociation. Smc arginine mutants display loose packing of the Smc arms and, although they dimerize at the hinges, fail to connect the heads and associate with the DNA. Our findings highlight the importance of a "collapsed ring," or "rod," conformation of cohesin for its loading on the chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , ADN de Hongos/química , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Acetilación , Sustitución de Aminoácidos , Animales , Arginina/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Clonación Molecular , ADN de Hongos/genética , ADN de Hongos/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , Cohesinas
15.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298259

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Asunto(s)
Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Secuencias AT-Hook/genética , Cromátides/genética , Cromátides/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Microscopía de Fuerza Atómica , Mitosis/genética , Proteínas Nucleares/metabolismo , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
16.
Mol Hum Reprod ; 22(4): 252-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769260

RESUMEN

STUDY HYPOTHESIS: What factors in mouse oocytes are involved in the ageing-related decline in oocyte quality? STUDY FINDING: The maternal effect gene Mater is involved in ageing-related oocyte quality decline in mice. WHAT IS KNOWN ALREADY: Premature loss of centromere cohesion is a hallmark of ageing-related oocyte quality decline; the maternal effect gene Mater (maternal antigen that embryos require, also known as Nlrp5) is required for preimplantation embryo development beyond the 2-cell stage, and mRNA expression of Mater decreases with maternal ageing. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Mater protein expression level in mature oocytes from 7 young (5-8 weeks old) to 7 old mice (41-68 weeks old) was compared by immunoblotting analysis. Wild-type and Mater-null mice were used to examine whether Mater is necessary for maintaining normal centromere cohesion by means of cytogenetic karyotyping, time-lapse confocal microscopy and immunofluorescence staining. MAIN RESULTS AND THE ROLE OF CHANCE: Mater protein is decreased in mature oocytes from old versus young mice (P = 0.0022). Depletion of Mater from oocytes leads to a reduction in centromere cohesion, manifested by precocious sister chromatid separation, enlargement of sister centromere distance and misalignment of chromosomes in the metaphase plate during meiosis I and II. LIMITATIONS, REASONS FOR CAUTION: This study was conducted in mice. Whether or not the results are applicable to human remains further elucidation. In addition, we were unable to confirm if the strain of mice (C57BL/6XSv129) at the age of 41-68 weeks old has the 'cohesin-loss' phenotype. WIDER IMPLICATIONS OF THE FINDINGS: Investigating Mater's functional mechanisms could provide fresh insights into understanding how the ageing-related oocyte quality decline occurs. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by the research grant from Chinese NSFC to P.Z. (31071274). We have no conflict of interests to declare.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Proteínas del Huevo/genética , Oocitos/metabolismo , Animales , Antígenos/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas del Huevo/metabolismo , Femenino , Expresión Génica , Cariotipificación , Meiosis , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Imagen de Lapso de Tiempo
17.
Sci Rep ; 5: 14891, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26446309

RESUMEN

The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.


Asunto(s)
Cromátides/ultraestructura , Cromatina/ultraestructura , Metafase , Neoplasias Ováricas/ultraestructura , Bandeo Cromosómico , ADN/química , Femenino , Humanos , Cariotipificación , Cebollas/citología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Translocación Genética
18.
Cell Rep ; 12(12): 2156-68, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26365192

RESUMEN

Separation of human sister chromatids involves the removal of DNA embracing cohesin ring complexes. Ring opening occurs by prophase-pathway-dependent phosphorylation and separase-mediated cleavage, with the former being antagonized at centromeres by Sgo1-dependent PP2A recruitment. Intriguingly, prophase pathway signaling and separase's proteolytic activity also bring about centriole disengagement, whereas Sgo1 is again counteracting this licensing step of later centrosome duplication. Here, we demonstrate that alternative splice variants of human Sgo1 specifically and exclusively localize and function either at centromeres or centrosomes. A small C-terminal peptide encoded by exon 9 of SGO1 (CTS for centrosomal targeting signal of human Sgo1) is necessary and sufficient to drive centrosomal localization and simultaneously abrogate centromeric association of corresponding Sgo1 isoforms. Cohesin is shown to be a target of the prophase pathway at centrosomes and protected by Sgo1-PP2A. Accordingly, premature centriole disengagement in response to Sgo1 depletion is suppressed by blocking ring opening of an engineered cohesin.


Asunto(s)
Empalme Alternativo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Profase , Proteína Fosfatasa 2/metabolismo , Señales de Clasificación de Proteína/genética , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Centriolos/ultraestructura , Centrómero/metabolismo , Centrómero/ultraestructura , Centrosoma/metabolismo , Centrosoma/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Exones , Células HEK293 , Humanos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/genética , Transporte de Proteínas , Proteolisis , Transducción de Señal , Cohesinas
19.
PLoS One ; 10(9): e0137633, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26384324

RESUMEN

Understanding the basis for intracellular motion is critical as the field moves toward a deeper understanding of the relation between Brownian forces, molecular crowding, and anisotropic (or isotropic) energetic forcing. Effective forces and other parameters used to summarize molecular motion change over time in live cells due to latent state changes, e.g., changes induced by dynamic micro-environments, photobleaching, and other heterogeneity inherent in biological processes. This study discusses limitations in currently popular analysis methods (e.g., mean square displacement-based analyses) and how new techniques can be used to systematically analyze Single Particle Tracking (SPT) data experiencing abrupt state changes in time or space. The approach is to track GFP tagged chromatids in metaphase in live yeast cells and quantitatively probe the effective forces resulting from dynamic interactions that reflect the sum of a number of physical phenomena. State changes can be induced by various sources including: microtubule dynamics exerting force through the centromere, thermal polymer fluctuations, and DNA-based molecular machines including polymerases and protein exchange complexes such as chaperones and chromatin remodeling complexes. Simulations aiming to show the relevance of the approach to more general SPT data analyses are also studied. Refined force estimates are obtained by adopting and modifying a nonparametric Bayesian modeling technique, the Hierarchical Dirichlet Process Switching Linear Dynamical System (HDP-SLDS), for SPT applications. The HDP-SLDS method shows promise in systematically identifying dynamical regime changes induced by unobserved state changes when the number of underlying states is unknown in advance (a common problem in SPT applications). We expand on the relevance of the HDP-SLDS approach, review the relevant background of Hierarchical Dirichlet Processes, show how to map discrete time HDP-SLDS models to classic SPT models, and discuss limitations of the approach. In addition, we demonstrate new computational techniques for tuning hyperparameters and for checking the statistical consistency of model assumptions directly against individual experimental trajectories; the techniques circumvent the need for "ground-truth" and/or subjective information.


Asunto(s)
Cromosomas Fúngicos/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Microscopía/métodos , Levaduras/citología , Algoritmos , Teorema de Bayes , Cromátides/ultraestructura , Simulación por Computador , Modelos Biológicos , Movimiento (Física) , Levaduras/ultraestructura
20.
Tsitologiia ; 57(1): 47-55, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-25872375

RESUMEN

It is considered that sister chromatids are held together immediately after replication by special protein complex--cohesin that consists of Smc1--Smc3 core dimer and two additional subunits, Scc1 and Scc3. This process is called cohesion. We have characterized binding of cohesin complex to early- and late-replicated chromatin at different stages of the cell cycle in human cells HeLa and HT1080 using superresolution microscopy (based on Structural ilumination microscopy--SIM) and immunoelectron microscopy. It has been shown that cohesins do not play important role in cohesion of heterochromatic domains, but they provide cohesion and organization of subdomains in euchromatic regions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/química , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/química , Eucromatina/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/química , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Eucromatina/ultraestructura , Expresión Génica , Células HeLa , Heterocromatina/ultraestructura , Humanos , Microscopía Inmunoelectrónica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...