Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Genes Chromosomes Cancer ; 63(7): e23254, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38979775

RESUMEN

An aneurysmal bone cyst (ABC) is a benign bone neoplasm that typically occurs during the first and second decades of life. ABC usually presents as a rapidly growing intramedullary expansile mass with multiple blood-filled cysts in the metaphysis of the long tubular bones. Here, we report a case of a periosteal solid ABC that was initially diagnosed as a high-grade surface osteosarcoma. A 10-year-old male was referred to our hospital for swelling and tenderness of the left upper arm. Radiography revealed periosteal mass without fluid-fluid levels. On performing open biopsy, the tumor showed hypercellular proliferation of uniform spindle to epithelioid cells with brisk mitotic activity (up to 12/2 mm2) and lace-like osteoid formation, which was diagnosed as a high-grade surface osteosarcoma. After one course of chemotherapy using adriamycin and cisplatin, peripheral sclerosis was conspicuous, which led to pathological review and revision of diagnosis as "possibly osteoblastoma." The patient was disease-free for 4 years after marginal resection and curettage. Retrospective nanopore DNA sequencing unexpectedly detected a PAFAH1B1::USP6 rearrangement. The fusion gene was further validated using reverse transcription-polymerase chain reaction and the diagnosis was revised to ABC. Chromothripsis involving chromosome 17 has also been identified. Methylation analysis classified the present tumor as an ABC or non-ossifying fibroma using t-distributed stochastic neighbor embedding and unsupervised hierarchical clustering. This case report highlights the utility of nanopore DNA sequencing for soft tissue and bone tumor diagnosis.


Asunto(s)
Quistes Óseos Aneurismáticos , Cromotripsis , Secuenciación de Nanoporos , Osteosarcoma , Ubiquitina Tiolesterasa , Humanos , Masculino , Quistes Óseos Aneurismáticos/genética , Quistes Óseos Aneurismáticos/patología , Quistes Óseos Aneurismáticos/diagnóstico , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/diagnóstico , Ubiquitina Tiolesterasa/genética , Niño , Secuenciación de Nanoporos/métodos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/diagnóstico , Reordenamiento Génico
2.
Genes Chromosomes Cancer ; 63(7): e23253, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023390

RESUMEN

Osteosarcoma is a primary bone tumor that exhibits a complex genomic landscape characterized by gross chromosomal abnormalities. Osteosarcoma patients often develop metastatic disease, resulting in limited therapeutic options and poor survival rates. To gain knowledge on the mechanisms underlying osteosarcoma heterogeneity and metastatic process, it is important to obtain a detailed profile of the genomic alterations that accompany osteosarcoma progression. We performed WGS on multiple tissue samples from six patients with osteosarcoma, including the treatment naïve biopsy of the primary tumor, resection of the primary tumor after neoadjuvant chemotherapy, local recurrence, and distant metastases. A comprehensive analysis of single-nucleotide variants (SNVs), structural variants, copy number alterations (CNAs), and chromothripsis events revealed the genomic heterogeneity during osteosarcoma progression. SNVs and structural variants were found to accumulate over time, contributing to an increased complexity of the genome of osteosarcoma during disease progression. Phylogenetic trees based on SNVs and structural variants reveal distinct evolutionary patterns between patients, including linear, neutral, and branched patterns. The majority of osteosarcomas showed variable copy number profiles or gained whole-genome doubling in later occurrences. Large proportions of the genome were affected by loss of heterozygosity (LOH), although these regions remain stable during progression. Additionally, chromothripsis is not confined to a single early event, as multiple other chromothripsis events may appear in later occurrences. Together, we provide a detailed analysis of the complex genome of osteosarcomas and show that five of six osteosarcoma genomes are highly dynamic and variable during progression.


Asunto(s)
Neoplasias Óseas , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Masculino , Femenino , Adulto , Polimorfismo de Nucleótido Simple , Pérdida de Heterocigocidad , Secuenciación Completa del Genoma , Cromotripsis , Adolescente , Genoma Humano
3.
Nat Commun ; 15(1): 5611, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965240

RESUMEN

Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.


Asunto(s)
Sistemas CRISPR-Cas , Cromotripsis , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mitosis , Mitosis/genética , Humanos , Reordenamiento Génico , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Micronúcleos con Defecto Cromosómico
4.
Commun Biol ; 7(1): 606, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769442

RESUMEN

Well-differentiated liposarcoma (WDLS) displays amplification of genes on chromosome 12 (Chr12) in supernumerary ring or giant marker chromosomes. These structures have been suggested to develop through chromothripsis, followed by circularization and breakage-fusion-bridge (BFB) cycles. To test this hypothesis, we compared WDLSs with Chr12 amplification in rod-shaped chromosomes with WDLSs with rings. Both types of amplicons share the same spectrum of structural variants (SVs), show higher SV frequencies in Chr12 than in co-amplified segments, have SVs that fuse the telomeric ends of co-amplified chromosomes, and lack interspersed deletions. Combined with the finding of cells with transient rod-shaped structures in tumors with ring chromosomes, this suggests a stepwise process starting with the gain of Chr12 material that, after remodeling which does not fit with classical chromothripsis, forms a dicentric structure with other chromosomes. Depending on if and when telomeres from other chromosomes are captured, circularized or linear gain of 12q sequences will predominate.


Asunto(s)
Amplificación de Genes , Liposarcoma , Proteínas Proto-Oncogénicas c-mdm2 , Humanos , Liposarcoma/genética , Liposarcoma/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Cromosomas Humanos Par 12/genética , Cromotripsis , Cromosomas en Anillo
5.
Am J Surg Pathol ; 48(8): 1017-1023, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639044

RESUMEN

Most extrauterine high-grade serous carcinomas (HGSCs) are thought to develop first in the distal fallopian tube. Most models of HGSC assume origin from relatively stable, noninvasive serous tubal intraepithelial carcinomas. However, widespread tumor involvement in the absence of a serous tubal intraepithelial carcinoma could occur after catastrophic genomic events (CGEs; such as chromothripsis or polyploidy). Twenty-six HGSCs assigned to fallopian tube (n = 9, group 1) and/or ovary (n = 9, group 2), and primary peritoneal (n = 8, group 3) were assessed by microarray (Oncoscan). CGEs were identified in 15/26 (57.7%); chromothripsis-like pattern in 13/26 (50.0%) and polyploidy in 6/26 (23.1%). CGE was seen in 4/9 (44.4%), 9/9 (100%), and 2/8 (25%) cases in groups 1. 2, and 3, respectively. Overall, CGEs were seen in 9/9 (100%) cases with grossly evident ovarian parenchymal involvement versus 6/17 (35.3%) without ( P = 0.0024). Ovarian size (measured on the long axis) correlated with CGE positivity ( P = 0.016). CGEs are significantly more common in HGSCs with ovarian parenchymal involvement compared with those limited to the fallopian tube and/or extraovarian tissues. These associations suggest geographically different tumor growth patterns and support the subdivision of HGSCs according to not only the stage but also tumor distribution. They have implications for clinical and pathologic presentation, trajectory of tumor evolution, and in the case of primary peritoneal HGSCs, potentially unique precursors to tumor transitions that could inform or influence cancer prevention efforts.


Asunto(s)
Cromotripsis , Cistadenocarcinoma Seroso , Neoplasias de las Trompas Uterinas , Clasificación del Tumor , Neoplasias Ováricas , Neoplasias Peritoneales , Poliploidía , Humanos , Femenino , Neoplasias de las Trompas Uterinas/patología , Neoplasias de las Trompas Uterinas/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/genética , Persona de Mediana Edad , Anciano , Adulto , Análisis de Secuencia por Matrices de Oligonucleótidos , Anciano de 80 o más Años
6.
J Med Case Rep ; 18(1): 95, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351155

RESUMEN

BACKGROUND: Ependymomas are the third most common central nervous system tumor in the pediatric population; however, spinal ependymomas in children are rare. Ependymomas affecting the spinal cord most frequently occur in adults of 20-40 years of age. The current World Health Organization classification system for ependymomas is now composed of ten different entities based on histopathology, location, and molecular studies, with evidence that the new classification system more accurately predicts clinical outcomes. CASE PRESENTATION: We present the case of a 16-year-old Caucasian female patient with a history of type 2 neurofibromatosis with multiple schwannomas, meningioma, and spinal ependymoma. Chromosome analysis of the harvested spinal ependymoma tumor sample revealed a 46,XX,-6,+7,-22,+mar[16]/46,XX[4] karyotype. Subsequent OncoScan microarray analysis of the formalin-fixed paraffin-embedded tumor sample confirmed + 7, -22 and clarified that the marker chromosome represents chromothripsis of the entire chromosome 6 with more than 100 breakpoints. Fluorescent in situ hybridization and microarray analysis showed no evidence of MYCN amplification. The final integrated pathology diagnosis was spinal ependymoma (central nervous system World Health Organization grade 2 with no MYCN amplification. CONCLUSION: This case adds to the existing literature of pediatric patients with spinal ependymomas and expands the cytogenetic findings that may be seen in patients with this tumor type. This case also highlights the value of cytogenetics and microarray analysis in solid tumors to provide a more accurate molecular diagnosis.


Asunto(s)
Cromotripsis , Ependimoma , Neoplasias Meníngeas , Neoplasias de la Médula Espinal , Adulto , Humanos , Niño , Femenino , Adolescente , Cromosomas Humanos Par 6 , Hibridación Fluorescente in Situ , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/patología , Ependimoma/diagnóstico , Ependimoma/genética , Ependimoma/patología
7.
Methods Cell Biol ; 182: 1-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359973

RESUMEN

Chromothripsis describes the catastrophic fragmentation of individual chromosomes followed by its haphazard reassembly into a derivative chromosome harboring complex rearrangements. This process can be initiated by mitotic cell division errors when one or more chromosomes aberrantly mis-segregate into micronuclei and acquire extensive DNA damage. Approaches to induce the formation of micronuclei encapsulating random chromosomes have been used; however, the eventual reincorporation of the micronucleated chromosome into daughter cell nuclei poses a challenge in tracking the chromosome for multiple cell cycles. Here we outline an approach to genetically engineer stable human cell lines capable of efficient chromosome-specific micronuclei induction. This strategy, which targets the CENP-B-deficient Y chromosome centromere for inactivation, allows the stepwise process of chromothripsis to be experimentally recapitulated, including the mechanisms and timing of chromosome fragmentation. Lastly, we describe the integration of a selection marker onto the micronucleated Y chromosome that enables the diverse genomic rearrangement landscape arising from micronuclei formation to be interrogated.


Asunto(s)
Cromotripsis , Humanos , Centrómero/genética , División Celular , Núcleo Celular , Línea Celular
8.
Exp Hematol ; 132: 104172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309572

RESUMEN

Chromotrypsis, a phenomenon resulting from catastrophic mitotic errors and genomic instability, is defined by the occurrence of multiple DNA double-strand breaks in one or more chromosomes, subsequently subject to error-prone repair mechanisms. This unique process results in extensive rearrangements in the affected chromosomes, leading to loss of tumor suppressor function, the creation of fusion genes, and/or activation of oncogenes. The importance of chromothripsis in cancer, especially in the field of hematologic disorders, underscores the intricate interplay between genomic instability and the genesis of alterations that contribute to cancer. This accentuates the critical need to unravel these complex processes for the targeted development of specific therapeutic interventions. This review delves into the analysis of chromothripsis cases in various hematologic diseases, such as leukemia, lymphoma, and myeloma, with the aim of unveiling its profound impact on patient prognosis. Furthermore, the study explores the intricate molecular mechanisms underlying chromothripsis and investigates its consequences.


Asunto(s)
Cromotripsis , Neoplasias Hematológicas , Neoplasias , Humanos , Inestabilidad Genómica , Roturas del ADN de Doble Cadena , Neoplasias/genética , Neoplasias Hematológicas/genética
9.
Nature ; 627(8004): 586-593, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355797

RESUMEN

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Asunto(s)
Carcinoma Hepatocelular , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Hepáticas , Mutación , Secuenciación Completa del Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , China , Cromotripsis , Progresión de la Enfermedad , ADN Circular/genética , Pueblos del Este de Asia/genética , Evolución Molecular , Genoma Humano/genética , Virus de la Hepatitis B/genética , Mutación INDEL/genética , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Mutación/genética , Metástasis de la Neoplasia/genética , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados
10.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423013

RESUMEN

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Asunto(s)
Cromotripsis , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteómica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN/genética
11.
Front Biosci (Landmark Ed) ; 29(1): 2, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38287797

RESUMEN

BACKGROUND: Structural variations (SVs) are common genetic alterations in the human genome. However, the profile and clinical relevance of SVs in patients with hereditary breast and ovarian cancer (HBOC) syndrome (germline BRCA1/2 mutations) remains to be fully elucidated. METHODS: Twenty HBOC-related cancer samples (5 breast and 15 ovarian cancers) were studied by optical genome mapping (OGM) and next-generation sequencing (NGS) assays. RESULTS: The SV landscape in the 5 HBOC-related breast cancer samples was comprehensively investigated to determine the impact of intratumor SV heterogeneity on clinicopathological features and on the pattern of genetic alteration. SVs and copy number variations (CNVs) were common genetic events in HBOC-related breast cancer, with a median of 212 SVs and 107 CNVs per sample. The most frequently detected type of SV was insertion, followed by deletion. The 5 HBOC-related breast cancer samples were divided into SVhigh and SVlow groups according to the intratumor heterogeneity of SVs. SVhigh tumors were associated with higher Ki-67 expression, higher homologous recombination deficiency (HRD) scores, more mutated genes, and altered signaling pathways. Moreover, 60% of the HBOC-related breast cancer samples displayed chromothripsis, and 8 novel gene fusion events were identified by OGM and validated by transcriptome data. CONCLUSIONS: These findings suggest that OGM is a promising tool for the detection of SVs and CNVs in HBOC-related breast cancer. Furthermore, OGM can efficiently characterize chromothripsis events and novel gene fusions. SVhigh HBOC-related breast cancers were associated with unfavorable clinicopathological features. SVs may therefore have predictive and therapeutic significance for HBOC-related breast cancers in the clinic.


Asunto(s)
Neoplasias de la Mama , Cromotripsis , Síndrome de Cáncer de Mama y Ovario Hereditario , Femenino , Humanos , Neoplasias de la Mama/genética , Proteína BRCA1/genética , Relevancia Clínica , Variaciones en el Número de Copia de ADN , Proteína BRCA2/genética , Mapeo Cromosómico
12.
Cell Genom ; 4(2): 100484, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232733

RESUMEN

The epigenetic landscape of cancer is regulated by many factors, but primarily it derives from the underlying genome sequence. Chromothripsis is a catastrophic localized genome shattering event that drives, and often initiates, cancer evolution. We characterized five esophageal adenocarcinoma organoids with chromothripsis using long-read sequencing and transcriptome and epigenome profiling. Complex structural variation and subclonal variants meant that haplotype-aware de novo methods were required to generate contiguous cancer genome assemblies. Chromosomes were assembled separately and scaffolded using haplotype-resolved Hi-C reads, producing accurate assemblies even with up to 900 structural rearrangements. There were widespread differences between the chromothriptic and wild-type copies of chromosomes in topologically associated domains, chromatin accessibility, histone modifications, and gene expression. Differential epigenome peaks were most enriched within 10 kb of chromothriptic structural variants. Alterations in transcriptome and higher-order chromosome organization frequently occurred near differential epigenetic marks. Overall, chromothripsis reshapes gene regulation, causing coordinated changes in epigenetic landscape, transcription, and chromosome conformation.


Asunto(s)
Adenocarcinoma , Cromotripsis , Neoplasias Esofágicas , Humanos , Haplotipos , Cromatina , Genoma , Adenocarcinoma/genética
13.
Nat Rev Genet ; 25(3): 196-210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37938738

RESUMEN

Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.


Asunto(s)
Cromotripsis , Neoplasias , Humanos , Cromatina , ADN/genética , Núcleo Celular , Neoplasias/genética , Reordenamiento Génico , Aberraciones Cromosómicas
14.
Mod Pathol ; 37(2): 100387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007157

RESUMEN

PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.


Asunto(s)
Cromotripsis , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Niño , Factores de Transcripción/genética , Sarcoma/genética , Proteína EWS de Unión a ARN/genética , Sistema Nervioso Central/patología , Transcriptoma , Neoplasias de los Tejidos Blandos/genética , Proteínas Represoras/genética , Factores de Transcripción de Tipo Kruppel/genética
15.
Mol Cell ; 84(1): 55-69, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38029753

RESUMEN

Mitotic cell division is tightly monitored by checkpoints that safeguard the genome from instability. Failures in accurate chromosome segregation during mitosis can cause numerical aneuploidy, which was hypothesized by Theodor Boveri over a century ago to promote tumorigenesis. Recent interrogation of pan-cancer genomes has identified unexpected classes of chromosomal abnormalities, including complex rearrangements arising through chromothripsis. This process is driven by mitotic errors that generate abnormal nuclear structures that provoke extensive yet localized shattering of mis-segregated chromosomes. Here, we discuss emerging mechanisms underlying chromothripsis from micronuclei and chromatin bridges, as well as highlight how this mutational cascade converges on the DNA damage response. A fundamental understanding of these catastrophic processes will provide insight into how initial errors in mitosis can precipitate rapid cancer genome evolution.


Asunto(s)
Cromotripsis , Neoplasias , Humanos , Aberraciones Cromosómicas , Mitosis/genética , Inestabilidad Genómica , Neoplasias/genética
17.
Plant Cell ; 35(11): 3957-3972, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37497643

RESUMEN

DNA double-stranded breaks (DSBs) generated by the Cas9 nuclease are commonly repaired via nonhomologous end-joining (NHEJ) or homologous recombination (HR). However, little is known about unrepaired DSBs and the type of damage they trigger in plants. We designed an assay that detects loss of heterozygosity (LOH) in somatic cells, enabling the study of a broad range of DSB-induced genomic events. The system relies on a mapped phenotypic marker which produces a light purple color (betalain pigment) in all plant tissues. Plants with sectors lacking the Betalain marker upon DSB induction between the marker and the centromere were tested for LOH events. Using this assay, we detected a tomato (Solanum lycopersicum) flower with a twin yellow and dark purple sector, corresponding to a germinally transmitted somatic crossover event. We also identified instances of small deletions of genomic regions spanning the T-DNA and whole chromosome loss. In addition, we show that major chromosomal rearrangements including loss of large fragments, inversions, and translocations were clearly associated with the CRISPR-induced DSB. Detailed characterization of complex rearrangements by whole-genome sequencing and molecular and cytological analyses supports a model in which a breakage-fusion-bridge cycle followed by chromothripsis-like rearrangements had been induced. Our LOH assay provides a tool for precise breeding via targeted crossover detection. It also uncovers CRISPR-mediated chromothripsis-like events in plants.


Asunto(s)
Cromotripsis , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga , Solanum lycopersicum/genética
18.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399092

RESUMEN

MOTIVATION: Chromothripsis, associated with poor clinical outcomes, is prognostically vital in multiple myeloma. The catastrophic event is reported to be detectable prior to the progression of multiple myeloma. As a result, chromothripsis detection can contribute to risk estimation and early treatment guidelines for multiple myeloma patients. However, manual diagnosis remains the gold standard approach to detect chromothripsis events with the whole-genome sequencing technology to retrieve both copy number variation (CNV) and structural variation data. Meanwhile, CNV data are much easier to obtain than structural variation data. Hence, in order to reduce the reliance on human experts' efforts and structural variation data extraction, it is necessary to establish a reliable and accurate chromothripsis detection method based on CNV data. RESULTS: To address those issues, we propose a method to detect chromothripsis solely based on CNV data. With the help of structure learning, the intrinsic relationship-directed acyclic graph of CNV features is inferred to derive a CNV embedding graph (i.e. CNV-DAG). Subsequently, a neural network based on Graph Transformer, local feature extraction, and non-linear feature interaction, is proposed with the embedding graph as the input to distinguish whether the chromothripsis event occurs. Ablation experiments, clustering, and feature importance analysis are also conducted to enable the proposed model to be explained by capturing mechanistic insights. AVAILABILITY AND IMPLEMENTATION: The source code and data are freely available at https://github.com/luvyfdawnYu/CNV_chromothripsis.


Asunto(s)
Cromotripsis , Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Variaciones en el Número de Copia de ADN , Programas Informáticos , Redes Neurales de la Computación
19.
Nature ; 618(7967): 1049-1056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316668

RESUMEN

Chromothripsis, the shattering and imperfect reassembly of one (or a few) chromosome(s)1, is an ubiquitous2 mutational process generating localized and complex chromosomal rearrangements that drive genome evolution in cancer. Chromothripsis can be initiated by mis-segregation errors in mitosis3,4 or DNA metabolism5-7 that lead to entrapment of chromosomes within micronuclei and their subsequent fragmentation in the next interphase or following mitotic entry6,8-10. Here we use inducible degrons to demonstrate that chromothriptically produced pieces of a micronucleated chromosome are tethered together in mitosis by a protein complex consisting of mediator of DNA damage checkpoint 1 (MDC1), DNA topoisomerase II-binding protein 1 (TOPBP1) and cellular inhibitor of PP2A (CIP2A), thereby enabling en masse segregation to the same daughter cell. Such tethering is shown to be crucial for the viability of cells undergoing chromosome mis-segregation and shattering after transient inactivation of the spindle assembly checkpoint. Transient, degron-induced reduction in CIP2A following chromosome micronucleation-dependent chromosome shattering is shown to drive acquisition of segmental deletions and inversions. Analyses of pancancer tumour genomes showed that expression of CIP2A and TOPBP1 was increased overall in cancers with genomic rearrangements, including copy number-neutral chromothripsis with minimal deletions, but comparatively reduced in cancers with canonical chromothripsis in which deletions were frequent. Thus, chromatin-bound tethers maintain the proximity of fragments of a shattered chromosome enabling their re-encapsulation into, and religation within, a daughter cell nucleus to form heritable, chromothriptically rearranged chromosomes found in the majority of human cancers.


Asunto(s)
Núcleo Celular , Segregación Cromosómica , Cromosomas Humanos , Cromotripsis , Mitosis , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Neoplasias/genética , Cromatina/genética
20.
Genes Chromosomes Cancer ; 62(12): 740-745, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37366242

RESUMEN

Small round cell neoplasms comprise a diverse group of tumors characterized by a primitive/undifferentiated appearance. Although several entities are associated with recurrent gene fusions, many of these neoplasms have not been fully characterized, and novel molecular alterations are being discovered. Here, we report an undifferentiated small round cell neoplasm arising in the anterior mediastinum of a 17-month-old female. The tumor harbored a novel HNRNPM::LEUTX fusion resulting from chromothripsis of chromosome 19, which was identified by whole transcriptome sequencing, but not by targeted sequencing. The structural variations caused by the chromothripsis event also challenged the interpretation of the targeted sequencing findings. This report expands the spectrum of gene partners involved in LEUTX fusions and underscores the value of whole transcriptome sequencing in the diagnostic workup of undifferentiated small round cell tumors. It also highlights the interpretive challenges associated with complex genomic alterations. A careful evidence-based analysis of sequencing data along with histopathologic correlation is essential to ensure correct categorization of fusions.


Asunto(s)
Cromotripsis , Sarcoma , Humanos , Niño , Femenino , Lactante , Cromosomas Humanos Par 19 , Sarcoma/genética , Fusión Génica , Biomarcadores de Tumor/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo M/genética , Proteínas de Homeodominio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA