Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Methods Mol Biol ; 2775: 195-209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758319

RESUMEN

Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an encapsulated fungal pathogen found ubiquitously in the environment that causes pneumonia and life-threatening infections of the central nervous system. Following inhalation of yeasts or desiccated basidiospores into the lung alveoli, resident pulmonary phagocytic cells aid in the identification and eradication of Cryptococcus yeast through their arsenal of pattern recognition receptors (PRRs). PRRs recognize conserved pathogen-associated molecular patterns (PAMPs), such as branched mannans, ß-glucans, and chitins that are the major components of the fungal cell wall. However, the key receptors/ligand interactions required for cryptococcal recognition and eventual fungal clearance have yet to be elucidated. Here we present an imaging flow cytometer (IFC) method that offers a novel quantitative cellular imaging and population statistics tool to accurately measure phagocytosis of fungal cells. It has the capacity to measure two distinct steps of phagocytosis: association/attachment and internalization in a high-throughput and quantitative manner that is difficult to achieve with other technologies. Results from these IFC studies allow for the potential to identify PRRs required for recognition, uptake, and subsequent activation of cytokine production, as well as other effector cell responses required for fungal clearance.


Asunto(s)
Cryptococcus neoformans , Citometría de Flujo , Fagocitosis , Citometría de Flujo/métodos , Cryptococcus neoformans/metabolismo , Animales , Ratones , Fagocitos/metabolismo , Fagocitos/microbiología , Criptococosis/microbiología , Criptococosis/metabolismo , Criptococosis/inmunología , Cryptococcus/metabolismo , Humanos , Citometría de Imagen/métodos , Receptores de Reconocimiento de Patrones/metabolismo
2.
Methods Mol Biol ; 2775: 329-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758327

RESUMEN

The cell wall of the fungal pathogens Cryptococcus neoformans and C. gattii is critical for cell wall integrity and signaling external threats to the cell, allowing it to adapt and grow in a variety of changing environments. Chitin is a polysaccharide found in the cell walls of fungi that is considered to be essential for fungal survival. Chitosan is a polysaccharide derived from chitin via deacetylation that is also essential for cryptococcal cell wall integrity, fungal pathogenicity, and virulence. Cryptococcus has evolved mechanisms to regulate the amount of chitin and chitosan during growth under laboratory conditions or during mammalian infection. Therefore, levels of chitin and chitosan have been useful phenotypes to define mutant Cryptococcus strains. As a result, we have developed and/or refined various qualitative and quantitative methods for measuring chitin and chitosan. These techniques include those that use fluorescent probes that are known to bind to chitin (e.g., calcofluor white and wheat germ agglutinin), as well as those that preferentially bind to chitosan (e.g., eosin Y and cibacron brilliant red 3B-A). Techniques that enhance the localization and quantification of chitin and chitosan in the cell wall include (i) fluorescence microscopy, (ii) flow cytometry, (iii) and spectrofluorometry. We have also modified two highly selective biochemical methods to measure cellular chitin and chitosan content: the Morgan-Elson and the 3-methyl-2-benzothiazolone hydrazine hydrochloride (MBTH) assays, respectively.


Asunto(s)
Pared Celular , Quitina , Quitosano , Quitina/metabolismo , Quitina/química , Quitina/análisis , Quitosano/química , Quitosano/metabolismo , Pared Celular/metabolismo , Pared Celular/química , Cryptococcus neoformans/metabolismo , Colorantes Fluorescentes/química , Cryptococcus/metabolismo , Microscopía Fluorescente/métodos
3.
Cytokine ; 173: 156441, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995394

RESUMEN

Macrophages have recently been discovered to assume a significant role in the progression of cryptococcosis. However, the potential involvement of macrophage-derived exosomes in the pathogenesis of cryptococcosis remains uncertain. In this study, we investigated the changes of microRNAs in macrophage exosomes (exo-miRNAs) in cryptococcal infections and the role of markedly altered exo-miRNAs in the modulation of Human Umbilical Vein Endothelial Cells (HUVEC) permeability and ROS accumulation and pyroptosis in Human Bronchial Epithelioid Cells (BEAS-2B). Techniques such as microarray analysis and real-time quantitative PCR were used to detect different exo-miRNAs and to screen for the most highly expressed exo-miRNAs. Then its mimics were transfected into HUVEC to study its effect on the monolayer permeability of HUVEC. Finally, the relationship between this exo-miRNAs and the ROS accumulation and pyroptosis was verified by bioinformatics analysis. The results showed that five exo-miRNAs were overexpressed and two exo-miRNAs were reduced, among which, exo-miR-4449 was expressed at the highest level. Exo-miR-4449 could be internalized by HUVEC and enhanced its monolayer permeability. Moreover, exo-miR-4449 was found to promote ROS accumulation and pyroptosis in BEAS-2B through HIC1 pathway. Thus, exo-miR-4449 plays an important role in the pathogenesis of cryptococcosis and holds promise as a significant biomarker for treatment.


Asunto(s)
Criptococosis , Cryptococcus , MicroARNs , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Piroptosis/genética , Cryptococcus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , Criptococosis/metabolismo , Criptococosis/patología , Factores de Transcripción de Tipo Kruppel
4.
Front Cell Infect Microbiol ; 13: 1195968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168390

RESUMEN

Cryptococcus species are opportunistic human fungal pathogens. Survival in a hostile environment, such as the elevated body temperatures of transmitting animals and humans, is crucial for Cryptococcus infection. Numerous intriguing investigations have shown that the Hsf family of thermotolerance transcription regulators plays a crucial role in the pathogen-host axis of Cryptococcus. Although Hsf1 is known to be a master regulator of the heat shock response through the activation of gene expression of heat shock proteins (Hsps). Hsf1 and other Hsfs are multifaceted transcription regulators that regulate the expression of genes involved in protein chaperones, metabolism, cell signal transduction, and the electron transfer chain. In Saccharomyces cerevisiae, a model organism, Hsf1's working mechanism has been intensively examined. Nonetheless, the link between Hsfs and Cryptococcus pathogenicity remains poorly understood. This review will focus on the transcriptional regulation of Hsf function in Cryptococcus, as well as potential antifungal treatments targeting Hsf proteins.


Asunto(s)
Cryptococcus , Factores de Transcripción , Animales , Humanos , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cryptococcus/genética , Cryptococcus/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Saccharomyces cerevisiae/genética
5.
Cells ; 11(21)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36359781

RESUMEN

Chimeric antigen receptors (CARs) redirect T cells to recognize a specific target. CAR components play a pivotal role in antigen specificity, structure stability, expression on cell surface, and induction of cellular activation, which together determine the success of CAR T-cell therapy. CAR products targeting B-cell lymphoma encouraged the development of new CAR applications beyond cancer. For example, our group developed a CAR to specifically target glucuronoxylomannan (GXM) in the capsule of Cryptococcus species, called GXMR-CAR or GXMR-IgG4-28ζ. Cryptococcus are fungi that cause the life-threatening disease cryptococcosis, and GXMR-IgG4-28ζ redirected T cells to target yeast and titan cell forms of Cryptococcus spp. Here, we replaced the IgG4-hinge and CD28-transmembrane domains from GXMR-CAR with a CD8α molecule as the hinge/transmembrane and used CD28 or 4-1BB molecules as co-stimulatory domains, creating GXMR-8-28ζ and GXMR-8-BBζ, respectively. Jurkat cells expressing GXMR-CAR containing CD8α as the hinge/transmembrane improved the CAR expression and induced a tonic signaling. GXMR-8-28ζ and GXMR-8-BBζ induced high levels of IL-2 and up-regulation of CD69 expression in the presence of reference strains of C. neoformans and C. gattii. Moreover, GXMR-8-28ζ and GXMR-8-BBζ showed increased strength in response to incubation with clinical isolates of Cryptococcuss spp., and 4-1BB co-stimulatory domain triggered a more pronounced cellular activation. Dasatinib, a tyrosine kinase inhibitor, attenuated the GXMR-CAR signaling cascade's engagement in the presence or absence of its ligand. This study optimized novel second-generation GXMR-CARs containing the CD8-hinge/transmembrane domain that improved CAR expression, antigen recognition, and signal strength in T-cell activation.


Asunto(s)
Cryptococcus , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Antígenos CD28/metabolismo , Cryptococcus/inmunología , Cryptococcus/metabolismo , Inmunoglobulina G , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Polisacáridos/química , Polisacáridos/inmunología , Criptococosis/inmunología , Criptococosis/terapia
6.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169080

RESUMEN

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Asunto(s)
Criptococosis/genética , Cryptococcus/genética , Epistasis Genética/genética , Evolución Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidad , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos/genética , Hifa/crecimiento & desarrollo , Morfogénesis , Fenotipo , Sitios de Carácter Cuantitativo/genética , Reproducción/genética , Reproducción Asexuada
7.
PLoS Genet ; 17(8): e1009743, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34464380

RESUMEN

Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres.


Asunto(s)
Centrómero/genética , Centrómero/fisiología , Cryptococcus/genética , Autoantígenos/genética , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Cryptococcus/metabolismo , Metilación de ADN , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Epigenómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
8.
PLoS One ; 16(4): e0250195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901215

RESUMEN

BACKGROUND: Cryptococcal meningitis is a leading cause of HIV-related mortality in sub-Saharan Africa, however, screening for cryptococcal antigenemia has not been universally implemented. As a result, data concerning cryptococcal meningitis and antigenemia are sparse, and in Mozambique, the prevalence of both are unknown. METHODS: We performed a retrospective analysis of routinely collected data from a point-of-care cryptococcal antigen screening program at a public hospital in Maputo, Mozambique. HIV-positive patients admitted to the emergency department underwent CD4 count testing; those with pre-defined abnormal vital signs or CD4 count ≤ 200 cells/µL received cryptococcal antigen testing and lumbar punctures if indicated. Patients with CM were admitted to the hospital and treated with liposomal amphotericin B and flucytosine; their 12-week outcomes were ascertained through review of medical records or telephone contact by program staff made in the routine course of service delivery. RESULTS: Among 1,795 patients screened for cryptococcal antigenemia between March 2018-March 2019, 134 (7.5%) were positive. Of patients with cryptococcal antigenemia, 96 (71.6%) were diagnosed with CM, representing 5.4% of all screened patients. Treatment outcomes were available for 87 CM patients: 24 patients (27.6%) died during induction treatment and 63 (72.4%) survived until discharge; of these, 38 (60.3%) remained in care, 9 (14.3%) died, and 16 (25.3%) were lost-to follow-up at 12 weeks. CONCLUSIONS: We found a high prevalence of cryptococcal antigenemia and meningitis among patients screened at an emergency department in Maputo, Mozambique. High mortality during and after induction therapy demonstrate missed opportunities for earlier detection of cryptococcal antigenemia, even as point-of-care screening and rapid assessment in an emergency room offer potential to improve outcomes.


Asunto(s)
Cryptococcus/inmunología , Meningitis Criptocócica/epidemiología , Infecciones Oportunistas Relacionadas con el SIDA/epidemiología , Adulto , Antígenos Fúngicos/inmunología , Criptococosis/epidemiología , Cryptococcus/metabolismo , Cryptococcus/patogenicidad , Servicio de Urgencia en Hospital , Femenino , Infecciones por VIH/epidemiología , Humanos , Masculino , Meningitis/diagnóstico , Meningitis/epidemiología , Meningitis Criptocócica/diagnóstico , Persona de Mediana Edad , Mozambique , Prevalencia , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento
9.
J Microbiol Biotechnol ; 30(8): 1142-1148, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32522963

RESUMEN

Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.


Asunto(s)
Transporte Biológico/fisiología , Proteínas de Transporte de Catión/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas de Transporte de Catión/genética , Criptococosis/microbiología , Cryptococcus/metabolismo , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hemo/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
10.
Cell Prolif ; 53(8): e12869, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597573

RESUMEN

OBJECTIVES: Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti-tumour effects of CHEPS on non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP-LC3 puncta assay, Lyso-Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT-PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. RESULTS: CHEPS inhibited the proliferation of NSCLC cells by inducing S- and G2/M-phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS-induced cell death. Further studies showed that p38 and ERK promoted CHEPS-induced NSCLC cell autophagy and ERK promoted CHEPS-induced S- and G2/M-phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS-induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ-related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. CONCLUSIONS: CHEPS induces autophagic cell death and S- and G2/M-phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cryptococcus/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Muerte Celular Autofágica/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cryptococcus/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Med Mycol ; 58(8): 1138-1148, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32246714

RESUMEN

Members of the C. neoformans/C. gattiii species complex are an important cause of serious humans infections, including meningoencephalitis. We describe here a 45 kDa extracellular cellulase purified from culture supernatants of C. neoformans var. neoformans. The N-terminal sequence obtained from the purified protein was used to isolate a clone containing the full-length coding sequence from a C. neoformans var. neoformans (strain B-3501A) cDNA library. Bioinformatics analysis indicated that this gene is present, with variable homology, in all sequenced genomes of the C. neoformans/C. gattii species complex. The cDNA clone was used to produce a recombinant 45 kDa protein in E. coli that displayed the ability to convert carboxymethyl cellulose and was therefore designated as NG-Case (standing for Neoformans Gattii Cellulase). To explore its potential use as a vaccine candidate, the recombinant protein was used to immunize mice and was found capable of inducing T helper type 1 responses and delayed-type hypersensitivity reactions, but not immune protection against a highly virulent C. neoformans var grubii strain. These data may be useful to better understand the mechanisms underlying the ability C. neoformans/C. gattii to colonize plant habitats and to interact with the human host during infection.


Asunto(s)
Celulasa/inmunología , Cryptococcus/enzimología , Proteínas Fúngicas/inmunología , Animales , Carboximetilcelulosa de Sodio/metabolismo , Celulasa/química , Celulasa/genética , Celulasa/metabolismo , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus/genética , Cryptococcus/inmunología , Cryptococcus/metabolismo , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Medios de Cultivo Condicionados , Citocinas/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inmunización , Ratones , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Células TH1/inmunología
12.
FEMS Yeast Res ; 20(2)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073632

RESUMEN

Environmental stress often causes phenotypic changes among pathogenic cryptococci, such as altered antifungal susceptibility, changes in capsule and melanin formation, as well as altered levels of the membrane sterol and antifungal target, ergosterol. We therefore hypothesised that nitrogen limitation, a prevalent environmental stress in the natural habitat of these yeasts, might affect virulence and antifungal susceptibility. We tested the effect of different nitrogen concentrations on capsule, melanin and ergosterol biosynthesis, as well as amphotericin B (AmB) and fluconazole (FLU) susceptibility. This was achieved by culturing cryptococcal strains representing Cryptococcus neoformans and Cryptococcus gattii in media with high (0.53 g/l), control (0.42 g/l) and low (0.21 g/l) NH4Cl concentrations. India ink staining was used to determine capsule thickness microscopically, while melanin and ergosterol content were determined spectrophotometrically. We found that lower nitrogen concentrations enhanced both ergosterol and capsule biosynthesis, while a variable effect was observed on melanisation. Evaluation of drug tolerance using time-kill methodology, as well as tests for FLU heteroresistance, revealed that the low nitrogen cultures had the highest survival percentages in the presence of both AmB and FLU, and showed the highest frequency of FLU heteroresistance, suggesting that nitrogen concentration may indeed influence drug tolerance.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Cryptococcus/efectos de los fármacos , Cryptococcus/metabolismo , Fluconazol/farmacología , Nitrógeno/metabolismo , Cloruro de Amonio/análisis , Cloruro de Amonio/farmacología , Vías Biosintéticas/efectos de los fármacos , Cryptococcus/clasificación , Cryptococcus gattii/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Medios de Cultivo/química , Ergosterol/análisis , Ergosterol/biosíntesis , Melaninas/análisis , Melaninas/biosíntesis , Pruebas de Sensibilidad Microbiana , Nitrógeno/análisis
13.
Nucleic Acids Res ; 48(5): 2312-2331, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32020195

RESUMEN

Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


Asunto(s)
Codón Iniciador/química , Cryptococcus/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Iniciación de la Cadena Peptídica Traduccional , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Mapeo Cromosómico , Codón Iniciador/metabolismo , Cryptococcus/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidad de la Especie
14.
Nat Commun ; 11(1): 127, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913284

RESUMEN

Patients infected with the fungal pathogen Cryptococcus are most effectively treated with a combination of 5-fluorocytosine (5FC) and amphotericin B. 5FC acts as a prodrug, which is converted into toxic 5-fluorouracil (5FU) upon uptake into fungal cells. However, the pathogen frequently develops resistance through unclear mechanisms. Here we show that resistance to 5FC in Cryptococcus deuterogattii is acquired more frequently in isolates with defects in DNA mismatch repair that confer an elevated mutation rate. We use whole genome sequencing of 16 independent isolates to identify mutations associated with 5FC resistance in vitro. We find mutations in known resistance genes (FUR1 and FCY2) and in a gene UXS1, previously shown to encode an enzyme that converts UDP-glucuronic acid to UDP-xylose for capsule biosynthesis, but not known to play a role in 5FC metabolism. Mutations in UXS1 lead to accumulation of UDP-glucuronic acid and alterations in nucleotide metabolism, which appear to suppress toxicity of both 5FC and its toxic derivative 5FU.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus/efectos de los fármacos , Cryptococcus/genética , Farmacorresistencia Fúngica , Flucitosina/farmacología , Polisacáridos/biosíntesis , Anfotericina B/farmacología , Cryptococcus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación
15.
J Mycol Med ; 30(1): 100905, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31706700

RESUMEN

INTRODUCTION: Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS: Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS: Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200µg/mL to 6.25 or 12.5µg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION: Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.


Asunto(s)
Cryptococcus/efectos de los fármacos , Cryptococcus/crecimiento & desarrollo , Cryptococcus/genética , Quelantes del Hierro/farmacología , Hierro/metabolismo , Anfotericina B/farmacología , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Deferasirox/farmacología , Deferoxamina/farmacología , Sinergismo Farmacológico , Cápsulas Fúngicas/efectos de los fármacos , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Infecciones Fúngicas Invasoras/complicaciones , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/microbiología , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/microbiología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Nat Commun ; 10(1): 4950, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666517

RESUMEN

A common feature shared by systemic fungal pathogens of environmental origin, such as Cryptococcus neoformans, is their ability to adapt to mammalian core body temperature. In C. neoformans, this adaptation is accompanied by Ccr4-mediated decay of ribosomal protein mRNAs. Here we use the related, but thermo-intolerant species Cryptococcus amylolentus to demonstrate that this response contributes to host-temperature adaptation and pathogenicity of cryptococci. In a C. neoformans ccr4Δ mutant, stabilized ribosomal protein mRNAs are retained in the translating pool, and stress-induced transcriptomic changes are reduced in comparison with the wild type strain, likely due to ineffective translation of transcription factors. In addition, the mutant displays increased exposure of cell wall glucans, and recognition by Dectin-1 results in increased phagocytosis by lung macrophages, linking mRNA decay to adaptation and immune evasion.


Asunto(s)
Cryptococcus neoformans/genética , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Termotolerancia/genética , Animales , Antígenos Fúngicos/inmunología , Cryptococcus/genética , Cryptococcus/inmunología , Cryptococcus/metabolismo , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Regulación Fúngica de la Expresión Génica , Glucanos/inmunología , Evasión Inmune/inmunología , Lectinas Tipo C/inmunología , Macrófagos Alveolares/inmunología , Ratones , Fagocitosis/inmunología , Ribonucleasas/genética
17.
Future Microbiol ; 14: 489-497, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31033338

RESUMEN

Aim: This study aimed to evaluate the effects of proton pump inhibitors (PPIs) on growth and melanin production by Cryptococcus spp. Materials & methods: Minimum inhibitory concentrations (MICs) of omeprazole, esomeprazole, rabeprazole, pantoprazole and lansoprazole against Cryptococcus spp. were determined and the effect of PPIs on melanin production was evaluated, in the presence or absence of copper sulfate or glutathione. Results: PPIs showed MICs ranging from 125-1000 µg/ml and decreased melanization by Cryptococcus cells. Addition of copper sulfate or gluthatione restored melanogenesis of cells grown in the presence of PPIs. The presence of PPIs and glyphosate decreased copper sulfate toxicity (1 mM). Conclusion: PPIs inhibited melanogenesis of Cryptococcus spp., possibly by chelating copper or inhibiting copper ATPase transport.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus/efectos de los fármacos , Cryptococcus/metabolismo , Melaninas/biosíntesis , Inhibidores de la Bomba de Protones/farmacología , Adenosina Trifosfatasas , Cobre , Sulfato de Cobre/metabolismo , Cryptococcus/crecimiento & desarrollo , Medios de Cultivo/química , Esomeprazol/farmacología , Glutatión/metabolismo , Glicina/análogos & derivados , Humanos , Lansoprazol/farmacología , Pruebas de Sensibilidad Microbiana , Omeprazol/farmacología , Pantoprazol/farmacología , Rabeprazol/farmacología , Glifosato
18.
Food Chem ; 283: 345-352, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30722882

RESUMEN

Citrinin (CIT) contamination has been reported in agricultural foods and is known to be nephrotoxic to human and animals. In the present study, the proteomes and transcriptomes of C. podzolicus Y3 treated with or without 10 µg/mL CIT were compared by two-dimensional electrophoresis (2-DE) and RNA sequencing, respectively. The proteomics results showed that there were 23 differentially expressed proteins (DEPs), 8 DEPs were up-regulated and 15 DEPs were significantly down-regulated. Transcriptomic analysis showed that 1208 genes were differentially expressed, 551 (43.05%) DEGs were up regulated and 657 (56.95%) were down-regulated. These results showed that the CIT treatment caused DNA damage, oxidative stress and cell apoptosis in C. podzolicus Y3. CIT treatment also activated the defense response (DNA repair and drug resistance biological process, antioxidative activity and TCA cycle) as well as drug metabolism (synthesize the CIT-degrading enzymes) in yeast cells to respond to CIT stress and degrade CIT.


Asunto(s)
Antibacterianos/farmacología , Citrinina/farmacología , Cryptococcus/metabolismo , Electroforesis en Gel Bidimensional/métodos , Proteoma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Cryptococcus/efectos de los fármacos , Cryptococcus/genética , Daño del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteoma/análisis , Proteómica , ARN de Hongos/química , ARN de Hongos/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba/efectos de los fármacos
19.
Bioresour Technol ; 274: 272-280, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30529332

RESUMEN

The aim of this work was to study the effects of non-ionic surfactant on the accumulation of total microbial lipids and extracellular lipid by Cryptococcus curvatus MUCL 29819 with acetic acid as carbon source. Compared with Brij 58 and Triton X-100, Brij 58 most increased the total lipids, with a yield up to 2.84 g/L (extracellular lipid up to 47%). Brij 58 also increased the metabolic flow of acetic acid to lipid accumulation (maximum conversion of 0.54 g/g at 1.0 g/L Brij 58) and limited its conversion to non-lipid biomass (minimum conversion 0.12 g/g at 0.5 g/L Brij 58). The improvement in the proportion of extracellular lipid by tea saponin and Brij 58 was due to changes in cell membrane permeability and improvement of cell membrane fluidity. Triton X-100, having weaker surface activity, promoted release of extracellular lipid and also increased the proportion of polyunsaturated fatty acid (C22:6, docosahexaenoic acid).


Asunto(s)
Cryptococcus/metabolismo , Lípidos/biosíntesis , Tensoactivos/metabolismo , Ácido Acético/metabolismo , Biomasa , Carbono/metabolismo , Espacio Extracelular/metabolismo
20.
Ultrason Sonochem ; 52: 364-374, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30559080

RESUMEN

There are only a few reports available about the assimilation of hydrophobic substrates by microorganisms, however, it is well known that oleaginous microorganisms are capable of utilizing both hydrophilic and hydrophobic substrates and accumulate lipids via two different pathways namely de novo and ex novo lipid synthesis, respectively. In the present study, an oleaginous yeast, Cryptococcus curvatus, was investigated for its potentials to utilize a waste substrate of hydrophobic nature (waste cooking oil - WCO) and compared with its ability to utilize a hydrophilic carbon source (glucose). To facilitate the utilization of WCO by C. curvatus, the broth was sonicated to form a stable oil-in-water emulsion without adding any emulsifier, which was then compared with WCO samples without any ultrasound treatment (unsonicated) for the yeast cultivation. Ultrasonication reduces the size of hydrophobic substrates and improves their miscibility in an aqueous broth making them easily assimilated by oleaginous yeast. Under de novo lipid fermentation, the yeast synthesized 9.93 ±â€¯0.84 g/L of cell dry weight and 5.23 ±â€¯0.49 g/L lipids (lipid content of 52.66 ±â€¯0.93% w/w) when cultivated on 40 g/L of glucose (C/N ratio of 40). The amount of cell dry weight, lipid concentration, and lipid content were considerably higher during the ex novo lipid synthesis. More specifically, the highest lipid content achieved was 70.13 ±â€¯1.65% w/w with a corresponding dry cell weight and lipid concentration of 18.62 ±â€¯0.76 g/L and 13.06 ±â€¯0.92 g/L respectively, when grown on 20 g/L sonicated WCO. The highest lipid concentration, however, was observed when the yeast was cultivated on 40 g/L sonicated WCO. Under these conditions, 20.34 g/L lipids were produced with a lipid content of 57.05% w/w. On the other hand, lipid production with unsonicated WCO was significant lower, reaching 11.16 ±â€¯1.02 g/L (69.14 ±â€¯1.34% w/w of lipid content) and 12.21 ±â€¯1.34 g/L (47.39 ±â€¯1.67% w/w of lipid content) for 20 g/L and 40 g/L of WCO, respectively. This underpins the significance of the sonication treatment, especially at elevated WCO concentrations, to improve the accessibility of the yeast to the WCO. Sonication treatment that was used in this study assisted the utilization of WCO without the need to add emulsifiers, thus reducing the need for chemicals and in turn has a positive impact on the production costs. The microbial lipids produced presented a different fatty acid composition compared to the WCO, making them more suitable for biodiesel production as suggested by the theoretical estimation of the biodiesel properties.


Asunto(s)
Cryptococcus/metabolismo , Fermentación , Glucosa/metabolismo , Metabolismo de los Lípidos , Aceites/metabolismo , Sonicación , Residuos , Biocombustibles , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...