Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.569
Filtrar
1.
mBio ; 15(5): e0064924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619236

RESUMEN

Invasive fungal infections are a significant public health concern, with mortality rates ranging from 20% to 85% despite current treatments. Therefore, we examined whether a ketogenic diet could serve as a successful treatment intervention in murine models of Cryptococcus neoformans and Candida albicans infection in combination with fluconazole-a low-cost, readily available antifungal therapy. The ketogenic diet is a high-fat, low-carbohydrate diet that promotes fatty acid oxidation as an alternative to glycolysis through the production of ketone bodies. In this series of experiments, mice fed a ketogenic diet prior to infection with C. neoformans and treated with fluconazole had a significant decrease in fungal burden in both the brain (mean 2.66 ± 0.289 log10 reduction) and lung (mean 1.72 ± 0.399 log10 reduction) compared to fluconazole treatment on a conventional diet. During C. albicans infection, kidney fungal burden of mice in the keto-fluconazole combination group was significantly decreased compared to fluconazole alone (2.37 ± 0.770 log10-reduction). Along with higher concentrations of fluconazole in the plasma and brain tissue, fluconazole efficacy was maximized at a significantly lower concentration on a keto diet compared to a conventional diet, indicating a dramatic effect on fluconazole pharmacodynamics. Our findings indicate that a ketogenic diet potentiates the effect of fluconazole at multiple body sites during both C. neoformans and C. albicans infection and could have practical and promising treatment implications.IMPORTANCEInvasive fungal infections cause over 2.5 million deaths per year around the world. Treatments for fungal infections are limited, and there is a significant need to develop strategies to enhance antifungal efficacy, combat antifungal resistance, and mitigate treatment side effects. We determined that a high-fat, low-carbohydrate ketogenic diet significantly potentiated the therapeutic effect of fluconazole, which resulted in a substantial decrease in tissue fungal burden of both C. neoformans and C. albicans in experimental animal models. We believe this work is the first of its kind to demonstrate that diet can dramatically influence the treatment of fungal infections. These results highlight a novel strategy of antifungal drug enhancement and emphasize the need for future investigation into dietary effects on antifungal drug activity.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis , Criptococosis , Cryptococcus neoformans , Dieta Cetogénica , Modelos Animales de Enfermedad , Fluconazol , Animales , Fluconazol/farmacología , Fluconazol/administración & dosificación , Ratones , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/dietoterapia , Candidiasis/microbiología , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Criptococosis/dietoterapia , Criptococosis/prevención & control , Femenino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Pulmón/microbiología , Pulmón/efectos de los fármacos
2.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598688

RESUMEN

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Asunto(s)
Antifúngicos , Candida albicans , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Tetrazoles , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/uso terapéutico , Tetrazoles/farmacología , Tetrazoles/química , Tetrazoles/síntesis química , Tetrazoles/farmacocinética , Tetrazoles/uso terapéutico , Animales , Humanos , Candida albicans/efectos de los fármacos , Ratones , Cryptococcus neoformans/efectos de los fármacos , Relación Estructura-Actividad , Aspergillus fumigatus/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo
3.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589468

RESUMEN

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Animales , Ratones , Humanos , Farmacorresistencia Fúngica Múltiple , Modelos Animales de Enfermedad , Cryptococcus neoformans/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Naftalenos/farmacología , Naftalenos/química , Oxazoles/farmacología , Oxazoles/química , Candida/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología
4.
Int Immunopharmacol ; 132: 111995, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581993

RESUMEN

Elevation of arginase enzyme activity in the lung contributes to the pathogenesis of various chronic inflammatory diseases and infections. Inhibition of arginase expression and activity is able to alleviate those effects. Here, we investigated the immunomodulatory effect of arginase inhibitor in C. neoformans infection. In the pulmonary cryptococcosis model that was shown to recapitulate human infection, we found arginase expression was excessively induced in the lung during the late stage of infection. To inhibit the activity of arginase, we administered a specific arginase inhibitor, nor-NOHA, during C. neoformans infection. Inhibition of arginase reduced eosinophil infiltration and level of IL-13 secretion in the lungs. Whole lung transcriptome RNA-sequencing analysis revealed that treatment with nor-NOHA resulted in shifting the Th2-type gene expression patterns induced by C. neoformans infection to the Th1-type immune profile, with higher expression of cytokines Ifng, Il6, Tnfa, Csf3, chemokines Cxcl9 and Cxcl10 and transcription factor Stat1. More importantly, mice treated with arginase inhibitor had more infiltrating brain leukocytes and enhanced gene expression of Th1-associated cytokines and chemokines that are known to be essential for protection against C. neoformans infection. Inhibition of arginase dramatically attenuated spleen and brain infection, with improved survival. Taken together, these studies demonstrated that inhibiting arginase activity induced by C. neoformans infection can modulate host immune response by enhancing protective type-1 immune response during C. neoformans infection. The inhibition of arginase activity could be an immunomodulatory target to enhance protective anti-cryptococcal immune responses.


Asunto(s)
Arginasa , Arginina/análogos & derivados , Criptococosis , Cryptococcus neoformans , Ratones Endogámicos C57BL , Animales , Arginasa/metabolismo , Arginasa/antagonistas & inhibidores , Arginasa/genética , Criptococosis/inmunología , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/efectos de los fármacos , Ratones , Pulmón/inmunología , Pulmón/patología , Pulmón/efectos de los fármacos , Citocinas/metabolismo , Citocinas/inmunología , Femenino , Modelos Animales de Enfermedad , Enfermedades Pulmonares Fúngicas/inmunología , Enfermedades Pulmonares Fúngicas/tratamiento farmacológico , Humanos , Células Th2/inmunología , Células Th2/efectos de los fármacos , Células TH1/inmunología , Células TH1/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
5.
J Ethnopharmacol ; 330: 118240, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY: The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS: Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS: Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION: Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica Múltiple , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Hojas de la Planta , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Animales , Extractos Vegetales/farmacología , Hojas de la Planta/química , Candida auris/efectos de los fármacos , Candida auris/aislamiento & purificación , Fluconazol/farmacología , Tenebrio , Sinergismo Farmacológico , Brasil , Candida/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos
6.
Diagn Microbiol Infect Dis ; 109(2): 116217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513558

RESUMEN

BACKGROUND: Cryptococcosis is an invasive, opportunistic fungal infection seen especially in human immunodeficiency virus (HIV) infected patients. Cryptococcal meningitis (CM) is the second leading cause of mortality in HIV patients. We report a case of disseminated cryptococcosis presenting with altered mental status in a newly diagnosed HIV infection. METHODS AND RESULTS: A 50-year-old with a short history of altered mental sensorium and a history of low-grade fever and weight loss for few months presented at a tertiary care hospital in North India. He was detected positive for HIV-1. Cryptococcal antigen (CRAG) was positive in Cerebrospinal fluid (CSF), and negative in serum. The fungal culture in CSF was sterile while the fungal blood culture grew Cryptococcus neoformans. The patient was treated with single high-dose Liposomal Amphotericin B (LAmB) therapy followed by Fluconazole and Flucytosine for the next two weeks followed by fluconazole daily for consolidation and maintenance therapy. Antiretroviral therapy (ART) was started 4 weeks after induction therapy. After 6 months, the patient is doing fine. CONCLUSION: Single dose LAmB along with the backbone of fluconazole and flucytosine appears promising in disseminated cryptococcal infection in HIV-infected individuals.


Asunto(s)
Anfotericina B , Antifúngicos , Criptococosis , Cryptococcus neoformans , Flucitosina , Infecciones por VIH , Humanos , Anfotericina B/uso terapéutico , Anfotericina B/administración & dosificación , Masculino , Antifúngicos/uso terapéutico , Antifúngicos/administración & dosificación , Persona de Mediana Edad , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/efectos de los fármacos , Infecciones por VIH/complicaciones , Criptococosis/tratamiento farmacológico , Criptococosis/diagnóstico , Criptococosis/microbiología , Resultado del Tratamiento , Flucitosina/uso terapéutico , Flucitosina/administración & dosificación , Infecciones Oportunistas Relacionadas con el SIDA/tratamiento farmacológico , Infecciones Oportunistas Relacionadas con el SIDA/diagnóstico , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Fluconazol/uso terapéutico , Fluconazol/administración & dosificación , Meningitis Criptocócica/tratamiento farmacológico , Meningitis Criptocócica/diagnóstico , Meningitis Criptocócica/microbiología , India
7.
Int J Antimicrob Agents ; 63(5): 107157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548248

RESUMEN

Cryptococcus neoformans is responsible for over 100 000 deaths annually, and the treatment of this fungal disease is expensive and not consistently effective. Unveiling new therapeutic avenues is crucial. Previous studies have suggested that the anthelmintic drug fenbendazole is an affordable and nontoxic candidate to combat cryptococcosis. However, its mechanism of anticryptococcal activity has been only superficially investigated. In this study, we examined the global cellular response of C. neoformans to fenbendazole using a proteomic approach (data are available via ProteomeXchange with identifier PXD047041). Fenbendazole treatment mostly impacted the abundance of proteins related to metabolic pathways, RNA processing, and intracellular traffic. Protein kinases, in particular, were significantly affected by fenbendazole treatment. Experimental validation of the proteomics data using a collection of C. neoformans mutants led to the identification of critical roles of five protein kinases in fenbendazole's antifungal activity. In fact, mutants lacking the expression of genes encoding Chk1, Tco2, Tco3, Bub1, and Sch9 kinases demonstrated greater resistance to fenbendazole compared to wild-type cells. In combination with the standard antifungal drug amphotericin B, fenbendazole reduced the cryptococcal burden in mice. These findings not only contribute to the elucidation of fenbendazole's mode of action but also support its use in combination therapy with amphotericin B. In conclusion, our data suggest that fenbendazole holds promise for further development as an anticryptococcal agent.


Asunto(s)
Antifúngicos , Criptococosis , Cryptococcus neoformans , Fenbendazol , Proteínas Quinasas , Proteómica , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Antifúngicos/farmacología , Animales , Fenbendazol/farmacología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratones , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Anfotericina B/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica/genética
8.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687052

RESUMEN

Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.


Asunto(s)
Antifúngicos , Biopelículas , Cryptococcus neoformans , Proteínas Fúngicas , Lisofosfolipasa , Macrófagos Alveolares , Própolis , Humanos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Criptococosis/prevención & control , Criptococosis/terapia , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Etanol/química , Proteínas Fúngicas/antagonistas & inhibidores , Liposomas , Enfermedades Pulmonares Fúngicas/prevención & control , Enfermedades Pulmonares Fúngicas/terapia , Lisofosfolipasa/antagonistas & inhibidores , Macrófagos Alveolares/microbiología , Própolis/química , Própolis/farmacología , Virulencia/efectos de los fármacos , Factores de Virulencia/antagonistas & inhibidores , Antifúngicos/química , Antifúngicos/farmacología
9.
Chem Biodivers ; 20(3): e202200539, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36730650

RESUMEN

This is the first study that describes the antifungal and anti-biofilm potential of O-alkylamidoximes against strains of Cryptococcus neoformans and Cryptococcus gattii. In vitro tests have shown that O-alkylamidoximes are capable of inhibiting fungal growth and biofilm formation of the C. neoformans and C. gattii strains, suggesting, from molecular docking, the potential for interaction with the Hsp90. The associations between O-alkylamidoximes and amphotericin B were beneficial. Therefore, O-alkylamidoximes can be a useful alternative to contribute to the limited arsenal of drugs, since they showed a powerful action against the primary agents of Cryptococcosis.


Asunto(s)
Antifúngicos , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Oximas , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus gattii/efectos de los fármacos , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oximas/química , Oximas/farmacología
10.
Antimicrob Agents Chemother ; 67(3): e0075922, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36815840

RESUMEN

Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 µg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Animales , Antifúngicos/uso terapéutico , Cryptococcus neoformans/efectos de los fármacos , Larva/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Factores de Virulencia/metabolismo
11.
Microbiol Spectr ; 10(5): e0086222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036637

RESUMEN

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.


Asunto(s)
Antifúngicos , Bleomicina , Cryptococcus neoformans , Antifúngicos/farmacología , Antineoplásicos/farmacología , Bleomicina/farmacología , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Citidina Difosfato Diglicéridos/metabolismo , Etanolaminas/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo
12.
Microbiol Spectr ; 10(3): e0060122, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35471056

RESUMEN

There is an urgent unmet need for novel antifungals. In this study, we searched for novel antifungal activities in the Pandemic Response Box, a collection of 400 structurally diverse compounds in various phases of drug discovery. We identified five molecules which could control the growth of Cryptococcus neoformans, Cryptococcus deuterogattii, and the emerging global threat Candida auris. After eliminating compounds which demonstrated paradoxical antifungal effects or toxicity to mammalian macrophages, we selected compound MMV1593537 as a nontoxic, fungicidal molecule for further characterization of antifungal activity. Scanning electron microscopy revealed that MMV1593537 affected cellular division in all three pathogens. In Cryptococcus, MMV1593537 caused a reduction in capsular dimensions. Treatment with MMV1593537 resulted in increased detection of cell wall chitooligomers in these three species. Since chitooligomers are products of the enzymatic hydrolysis of chitin, we investigated whether surface chitinase activity was altered in response to MMV1593537 exposure. We observed peaks of enzyme activity in C. neoformans and C. deuterogattii in response to MMV1593537. We did not detect any surface chitinase activity in C. auris. Our results suggest that MMV1593537 is a promising, nontoxic fungicide whose mechanism of action, at least in Cryptococcus spp, requires chitinase-mediated hydrolysis of chitin. IMPORTANCE The development of novel antifungals is a matter of urgency. In this study, we evaluated antifungal activities in a collection of 400 molecules, using highly lethal fungal pathogens as targets. One of these molecules, namely, MMV1593537, was not toxic to host cells and controlled the growth of isolates of Cryptococcus neoformans, C. deuterogattii, C. gattii, Candida auris, C. albicans, C. parapsilosis, and C. krusei. We tested the mechanisms of antifungal action of MMV1593537 in the Cryptococcus and C. auris models and concluded that the compound affects the cell wall, a structure which is essential for fungal life. At least in Cryptococcus, this effect involved chitinase, an enzyme which is required for remodeling the cell wall. Our results suggest that MMV1593537 is a candidate for future antifungal development.


Asunto(s)
Antifúngicos , Candida auris , Quitinasas , Cryptococcus gattii , Cryptococcus neoformans , Animales , Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Pared Celular , Quitina , Quitinasas/metabolismo , Cryptococcus gattii/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Macrófagos , Pruebas de Sensibilidad Microbiana
13.
Mar Drugs ; 20(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35323494

RESUMEN

Six new ß-resorcylic acid derivatives (1-5 and 7) were isolated from a halophyte-associated fungus, Colletotrichum gloeosporioides JS0419, together with four previously reported ß-resorcylic acid lactones (RALs). The relative and absolute stereochemistry of 1 was completely established by a combination of spectroscopic data and chemical reactions. The structures of the isolated compounds were elucidated by analysis of HRMS and NMR data. Notably, compounds 1-3 had a ß-resorcylic acid harboring a long unesterified aliphatic side chain, whereas the long aliphatic chains were esterified to form macrolactones in 4-9. Among the isolated compounds, monocillin I and radicicol showed potent antifungal activities against Cryptococcus neoformans, comparable to clinically available antifungal agents and radicicol showed weak antifungal activity against Candida albicans. These findings provide insight into the chemical diversity of fungal RAL-type compounds and their pharmacological potential.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Chenopodiaceae/microbiología , Colletotrichum/química , Cryptococcus neoformans/efectos de los fármacos , Hidroxibenzoatos/farmacología , Plantas Tolerantes a la Sal/microbiología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Candida albicans/crecimiento & desarrollo , Cryptococcus neoformans/crecimiento & desarrollo , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Estructura Molecular , Estereoisomerismo
14.
J Med Chem ; 65(3): 2532-2547, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35073076

RESUMEN

Currently, cancer patients with microbial infection are a severe challenge in clinical treatment. To address the problem, we synthesized hemiprotonic compounds based on the unique structure of hemiprotonic nucleotide base pairs in a DNA i-motif. These compounds were produced from phenanthroline (ph) dimerization with phenanthroline as a proton receptor and ammonium as a donor. The biological activity shows that the compounds have a selective antitumor effect through inducing cell apoptosis. The molecular mechanism could be related to specific inhibition of transcription factor PLAGL2 of tumor cells, assessed by transcriptomic analysis. Moreover, results show that the hemiprotonic ph-ph+ has broad-spectrum antibacterial and antifungal activities, and drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, are sensitive to the compound. In animal models of liver cancer with fungal infection, the ph-ph+ retards proliferation of hepatoma cells in tumor-bearing mice and remedies pneumonia and encephalitis caused by Cryptococcus neoformans. The study provides a novel therapeutic candidate for cancer patients accompanied by infection.


Asunto(s)
Antiinfecciosos/uso terapéutico , Antineoplásicos/uso terapéutico , Encefalitis/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Fenantrolinas/uso terapéutico , Neumonía/tratamiento farmacológico , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/toxicidad , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/toxicidad , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Encefalitis/complicaciones , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Neoplasias/complicaciones , Fenantrolinas/síntesis química , Fenantrolinas/farmacología , Fenantrolinas/toxicidad , Neumonía/complicaciones , Protones , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
15.
Microbiol Spectr ; 10(1): e0082621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019693

RESUMEN

Infection of Cryptococcus neoformans is one of the leading causes of morbidity and mortality, particularly among immunocompromised patients. However, currently available drugs for the treatment of C. neoformans infection are minimal. Here, we report SP1, a peptide derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Saccharomyces cerevisiae, efficiently kills C. neoformans and Cryptococcus gattii. SP1 causes damages to the capsule. Unlike many antimicrobial peptides, SP1 does not form pores on the cell membrane of C. neoformans. It interacts with membrane ergosterol and enters vacuole possibly through membrane trafficking. C. neoformans treated with SP1 show the apoptotic phenotypes such as imbalance of calcium ion homeostasis, reactive oxygen increment, phosphatidylserine exposure, and nuclear fragmentation. Our data imply that SP1 has the potential to be developed into a treatment option for cryptococcosis. IMPORTANCE Cryptococcus neoformans and Cryptococcus gattii can cause cryptococcosis, which has a high mortality rate. To treat the disease, amphotericin B and fluconazole are often used in clinic. However, amphotericin B has rather high renal toxicity, and tolerance to these drugs are quicky developed. The peptide SP1 derived from baker's yeast GAPDH shows antifungal function to kill Cryptococcus neoformans and Cryptococcus gattii efficiently with a high specificity, even for the drug-resistant strains. Our data demonstrate that SP1 induces the apoptosis-like death of Cryptococcus neoformans at low concentrations. The finding of this peptide may shed light on a new direction to treat cryptococcosis.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Péptidos/farmacología , Saccharomyces cerevisiae/química , Antifúngicos/química , Antifúngicos/metabolismo , Criptococosis/microbiología , Farmacorresistencia Fúngica , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/química , Péptidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Sci Rep ; 12(1): 208, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996910

RESUMEN

There is limited research into Invasive fungal disease (IFD) in children with no underlying disease. We undertook a retrospective study of children with IFD who did not suffer from another underlying disease, from June 2010 to March 2018 in Changsha, China. Nine children were identified. Eosinophil counts were elevated in six cases. The level of procalcitonin (PCT) was elevated in six cases. Fungal culture was positive in all patients, including eight cases of Cryptococcus neoformans and one case of Candida parapsilosis. 8.33 days following antifungal treatment, the body temperature of the eight patients affected by cryptococcal disease had returned to normal. Our study indicates that the primary pathogen in IFD was Cryptococcus neoformans in children who had no other underlying disease. Eosinophils can be considered to be indicators of cryptococcal infection. IFD in children with no other underlying disease has a satisfactory prognosis.


Asunto(s)
Candida parapsilosis/aislamiento & purificación , Candidiasis/microbiología , Criptococosis/microbiología , Cryptococcus neoformans/aislamiento & purificación , Infecciones Fúngicas Invasoras/microbiología , Adolescente , Antifúngicos/uso terapéutico , Biomarcadores/sangre , Candida parapsilosis/efectos de los fármacos , Candidiasis/sangre , Candidiasis/diagnóstico , Candidiasis/tratamiento farmacológico , Niño , Preescolar , China , Criptococosis/sangre , Criptococosis/diagnóstico , Criptococosis/tratamiento farmacológico , Cryptococcus neoformans/efectos de los fármacos , Eosinófilos/microbiología , Femenino , Humanos , Infecciones Fúngicas Invasoras/sangre , Infecciones Fúngicas Invasoras/diagnóstico , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Recuento de Leucocitos , Masculino , Valor Predictivo de las Pruebas , Polipéptido alfa Relacionado con Calcitonina/sangre , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento
17.
Eur J Med Chem ; 227: 113955, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34749201

RESUMEN

5-phenylthiophene derivatives exhibited excellent antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. However, optimal compound 7 was inactive against Aspergillus fumigatus and unstable in human liver microsomes in vitro with a half-life of 18.6 min. To discover antifungal agents with a broad spectrum and improve the metabolic properties of the compounds, the scaffold hopping strategy was adopted and a series of 4-phenyl-4,5-dihydrooxazole derivatives were designed and synthesized. It was especially encouraging that compound 22a displayed significant antifungal activities against eight susceptible strains and seven FLC-resistant strains. Furthermore, the potent compound 22a could prevent the formation of fungalbiofilms and displayed satisfactory fungicidal activity. In addition, the metabolic stability of compound 22a was improved significantly, with the half-life of 70.5 min. Compound 22a was almost nontoxic to mammalian A549, MCF-7, HepG2, and 293T cells. Moreover, pharmacokinetic studies in SD rats showed that compound 22a exhibited pharmacokinetic properties with a bioavailability of 15.22% and a half-life of 4.44 h, indicating that compound 22a is worthy of further study.


Asunto(s)
Antifúngicos/farmacología , Diseño de Fármacos , Fungicidas Industriales/farmacología , Oxazoles/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Candida tropicalis/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/efectos de los fármacos , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Relación Estructura-Actividad
18.
Eur J Med Chem ; 228: 113987, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34801270

RESUMEN

To discover antifungal compounds with broad-spectrum and stable metabolism, a series of 2-(benzo[b]thiophen-2-yl)-4-phenyl-4,5-dihydrooxazole derivatives was designed and synthesized. Compounds A30-A34 exhibited excellent broad-spectrum antifungal activity against Candida albicans with MIC values in the range of 0.03-0.5 µg/mL, and against Cryptococcus neoformans and Aspergillus fumigatus with MIC values in the range of 0.25-2 µg/mL. In addition, compounds A31 and A33 showed high metabolic stability in human liver microsomes in vitro, with the half-life of 80.5 min and 69.4 min, respectively. Moreover, compounds A31 and A33 showed weak or almost no inhibitory effect on the CYP3A4 and CYP2D6. The pharmacokinetic evaluation in SD rats showed that compound A31 had suitable pharmacokinetic properties and was worthy of further study.


Asunto(s)
Antifúngicos/farmacología , Diseño de Fármacos , Oxazoles/farmacología , Tiofenos/farmacología , Animales , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Oxazoles/síntesis química , Oxazoles/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
19.
J Colloid Interface Sci ; 608(Pt 1): 193-206, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626966

RESUMEN

HYPOTHESIS: The widespread and prolonged use of antifungal antibiotics has led to the rapid emergence of multidrug resistant Candida species that compromise current treatments. Natural and synthetic antimicrobial peptides (AMPs) offer potential alternatives but require further development to overcome some of their current drawbacks. AMPs kill pathogenic fungi by permeabilising their membranes but it remains unclear how AMPs can be designed to maximise their antifungal potency whilst minimising their toxicity to host cells. EXPERIMENTS: We have designed a group of short (IIKK)3 AMPs via selective terminal modifications ending up with different amphiphilicities. Their antifungal performance was assessed by minimum inhibition concentration (MICs) and dynamic killing to 4 Candida strains and Cryptococcus neoformans, and the minimum biofilm-eradicating concentrations to kill 95% of the C. albicans biofilms (BEC95). Different antifungal actions were interpreted on the basis of structural disruptions of the AMPs to small unilamellar vesicles from fluorescence leakage, Zeta potential, small angle neutron scattering (SANS) and molecular dynamics simulations (MD). FINDING: AMPs possess high antifungal activities against the Candida species and Cryptococcus neoformans; some of them displayed faster dynamic killing than antibiotics like amphotericin B. G(IIKK)3I-NH2 and (IIKK)3II-NH2 were particularly potent against not only planktonic microbes but also fungal biofilms with low cytotoxicity to host cells. It was found that their high selectivity and fast action were well correlated to their fast membrane lysis, evident from data measured from Zeta potential measurements, SANS and MD, and also consistent with the previously observed antibacterial and anticancer performance. These studies demonstrate the important role of colloid and interface science in further developing short, potent and biocompatible AMPs towards clinical treatments via structure design and optimization.


Asunto(s)
Antifúngicos , Péptidos Antimicrobianos , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Antifúngicos/farmacología , Péptidos Antimicrobianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Péptidos
20.
Med Sci Monit ; 27: e933688, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34907150

RESUMEN

BACKGROUND Cryptococcal meningitis (CM) is one of the most common opportunistic neuroinfections in patients with HIV. Most studies have focused on non-HIV CM and there are only a few studies on HIV CM in China. The purpose of the present study was to evaluate the characteristics and risk factors for CM recurrence in patients infected with HIV in the Chongqing Public Health Treatment Center in China. MATERIAL AND METHODS From January 2014 to December 2017, all patients with CM aged 18 years or older were enrolled and a case-control study was performed to determine the risk factors associated with recurrence of CM. Antimicrobial susceptibility was determined with a fungal drug sensitivity kit and the sequence types (STs) were analyzed with multilocus sequence typing. RESULTS The incidence of CM in the 5185 HIV-infected patients was 3.5% (179). Follow-up data were available for 82 of the patients for whom complete medical records were available and they were included in the present study. There were 7 STs among 82 Cryptococcus neoformans isolates; ST5 and ST31 were the most prevalent genotypes. Testing showed that C. neoformans had high sensitivity to 5 antifungal drugs and no differences in resistance were observed, even when different STs were tested. Risk factors for recurrence were analyzed in 69 patients, excluding those who died. The results of multivariate analysis showed that only hospital stay was associated with recurrence of CM. CONCLUSIONS Our results indicated that combining education about medication with clinical treatment could help prevent recurrence of CM.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/etiología , Meningitis Criptocócica/etiología , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Adulto , Antifúngicos/uso terapéutico , Estudios de Casos y Controles , China , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Femenino , Humanos , Masculino , Meningitis Criptocócica/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Tipificación de Secuencias Multilocus , Recurrencia , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...