Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Environ Int ; 172: 107732, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36680803

RESUMEN

Desert dust is increasingly recognized as a major air pollutant affecting respiratory health. Since desert dust exposure cannot be regulated, the hazardousness of its components must be understood to enable health risk mitigation strategies. Saharan dust (SD) comprises about half of the global desert dust and contains quartz, a toxic mineral dust that is known to cause severe lung diseases via oxidative stress and activation of the NLRP3 inflammasome-interleukin-1ß pathway. We aimed to assess the physicochemical and microbial characteristics of SD responsible for toxic effects. Also, we studied the oxidative and pro-inflammatory potential of SD in alveolar epithelial cells and the activation of the NLRP3 inflammasome in macrophage-like cells in comparison to quartz dusts and synthetic amorphous silica (SAS). Characterization revealed that SD contained Fe, Al, trace metals, sulfate, diatomaceous earth, and endotoxin and had the capacity to generate hydroxyl radicals. We exposed A549 lung epithelial cells and wild-type and NLRP3-/- THP-1 macrophage-like cells to SD, three well-investigated quartz dusts, and SAS. SD induced oxidative stress in A549 cells after 24 h more potently than the quartz dusts. The quartz dusts and SAS upregulated interleukin 8 expression after 4 h and 24 h while SD only caused a transient upregulation. SD, the quartz dusts, and SAS induced interleukin-1ß release from wild-type THP-1 cells>20-fold stronger than from NLRP3-/- THP-1 cells. Interleukin-1ß release was lower for SD, in which microbial components including endotoxin were heat-destructed. In conclusion, microbial components in SD are pivotal for its toxicity. In the epithelium, the effects of SD contrasted with crystalline and amorphous silica in terms of potency and persistence. In macrophages, the strong involvement of the NLRP3 inflammasome emphasizes the acute and chronic health risks associated with desert dust exposure.


Asunto(s)
Polvo , Cuarzo , Citocinas/metabolismo , Endotoxinas , Inflamasomas/metabolismo , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Cuarzo/toxicidad , Dióxido de Silicio/toxicidad , Humanos , Células A549
2.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35887123

RESUMEN

In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.


Asunto(s)
Pulmón , Cuarzo , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Pulmón/metabolismo , Cuarzo/toxicidad
3.
Part Fibre Toxicol ; 19(1): 46, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794670

RESUMEN

BACKGROUND: Respirable mineral particles represent a potential health hazard in occupational settings and ambient air. Previous studies show that mineral particles may induce cytotoxicity and inflammatory reactions in vitro and in vivo and that the potency varies between samples of different composition. However, the reason for these differences is largely unknown and the impact of mineralogical composition on the biological effects of mineral dust remains to be determined. METHODS: We have assessed the cytotoxic and pro-inflammatory effects of ten mineral particle samples of different composition in human bronchial epithelial cells (HBEC3-KT) and THP-1-derived macrophages, as well as their membranolytic properties in erythrocytes. Moreover, the results were compiled with the results of recently published experiments on the effects of stone particle exposure and analysed using linear regression models to elucidate which mineral components contribute most to the toxicity of mineral dust. RESULTS: While all mineral particle samples were more cytotoxic to HBEC3-KT cells than THP-1 macrophages, biotite and quartz were among the most cytotoxic in both cell models. In HBEC3-KT cells, biotite and quartz also appeared to be the most potent inducers of pro-inflammatory cytokines, while the quartz, Ca-feldspar, Na-feldspar and biotite samples were the most potent in THP-1 macrophages. All particle samples except quartz induced low levels of membranolysis. The regression analyses revealed associations between particle bioactivity and the content of quartz, muscovite, plagioclase, biotite, anorthite, albite, microcline, calcite, chlorite, orthopyroxene, actinolite and epidote, depending on the cell model and endpoint. However, muscovite was the only mineral consistently associated with increased cytotoxicity and cytokine release in both cell models. CONCLUSIONS: The present study provides further evidence that mineral particles may induce cytotoxicity and inflammation in cells of the human airways and that particle samples of different mineralogical composition differ in potency. The results show that quartz, while being among the most potent samples, does not fully predict the toxicity of mineral dust, highlighting the importance of other particle constituents. Moreover, the results indicate that the phyllosilicates muscovite and biotite may be more potent than other minerals assessed in the study, suggesting that this group of sheet-like minerals may warrant further attention.


Asunto(s)
Polvo , Cuarzo , Citocinas , Polvo/análisis , Células Epiteliales , Humanos , Inflamación/inducido químicamente , Minerales/toxicidad , Cuarzo/toxicidad
4.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742856

RESUMEN

The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.


Asunto(s)
Interleucina-8 , Cuarzo , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Células Epiteliales/metabolismo , Interleucina-8/metabolismo , Pulmón/metabolismo , Cuarzo/toxicidad
5.
Scand J Work Environ Health ; 48(5): 410-418, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35312016

RESUMEN

OBJECTIVE: Stone minerals are a partially ignored environmental challenge but a significant contributor to urban air pollution. We examined if short-term exposure to two stone minerals - quartz diorite and rhomb porphyry - commonly used in asphalt pavement would affect lung function, promote pulmonary inflammation, and affect bronchial reactivity differently. METHODS: Our randomized crossover study included 24 healthy, non-smoking young adults exposed to the stone minerals quartz diorite, rhomb porphyry, and control dust (lactose). Exposure occurred in an exposure chamber, in three separate 4-hour exposure sessions. Fractional exhaled nitric oxide (FeNO) and lung function were monitored before exposure, then immediately following exposure, and 4 and 24 hours after exposure. In addition, methacholine was administered 4 hours following exposure, and exhaled breath condensate (EBC) was collected before exposure, then immediately and 4 hours after exposure. EBC was analyzed for pH, thiobarbituric acid reactive substances (TBARS), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), IL-10, P-Selectin, surfactant protein D (SP-D), and tumor necrosis factor-α (TNF-α). RESULTS: Our results showed significantly elevated concentrations of FeNO after exposure to quartz diorite compared to rhomb porphyry, suggesting that quartz diorite is more likely to trigger pulmonary inflammation after short-term exposure. Moreover, short-term exposure to rhomb porphyry was associated with a modest but statistically significant decline in forced vital capacity (FVC) compared to quartz diorite. CONCLUSION: These results emphasize that using stone material in asphalt road construction should be reconsidered as it may affect lung inflammation and lung function in exposed subjects.


Asunto(s)
Neumonía , Cuarzo , Estudios Cruzados , Humanos , Hidrocarburos , Pulmón , Cuarzo/toxicidad , Adulto Joven
6.
Inhal Toxicol ; 34(3-4): 51-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294311

RESUMEN

Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.


Asunto(s)
Polvo , Enfermedades Pulmonares , Animales , Biomarcadores , Polvo/análisis , Enfermedades Pulmonares/inducido químicamente , Luna , Oxidantes/toxicidad , Cuarzo/toxicidad , Ratas , Dióxido de Silicio/toxicidad , Titanio
7.
Part Fibre Toxicol ; 18(1): 18, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957952

RESUMEN

BACKGROUND: Respirable stone- and mineral particles may be a major constituent in occupational and ambient air pollution and represent a possible health hazard. However, with exception of quartz and asbestos, little is known about the toxic properties of mineral particles. In the present study, the pro-inflammatory and cytotoxic responses to six stone particle samples of different composition and with diameter below 10 µm were assessed in human bronchial epithelial cells (HBEC3-KT), THP-1 macrophages and a HBEC3-KT/THP-1 co-culture. Moreover, particle-induced lysis of human erythrocytes was assessed to determine the ability of the particles to lyse biological membranes. Finally, the role of the NLRP3 inflammasome was assessed using a NLRP3-specific inhibitor and detection of ASC oligomers and cleaved caspase-1 and IL-1ß. A reference sample of pure α-quartz was included for comparison. RESULTS: Several stone particle samples induced a concentration-dependent increase in cytotoxicity and secretion of the pro-inflammatory cytokines CXCL8, IL-1α, IL-1ß and TNFα. In HBEC3-KT, quartzite and anorthosite were the most cytotoxic stone particle samples and induced the highest levels of cytokines. Quartzite and anorthosite were also the most cytotoxic samples in THP-1 macrophages, while anorthosite and hornfels induced the highest cytokine responses. In comparison, few significant differences between particle samples were detected in the co-culture. Adjusting responses for differences in surface area concentrations did not fully account for the differences between particle samples. Moreover, the stone particles had low hemolytic potential, indicating that the effects were not driven by membrane lysis. Pre-incubation with a NLRP3-specific inhibitor reduced stone particle-induced cytokine responses in THP-1 macrophages, but not in HBEC3-KT cells, suggesting that the effects are mediated through different mechanisms in epithelial cells and macrophages. Particle exposure also induced an increase in ASC oligomers and cleaved caspase-1 and IL-1ß in THP-1 macrophages, confirming the involvement of the NLRP3 inflammasome. CONCLUSIONS: The present study indicates that stone particles induce cytotoxicity and pro-inflammatory responses in human bronchial epithelial cells and macrophages, acting through NLRP3-independent and -dependent mechanisms, respectively. Moreover, some particle samples induced cytotoxicity and cytokine release to a similar or greater extent than α-quartz. Thus, these minerals warrant further attention in future research.


Asunto(s)
Inflamasomas , Macrófagos , Material Particulado/toxicidad , Caspasa 1 , Citocinas , Humanos , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Cuarzo/toxicidad
8.
Artículo en Chino | MEDLINE | ID: mdl-33691377

RESUMEN

Artificial quartz stone is a new type of decorative building material, there are serious dust exposure hazards during the production and processing. Due to the lack of effective health protection for practitioners, silicosis caused by artificial quartz stone dust has been widely reported worldwide in recent years, which seriously affect the health of practitioners. This article summarizes the use status of artificial quartz stone, the exposure of practitioners and the lung tissue damage caused by dust, analyzes its pathogenic characteristics, and provides a basis for protecting the occupational population and improving occupational health.


Asunto(s)
Exposición Profesional , Silicosis , Polvo , Humanos , Pulmón , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Cuarzo/toxicidad , Dióxido de Silicio , Silicosis/etiología
9.
Proc Natl Acad Sci U S A ; 117(45): 27836-27846, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097669

RESUMEN

Inhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive. Here, we have identified a unique subfamily of silanols as the major determinant of silica particle toxicity. This population of "nearly free silanols" (NFS) appears on the surface of quartz particles upon fracture and can be modulated by thermal treatments. Density functional theory calculations indicates that NFS locate at an intersilanol distance of 4.00 to 6.00 Å and form weak mutual interactions. Thus, NFS could act as an energetically favorable moiety at the surface of silica for establishing interactions with cell membrane components to initiate toxicity. With ad hoc prepared model quartz particles enriched or depleted in NFS, we demonstrate that NFS drive toxicity, including membranolysis, in vitro proinflammatory activity, and lung inflammation. The toxic activity of NFS is confirmed with pyrogenic and vitreous amorphous silica particles, and industrial quartz samples with noncontrolled surfaces. Our results identify the missing key molecular moieties of the silica surface that initiate interactions with cell membranes, leading to pathological outcomes. NFS may explain other important interfacial processes involving silica particles.


Asunto(s)
Silanos/química , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Membrana Celular , Cristalización , Polvo , Tamaño de la Partícula , Cuarzo/química , Cuarzo/toxicidad , Propiedades de Superficie
10.
Sci Rep ; 10(1): 15700, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973288

RESUMEN

Quartz can increase oxidative stress, lipid peroxidation, and inflammation. The objective of this study was to explore the volatile biomarkers of quartz-induced lung injury using a lung alveolar cell model. We exposed the human alveolar A549 cell line to 0, 200, and 500 µg/mL quartz particles for 24 h and used gas chromatography-mass spectrometry to measure the volatile metabolites in the headspace air of cells. We identified ten volatile metabolites that had concentration-response relationships with particles exposure, including 1,2,4-oxadiazole, 5-(4-nitrophenyl)-3-phenyl- (CAS: 28825-12-9), 2,6-dimethyl-6-trifluoroacetoxyoctane (CAS: 61986-67-2), 3-buten-1-amine, N,N-dimethyl- (CAS: 55831-89-5), 2-propanol, 2-methyl- (CAS: 75-65-0), glycolaldehyde dimethyl acetal (CAS: 30934-97-5), propanoic acid, 2-oxo-, ethyl ester (CAS: 617-35-6), octane (CAS: 111-65-9), octane, 3,3-dimethyl- (CAS: 4110-44-5), heptane, 2,3-dimethyl- (CAS: 3074-71-3) and ethanedioic acid, bis(trimethylsilyl) ester (CAS: 18294-04-7). The volatile biomarkers are generated through the pathways of propanoate and nitrogen metabolism. The volatile biomarkers of the alkanes and methylated alkanes are related to oxidative and lipid peroxidation of the cell membrane. The lung alveolar cell model has the potential to explore the volatile biomarkers of particulate-induced lung injury.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Lesión Pulmonar/metabolismo , Material Particulado/toxicidad , Cuarzo/toxicidad , Compuestos Orgánicos Volátiles/metabolismo , Células A549 , Células Epiteliales Alveolares/metabolismo , Biomarcadores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos
11.
Part Fibre Toxicol ; 17(1): 20, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498698

RESUMEN

BACKGROUND: Talc, a hydrous magnesium silicate, often used for genital hygiene purposes, is associated with ovarian carcinoma in case-control studies. Its potential to cause inflammation, injury, and functional changes in cells has been described. A complication of such studies is that talc preparations may be contaminated with other materials. A previous study by (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) used a hamster model to study talc and granite dust exposure effects on various biochemical and cellular inflammatory markers. Our current study accessed key materials used in that 1987 study; we re-analyzed the original talc dust with contemporary scanning electron microscopy and energy dispersive x-ray analysis (SEM/EDX) for contaminants. We also examined the original bronchoalveolar lavage (BAL) cells with polarized light microscopy to quantify cell-associated birefringent particles to gain insight into the talc used. RESULTS: SEM/EDX analyses showed that asbestos fibers, quartz, and toxic metal particulates were below the limits of detection in the original talc powder. However, fibers with aspect ratios ≥3:1 accounted for 22% of instilled material, mostly as fibrous talc. Talc (based on Mg/Si atomic weight % ratio) was the most abundant chemical signature, and magnesium silicates with various other elements made up the remainder. BAL cell counts confirmed the presence of acute inflammation, which followed intratracheal instillation. Measurements of cell associated birefringent particles phagocytosis revealed significant differences among talc, granite, and control exposures with high initial uptake of talc compared to granite, but over the 14-day experiment, talc phagocytosis by lavaged cells was significantly less than that of granite. Phagocytosis of talc fibers by macrophages was observed, and birefringent particles were found in macrophages, neutrophils, and multinucleate giant cells in lavaged cells from talc-exposed animals. CONCLUSION: Our data support the contention that talc, even without asbestos and other known toxic contaminants, may elicit inflammation and contribute to lung disease. Our findings support the conclusions of (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) study. By analyzing particulate exposures with polarized light microscopy and SEM/EDX, fibrous talc was identified and a distinctive pattern of impaired particulate ingestion was demonstrated.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Silicatos de Magnesio/toxicidad , Neutrófilos/efectos de los fármacos , Talco/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Cricetinae , Polvo , Exposición por Inhalación/análisis , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Silicatos de Magnesio/química , Silicatos de Magnesio/farmacocinética , Masculino , Microscopía Electrónica de Rastreo , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Tamaño de la Partícula , Cuarzo/química , Cuarzo/farmacocinética , Cuarzo/toxicidad , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/toxicidad , Espectrometría por Rayos X , Propiedades de Superficie , Talco/química , Talco/farmacocinética
12.
Arch Toxicol ; 94(9): 2981-2995, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592078

RESUMEN

The pathogenicity of quartz involves lysosomal alteration in alveolar macrophages. This event triggers the inflammatory cascade that may lead to quartz-induced silicosis and eventually lung cancer. Experiments with synthetic quartz crystals recently showed that quartz dust is cytotoxic only when the atomic order of the crystal surfaces is upset by fracturing. Cytotoxicity was not observed when quartz had as-grown, unfractured surfaces. These findings raised questions on the potential impact of quartz surfaces on the phagolysosomal membrane upon internalization of the particles by macrophages. To gain insights on the surface-induced cytotoxicity of quartz, as-grown and fractured quartz particles in respirable size differing only in surface properties related to fracturing were prepared and physico-chemically characterized. Synthetic quartz particles were compared to a well-known toxic commercial quartz dust. Membranolysis was assessed on red blood cells, and quartz uptake, cell viability and effects on lysosomes were assessed on human PMA-differentiated THP-1 macrophages, upon exposing cells to increasing concentrations of quartz particles (10-250 µg/ml). All quartz samples were internalized, but only fractured quartz elicited cytotoxicity and phagolysosomal alterations. These effects were blunted when uptake was suppressed by incubating macrophages with particles at 4 °C. Membranolysis, but not cytotoxicity, was quenched when fractured quartz was incubated with cells in protein-supplemented medium. We propose that, upon internalization, the phagolysosome environment rapidly removes serum proteins from the quartz surface, restoring quartz membranolytic activity in the phagolysosomes. Our findings indicate that the cytotoxic activity of fractured quartz is elicited by promoting phagolysosomal membrane alteration.


Asunto(s)
Macrófagos Alveolares/efectos de los fármacos , Material Particulado/toxicidad , Cuarzo/toxicidad , Supervivencia Celular , Células Cultivadas , Polvo , Humanos , Macrófagos , Fagosomas , Propiedades de Superficie
13.
Med Lav ; 111(2): 99-106, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32352423

RESUMEN

INTRODUCTION: Outbreaks of silicosis have bene recently reported in artificial stone workers. AIM: To describe the features of silicosis in quartz conglomerate workers in North-Eastern Italy. METHODS: Active search of pneumoconiosis was performed in 11 companies of North-Eastern Italy involved in the fabrication of quartz conglomerate countertops. Occupational history, lung function tests, chest X-ray and high resolution computed tomography (HRCT) were performed. In selected cases, trans-bronchial biopsies were taken for histological evaluation and identification of silica crystals in the tissue. Cumulative exposure to crystalline silica was estimated. RESULTS: We recruited 45 workers and 24 cases of silicosis were diagnosed. Mean age at diagnosis was 43 years and duration of exposure to quartz conglomerate dust was 3.5 to 20 years. The average silica cumulative exposure was 4.3 mg/m3/y. Abnormal findings were detected in 42% of chest X-rays, in 33% of spirometry and 50% of carbon monoxide lung diffusion (DLco). HRCTs were abnormal in all cases showing well-defined rounded opacities, irregular/linear intralobular opacities and bilateral enlarged mediastinal lymph-nodes. Histological findings consistent with silicosis were observed in 24 cases. Numerous silica particles (diameter 0.1-5 µm) were identified in lung tissue. CONCLUSIONS: We reported an unexpected high incidence of silicosis in Italian workers exposed to quartz conglomerate dust. The results suggest that chest HRCT is indicated for screening of workers with high exposure to silica and DLco should be added to spirometry in health surveillance. More rigorous application of safety regulations and more effective preventive interventions at work are necessary.


Asunto(s)
Exposición Profesional , Neumoconiosis , Cuarzo , Silicosis , Adulto , Polvo , Humanos , Italia , Cuarzo/toxicidad , Dióxido de Silicio
14.
Part Fibre Toxicol ; 17(1): 13, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316988

RESUMEN

BACKGROUND: Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS: Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1ß (IL-1ß) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS: Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/ß released from the apical epithelial cells and macrophages.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Células A549 , Células Epiteliales Alveolares/inmunología , Técnicas de Cocultivo , Citocinas/genética , Relación Dosis-Respuesta a Droga , Expresión Génica/inmunología , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Alveolares/inmunología , Modelos Biológicos , Tamaño de la Partícula , Cuarzo/toxicidad , Células THP-1
15.
Toxicol Pathol ; 48(3): 446-464, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32162596

RESUMEN

Following inhalation and deposition in the alveolar region at sufficient dose, biopersistent (nano)materials generally provoke pulmonary inflammation. Alveolar macrophages (AMs) are mediators of pulmonary immune responses and were broadly categorized in pro-inflammatory M1 and anti-inflammatory M2 macrophages. This study aimed at identifying AM phenotype as M1 or M2 upon short-term inhalation exposure to different (nano)materials followed by a postexposure period. Phenotyping of AM was retrospectively performed using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+ArgI+) AMs were characterized in formalin-fixed, paraffin-embedded lung tissue of rats exposed for 6 hours/day for 5 days to air, 100 mg/m3 nano-TiO2, 25 mg/m3 nano-CeO2, 32 mg/m3 multiwalled carbon nanotubes, or 100 mg/m3 micron-sized quartz. During acute inflammation, relative numbers of M1 AMs were markedly increased, whereas relative numbers of M2 were generally decreased compared to control. Following an exposure-free period, changes in iNOS or CD206 expression correlated with persistence, regression, or progression of inflammation, suggesting a role of M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM subpopulations with qualitatively distinct histopathological findings caused by different (nano)materials was found. A more detailed understanding of the processes underlaying these morphological changes is needed to identify biomarkers for different histopathological outcomes.


Asunto(s)
Macrófagos Alveolares/inmunología , Nanoestructuras/toxicidad , Neumonía/inducido químicamente , Neumonía/inmunología , Administración por Inhalación , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Cerio/toxicidad , Masculino , Nanotubos de Carbono/toxicidad , Cuarzo/toxicidad , Ratas , Ratas Wistar , Estudios Retrospectivos , Titanio/toxicidad
16.
Arch. bronconeumol. (Ed. impr.) ; 55(9): 459-464, sept. 2019. ilus, tab
Artículo en Español | IBECS | ID: ibc-186155

RESUMEN

Introducción: La silicosis es una enfermedad crónica progresiva producida por la inhalación de sílice cristalina. La mayoría de los casos aparecen en trabajadores de minería de interior y extracción de piedra natural (pizarra, granito). Ante la progresiva aparición de nuevos casos de silicosis en trabajadores con conglomerados artificiales de cuarzo (CAC), se planteó un estudio que tuvo como objetivo analizar las características de la silicosis producida por un nuevo agente en España. Métodos: El estudio consistió en una serie de 96 casos diagnosticados de silicosis según criterios internacionales durante el periodo comprendido entre 2010 y 2017. Se analizaron las características clínicas, radiológicas, funcionales y patológicas. Resultados: La edad media fue de 45 años, el 55% con silicosis simple y el 45% con silicosis complicada. En 10 pacientes se diagnosticó silicosis acelerada, con una media de 33 años de edad. El tiempo medio de exposición a los conglomerados fue de 15 años y en un 77% no se utilizaban medidas de protección adecuadas. La mitad de los pacientes estaban asintomáticos y presentaban diferentes formas clásicas en la radiografía de tórax y tomografía computarizada de alta resolución de tórax, así como imágenes de vidrio deslustrado. No se observaron alteraciones en la función pulmonar. Conclusiones: La silicosis en los trabajadores con CAC se observa en personas jóvenes, en activo, en un considerable porcentaje de forma acelerada, con escasos síntomas y sin alteración funcional. Las medidas de protección son escasas. Es importante conocer estas características para el diagnóstico precoz y las necesarias medidas preventivas


Introduction: Silicosis is a chronic progressive disease caused by inhalation of crystalline silica. Most cases develop in underground mine workers and in subjects involved in the extraction of natural stone (slate and granite). In view of the progressive emergence of new cases of silicosis in artificial quartz conglomerate workers, we performed a study to analyze the characteristics of silicosis produced by this new agent in Spain. Methods: The study consisted of a series of 96 cases of silicosis diagnosed according to international criteria during the period 2010-2017. We analyzed clinical, radiological, pathological and functional characteristics. Results: Mean age of participants was 45 years; 55% had simple silicosis and 45% had complicated silicosis. Ten patients were diagnosed with accelerated silicosis, with a mean age of 33 years. Mean time of exposure to conglomerates was 15 years, and 77% had not used appropriate protection measures. Half of the patients were asymptomatic and presented different classic forms on chest X-ray and chest high-resolution computed tomography, along with ground-glass images. No lung function changes were recorded. Conclusions: Silicosis in artificial quartz conglomerate workers occurs in a young, actively employed population, a considerable percentage of whom present an accelerated form. They have few symptoms and no functional limitations. Protection measures are scarce. It is important to characterize these features to provide early diagnosis and implement the necessary preventive measures


Asunto(s)
Humanos , Masculino , Adulto , Persona de Mediana Edad , Silicosis/etiología , Pulmón/patología , Exposición Profesional/efectos adversos , Cuarzo/toxicidad , Diagnóstico Precoz , Silicosis/patología , Silicosis/diagnóstico por imagen , Exposición Profesional/prevención & control , Exposición Profesional/normas , Radiografía Torácica
17.
Chem Res Toxicol ; 32(9): 1737-1747, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31407890

RESUMEN

The biological response of bronchial epithelial cells to particles is associated with a sequestration of cell metal by the particle surface and a subsequent disruption in host iron homeostasis. The macrophage is the cell type resident in the respiratory tract that is most likely to make initial contact with inhaled particles. We tested the postulates that (1) silica, a prototypical particle, disrupts iron homeostasis in alveolar macrophages (AMs); and (2) the altered iron homeostasis results in both an oxidative stress and pro-inflammatory effects. Human AMs (1.0 × 106/mL) demonstrated an increased import of iron following particle exposure with nonheme iron concentrations of 0.57 ± 0.03, 1.72 ± 0.09, 0.88 ± 0.09, and 3.21 ± 0.11 ppm in cells exposed for 4 h to media, 500 µM ferric ammonium citrate (FAC), 100 µg/mL silica, and both silica and FAC, respectively. Intracellular ferritin concentrations and iron release were similarly increased after AM exposure to FAC and silica. Silica increased oxidant generation by AMs measured using both dichlorofluorescein diacetate fluorescence and reduction of nitroblue tetrazolium salt. Concentrations of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α in macrophage supernatant increased following 100 µg/mL silica exposure for 24 h. Treatment of AMs with 500 µM FAC decreased both oxidant generation and cytokine release associated with silica exposure, supporting a dependence of these effects on sequestration of cell metal by the particle surface. We conclude that (1) silica exposure disrupts iron homeostasis resulting in increased import, accumulation, and release of the metal; and (2) the altered iron homeostasis following silica exposure impacts oxidant generation and pro-inflammatory effects.


Asunto(s)
Homeostasis/efectos de los fármacos , Inflamación/inducido químicamente , Hierro/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Cuarzo/toxicidad , Acetofenonas/farmacología , Animales , Línea Celular Tumoral , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Compuestos Férricos/farmacología , Ferritinas/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/genética , NADPH Oxidasas/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología
18.
Reprod Toxicol ; 90: 134-140, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31449912

RESUMEN

Several types of engineered nanoparticles (ENP) have been shown to adversely affect male reproduction in rodent studies, but the airway route of exposure has been little investigated. This precludes adequate risk assessment of ENP exposure in occupational settings. Titanium dioxide nanoparticles (TiO2 NP) have been shown to affect total sperm count in adult male mice after intravenous and oral administration. This study aimed to investigate whether also airway exposure would affect sperm counts in male mice. Mature C57BL/6J mice were intratracheally instilled with 63 µg of rutile nanosized TiO2, once weekly for seven weeks. Respirable α-quartz (SRM1878a) was included at a similar dose level as a positive control for pulmonary inflammation. BALF cell composition showed neutrophil granulocyte influx as indication of pulmonary inflammation in animals exposed to TiO2 NP and α-quartz, but none of the particle exposures affected weight of testes or the epididymis, sperm counts or plasma testosterone when assessed at termination of the study.


Asunto(s)
Nanopartículas/toxicidad , Cuarzo/toxicidad , Titanio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Epidídimo/efectos de los fármacos , Recuento de Leucocitos , Masculino , Ratones Endogámicos C57BL , Recuento de Espermatozoides , Testículo/efectos de los fármacos , Testosterona/sangre
20.
Toxicol In Vitro ; 60: 369-382, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31233786

RESUMEN

A549 cells are common models in the assessment of respiratory cytotoxicity. To provide physiologically more representative exposure conditions and increase the differentiation state, respiratory cells, for instance Calu-3 bronchial epithelial cells, are cultured at an air-liquid interface (ALI). There are indications that A549 cells also change their phenotype upon culture in ALI. The influence of culture in two variations of transwell cultures compared to conventional culture in plastic wells on the phenotype of A549 cells was studied. Cells were characterized by morphology, proliferation and transepithelial electrical resistance, whole genome transcription analysis, Western blot and immunocytochemical detection of pro-surfactant proteins. Furthermore, lipid staining, surface morphology, cell elasticity, surface tension and reaction to quartz particles were performed. Relatively small changes were noted in the expression of differentiation markers for alveolar cells but A549 cells cultured in ALI showed marked differences in lipid staining and surface morphology, surface tension and cytotoxicity of quartz particles. Data show that changes in physiological reactions of A549 cells in ALI culture were rather caused by change of surface properties than by increased expression of surfactant proteins.


Asunto(s)
Técnicas de Cultivo de Célula , Células A549 , Aire , Supervivencia Celular/efectos de los fármacos , Humanos , Fenotipo , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Cuarzo/toxicidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...