Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Mol Biol Rep ; 49(1): 237-247, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34705219

RESUMEN

BACKGROUND: Early, precise and simultaneous identification of plant viruses is of great significance for preventing virus spread and reducing losses in agricultural yields. METHODS AND RESULTS: In this study, the identification of plant viruses from symptomatic samples collected from a cigar tobacco planting area in Deyang and a flue-cured tobacco planting area in Luzhou city, Sichuan Province, China, was conducted by deep sequencing of small RNAs (sRNAs) through an Illumina sequencing platform, and plant virus-specific contigs were generated based on virus-derived siRNA sequences. Additionally, sequence alignment and phylogenetic analysis were performed to determine the species or strains of these viruses. A total of 27930450, 21537662 and 28194021 clean reads were generated from three pooled samples, with a total of 105 contigs mapped to the closest plant viruses with lengths ranging from 34 ~ 1720 nt. The results indicated that the major viruses were potato virus Y, Chilli veinal mottle virus, tobacco vein banding mosaic virus, tobacco mosaic virus and cucumber mosaic virus. Subsequently, a fast and sensitive multiplex reverse transcription polymerase chain reaction assay was developed for the simultaneous detection of the most frequent RNA viruses infecting cigar and flue-cured tobacco in Sichuan. CONCLUSIONS: These results provide a theoretical basis and convenient methods for the rapid detection and control of viruses in cigar- and flue-cured tobacco.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Nicotiana/virología , ARN Pequeño no Traducido/genética , RNA-Seq/métodos , Virus/clasificación , Cucumovirus/genética , Cucumovirus/aislamiento & purificación , Cucumovirus/patogenicidad , Resistencia a la Enfermedad , Evolución Molecular , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Potyvirus/patogenicidad , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Nicotiana/genética , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/aislamiento & purificación , Virus del Mosaico del Tabaco/patogenicidad , Virus/genética , Virus/aislamiento & purificación
2.
Plant Cell Environ ; 45(1): 220-235, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564869

RESUMEN

Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/virología , Interacciones Huésped-Patógeno/genética , Cucumovirus/genética , Cucumovirus/patogenicidad , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , MicroARNs , Proteínas de Plantas/genética , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Plantas Modificadas Genéticamente , Interferencia de ARN , Tombusvirus/genética , Tombusvirus/patogenicidad , Factores de Transcripción/genética
3.
Sci Rep ; 11(1): 17883, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504170

RESUMEN

During 2018 an intensive study was conducted to determine the viruses associated with cucurbitaceous crops in nine agroclimatic zones of the state of Uttar Pradesh, India. Total of 563 samples collected and analysed across 14 different cucurbitaceous crops. The results showed the dominance of Begomovirus (93%) followed by Potyvirus (46%), cucumber green mottle mosaic virus (CGMMV-39%), Polerovirus (9%), cucumber mosaic virus (CMV-2%) and Orthotospovirus (2%). Nearly 65% of samples were co-infected with more than one virus. Additionally, host range expansion of CMV, CGMMV and polerovirus was also observed on cucurbit crops. A new potyvirus species, zucchini tigre mosaic virus, earlier not documented from India has also been identified on five crops during the study. Risk map generated using ArcGIS for virus disease incidence predicted the virus severity in unexplored areas. The distribution pattern of different cucurbit viruses throughout Uttar Pradesh will help identify the hot spots for viruses and will facilitate to devise efficient and eco-friendly integrated management strategies for the mitigation of viruses infecting cucurbit crops. Molecular diversity and evolutionary relationship of the virus isolates infecting cucurbits in Uttar Pradesh with previously reported strains were understood from the phylogenetic analysis. Diverse virus infections observed in the Eastern Plain zone, Central zone and North-Eastern Plain zone indicate an alarming situation for the cultivation of cucurbits in the foreseeable future.


Asunto(s)
Productos Agrícolas/virología , Cucumovirus/patogenicidad , Cucurbita/virología , Cucurbitaceae/virología , Genoma Viral , India , Enfermedades de las Plantas/virología , Tobamovirus/patogenicidad
4.
Mol Plant Pathol ; 22(11): 1317-1331, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34355485

RESUMEN

RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.


Asunto(s)
Cucumis sativus , Cucumovirus , Enfermedades de las Plantas/virología , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Cucumis sativus/enzimología , Cucumis sativus/virología , Cucumovirus/patogenicidad , Protoplastos
5.
Cell Host Microbe ; 29(9): 1393-1406.e7, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34352216

RESUMEN

RNA interference (RNAi) is an across-kingdom gene regulatory and defense mechanism. However, little is known about how organisms sense initial cues to mobilize RNAi. Here, we show that wounding to Nicotiana benthamiana cells during virus intrusion activates RNAi-related gene expression through calcium signaling. A rapid wound-induced elevation in calcium fluxes triggers calmodulin-dependent activation of calmodulin-binding transcription activator-3 (CAMTA3), which activates RNA-dependent RNA polymerase-6 and Bifunctional nuclease-2 (BN2) transcription. BN2 stabilizes mRNAs encoding key components of RNAi machinery, notably AGONAUTE1/2 and DICER-LIKE1, by degrading their cognate microRNAs. Consequently, multiple RNAi genes are primed for combating virus invasion. Calmodulin-, CAMTA3-, or BN2-knockdown/knockout plants show increased susceptibility to geminivirus, cucumovirus, and potyvirus. Notably, Geminivirus V2 protein can disrupt the calmodulin-CAMTA3 interaction to counteract RNAi defense. These findings link Ca2+ signaling to RNAi and reveal versatility of host antiviral defense and viral counter-defense.


Asunto(s)
Señalización del Calcio/genética , Calmodulina/metabolismo , Nicotiana/genética , Enfermedades de las Plantas/prevención & control , Interferencia de ARN/fisiología , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Calcio/metabolismo , Cucumovirus/patogenicidad , Endonucleasas/metabolismo , Geminiviridae/patogenicidad , MicroARNs/metabolismo , Enfermedades de las Plantas/virología , Plantas , Potyviridae/patogenicidad , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Nicotiana/virología , Factores de Transcripción/metabolismo
6.
Cells ; 10(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207477

RESUMEN

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


Asunto(s)
Cucumovirus/patogenicidad , Dípteros/virología , Nicotiana/parasitología , Nicotiana/virología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Animales , Interacciones Huésped-Patógeno/fisiología , Larva/virología , Hojas de la Planta/parasitología , Hojas de la Planta/virología
7.
Mol Plant Pathol ; 22(9): 1082-1091, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156752

RESUMEN

Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.


Asunto(s)
Áfidos , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Cucumovirus , Enfermedades de las Plantas/virología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Arabidopsis/virología , Cucumovirus/patogenicidad , Ciclopentanos , Oxilipinas
8.
Plant Cell Rep ; 40(7): 1247-1267, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34028582

RESUMEN

KEY MESSAGE: PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.


Asunto(s)
Cucumovirus/patogenicidad , Nicotiana/citología , Nicotiana/virología , Biología de Sistemas/métodos , Núcleo Celular/genética , Núcleo Celular/virología , Cloroplastos/genética , Cloroplastos/virología , Citoesqueleto/genética , Citoesqueleto/virología , Citosol/virología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , MicroARNs , Nitrógeno/metabolismo , Fosfoproteínas/metabolismo , Células Vegetales/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interacción de Proteínas/genética , Satélite de ARN , Nicotiana/genética
9.
Sci Rep ; 11(1): 8796, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888846

RESUMEN

Cucumo- and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf filiformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT-PCR) with coat protein gene specific primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifications were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co-infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the first molecular evidence for the natural co-existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.


Asunto(s)
Anemia Hipocrómica/virología , Capsicum/virología , Cucumovirus/aislamiento & purificación , Tospovirus/patogenicidad , Cucumovirus/patogenicidad , India , Hojas de la Planta/virología
10.
PLoS One ; 16(2): e0247127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626083

RESUMEN

The cultivation and production of passion fruit (Passiflora edulis) are severely affected by viral disease. Yet there have been few studies of the molecular response of passion fruit to virus attack. In the present study, RNA-based transcriptional profiling (RNA-seq) was used to identify the gene expression profiles in yellow passion fruit (Passiflora edulis f. flavicarpa) leaves following inoculation with cucumber mosaic virus (CMV). Six RNA-seq libraries were constructed comprising a total of 42.23 Gb clean data. 1,545 differentially expressed genes (DEGs) were obtained (701 upregulated and 884 downregulated). Gene annotation analyses revealed that genes associated with plant hormone signal transduction, transcription factors, protein ubiquitination, detoxification, phenylpropanoid biosynthesis, photosynthesis and chlorophyll metabolism were significantly affected by CMV infection. The represented genes activated by CMV infection corresponded to transcription factors WRKY family, NAC family, protein ubiquitination and peroxidase. Several DEGs encoding protein TIFY, pathogenesis-related proteins, and RNA-dependent RNA polymerases also were upregualted by CMV infection. Overall, the information obtained in this study enriched the resources available for research into the molecular-genetic mechanisms of the passion fruit/CMV interaction, and might provide a theoretical basis for the prevention and management of passion fruit viral disease in the field.


Asunto(s)
Cucumovirus/patogenicidad , Passiflora/genética , Enfermedades de las Plantas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Passiflora/metabolismo , Passiflora/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
PLoS Pathog ; 16(12): e1009125, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270799

RESUMEN

The cucumber mosaic virus (CMV) 2b viral suppressor of RNA silencing (VSR) is a potent counter-defense and pathogenicity factor that inhibits antiviral silencing by titration of short double-stranded RNAs. It also disrupts microRNA-mediated regulation of host gene expression by binding ARGONAUTE 1 (AGO1). But in Arabidopsis thaliana complete inhibition of AGO1 is counterproductive to CMV since this triggers another layer of antiviral silencing mediated by AGO2, de-represses strong resistance against aphids (the insect vectors of CMV), and exacerbates symptoms. Using confocal laser scanning microscopy, bimolecular fluorescence complementation, and co-immunoprecipitation assays we found that the CMV 1a protein, a component of the viral replicase complex, regulates the 2b-AGO1 interaction. By binding 2b protein molecules and sequestering them in P-bodies, the 1a protein limits the proportion of 2b protein molecules available to bind AGO1, which ameliorates 2b-induced disease symptoms, and moderates induction of resistance to CMV and to its aphid vector. However, the 1a protein-2b protein interaction does not inhibit the ability of the 2b protein to inhibit silencing of reporter gene expression in agroinfiltration assays. The interaction between the CMV 1a and 2b proteins represents a novel regulatory system in which specific functions of a VSR are selectively modulated by another viral protein. The finding also provides a mechanism that explains how CMV, and possibly other viruses, modulates symptom induction and manipulates host-vector interactions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas Argonautas/metabolismo , Cucumovirus/patogenicidad , Metiltransferasas/metabolismo , Proteínas Virales/metabolismo , Cucumovirus/metabolismo , Enfermedades de las Plantas/virología
12.
Virus Res ; 289: 198172, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32980403

RESUMEN

Cucumber mosaic virus (CMV) has numerous strains with distinct pathological properties in nature. In this study, we focused on the distinct host-specificity of two isolates of CMV regarding induction of the shoestring-like leaf blade (SLB) in tomato (Solanum lycopersicum cv. Sekaiichi). During the initial infection stage, plants inoculated with CMV-D8 and CMV-Y developed green/yellow systemic mosaic and stunting. Late in infection, CMV-D8 caused severe systemic symptoms with SLB on the newly emerged leaves, whereas CMY-Y caused severe yellow mosaic with stunting. Accumulation of viral RNA of CMV-D8 during initial infection was higher than for CMV-Y, but their levels did not differ significantly at 5 weeks post inoculation. Pseudorecombination and recombination analyses between CMV-D8 and CMV-Y genomic RNAs showed that recombinant that contained the C-terminal region of 2a and the entire 2b protein of CMV-D8 (D2a-C/D2b) induced SLB. Changing isoleucine to valine at position 830 in the 2a ORF played an important role in formation of chronic SLB. We further elucidated that infection with CMV-D8 or the recombinant Y1Y2(D2a-C/D2b)D3, but not with CMV-Y, upregulated miRNAs and transcript levels of AGO1, which is involved in RNA silencing, and of HD-ZIP, TCP4, and PHAN, which are essential for leaf morphogenesis. The present results first demonstrated that the cooperative function of D2a-C/D2b is involved indispensably in SLB formation. In addition, we suggest that D2a-C/D2b region interferes with the miRNA pathway that is associated with RNA silencing and leaf morphogenesis, leading to the enhanced virulence of CMV-D8.


Asunto(s)
Cucumovirus , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Proteínas Virales/metabolismo , Cucumovirus/metabolismo , Cucumovirus/patogenicidad , Virulencia
13.
Methods Mol Biol ; 2146: 249-254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32415609

RESUMEN

Downregulation of AM fungal genes using a plant viral vector is feasible. A partial sequence of a target fungal gene is cloned into the multicloning site of CMV2-A1 vector developed from RNA2 of Cucumber mosaic virus Y strain, and the RNA2, together with RNA1 and RNA3 of the virus, are in vitro-transcribed. Inoculation of Nicotiana benthamiana with these viral RNAs results in reconstitution of the virus in the plant, which triggers silencing of the fungal gene. Here, we describe not only the methods but also several tips for successful application of virus-induced gene silencing to AM fungi.


Asunto(s)
Micorrizas/genética , Enfermedades de las Plantas/genética , Virus de Plantas/genética , ARN Viral/aislamiento & purificación , Cucumovirus/genética , Cucumovirus/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Vectores Genéticos/genética , Micorrizas/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/virología , Virus de Plantas/patogenicidad , ARN Viral/genética , Nicotiana/virología
14.
Genomics ; 112(5): 3729-3738, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32353478

RESUMEN

Cucumber mosaic virus infection leads to mosaic symptoms on a broad range of crop plants. Mutation at positions 129 in the coat protein of virus causes alterations in the severity of symptoms caused by the viral infection. In our investigation, we performed long term molecular dynamics simulations to elucidate the effect of different amino acid substitutes (infectious and non-infectious) at position 129 in the coat protein of Cucumber mosaic virus using various structural parameters. We found that the contagious mutants displayed more flexibility at loops ßE-αEF (129-136) and ßF-ßG loop (155-163) as compared to the non-infectious and native structures. This specific study at the atomic level yields innovative ideas for designing new therapeutic agents against the pathogen, which would further pave the path for researchers to control this devastating plant virus.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de la Cápside/química , Cucumovirus/química , Proteínas de la Cápside/genética , Cucumovirus/patogenicidad , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación Missense , Análisis de Componente Principal , Conformación Proteica , Virulencia
15.
Molecules ; 25(10)2020 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-32429524

RESUMEN

Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT-either alone or in combination-to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and ß-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.


Asunto(s)
Betaína/farmacología , Quitosano/farmacología , Cucumis sativus/efectos de los fármacos , Cucumovirus/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Catalasa/genética , Catalasa/metabolismo , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Clorofila/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virología , Cucumovirus/crecimiento & desarrollo , Cucumovirus/patogenicidad , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Giberelinas/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Ácidos Indolacéticos/metabolismo , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Oxilipinas/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
16.
Acta amaz ; 50(1): 5-7, jan. - mar. 2020. ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1455384

RESUMEN

The habanero chilli pepper, Capsicum chinense is an important crop in the Amazon Basin, mainly grown by small-scale producers. Capsicum chinense plants in an experimental field in the northern Brazilian state of Amazonas were found exhibiting characteristic symptoms of viral infection. Leaf sap from symptomatic plants examined under a transmission electron microscope revealed the presence of elongated flexuous particles and isometric particles. Using molecular assays, the viruses were identified as pepper yellow mosaic virus (PepYMV) and cucumber mosaic virus (CMV). Aphids, identified as Aphis gossypii, were found colonizing the C. chinense plants in the field and may be the vector for both PepYMV and CMV. We report the first occurrence of these viruses infecting C. chinense in the state of Amazonas.


A pimenta-de-cheiro, Capsicum chinense é uma cultura importante na Bacia Amazônica, cultivada principalmente por pequenos produtores. Plantas de C. chinense em um campo experimental localizado no norte do estado brasileiro do Amazonas, foram encontradas apresentando sintomas característicos de infecção viral. Extratos de amostras de folhas sintomáticas examinados ao microscópio eletrônico de transmissão revelaram a presença de partículas alongadas e flexuosas e de partículas isométricas. Análises moleculares permitiram identificar a presença do pepper yellow mosaic virus (PepYMV) e do cucumber mosaic virus (CMV). Pulgões, identificados como Aphis gossypii foram encontrados colonizando pimenteiras-de-cheiro neste campo experimental e podem representar o provável vetor de PepYMV e CMV. Este trabalho relata a primeira ocorrência desses vírus infectando C. chinense no estado do Amazonas.


Asunto(s)
Capsicum/virología , Cucumovirus/patogenicidad , Microscopía Electrónica de Transmisión/instrumentación , Reacción en Cadena de la Polimerasa
17.
Sci Rep ; 10(1): 2538, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054920

RESUMEN

Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.


Asunto(s)
Enfermedades de las Plantas/genética , Tospovirus/genética , Transcriptoma/genética , Virosis/genética , Cucumovirus/genética , Cucumovirus/patogenicidad , Perfilación de la Expresión Génica , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Fenotipo , Enfermedades de las Plantas/virología , Potyvirus/genética , Potyvirus/patogenicidad , Tospovirus/patogenicidad , Virosis/virología
18.
Gene ; 737: 144451, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32035243

RESUMEN

Cucumber mosaic virus (CMV) can cause serious losses in Luffa cylindrica (L.) Roem. Chemical application to control CMV is ineffective and environmentally unfriendly. The development of resistant hybrids is the best way to control CMV disease. Elucidating the virus-host interaction of CMV and molecular basis underlying Luffa spp. resistance against CMV would undoubtedly facilitate breeding for resistance against CMV disease. Transcriptome sequencing was used to analyze differentially expressed genes (DEGs) caused by CMV infection. A total of 138,336 unigenes were assembled, and 74,525 unigenes were annotated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the three major enrichment pathways (according to the p-values) were flavonoid biosynthesis, sulfur metabolism, and photosynthesis. Genes involved in basal defenses, probably R genes, were determined to be related to CMV resistance. Using quantitative real-time PCR, we validated the differential expression of 8 genes. A number of genes associated with CMV resistance were found in this study. This study provides transcriptomic information regarding CMV-Luffa spp. interactions and will shed light on our understanding of host-virus interactions.


Asunto(s)
Cucumovirus/patogenicidad , Interacciones Huésped-Patógeno , Luffa/genética , Luffa/virología , Transcriptoma , Ontología de Genes , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Viruses ; 12(1)2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941092

RESUMEN

When Arabidopsis thaliana ecotype Col-0 was inoculated with a series of reassortant viruses created by exchanging viral genomic RNAs between two strains of cucumber mosaic virus (CMV), CMV(Y), and CMV(H), cell death developed in the leaves inoculated with reassortant CMV carrying CMV(H) RNA1 encoding 1a protein, but not in noninoculated upper leaves. In general, cell death in virus-infected plants is a critical event for virus survival because virus multiplication is completely dependent on host cell metabolism. However, interestingly, this observed cell death did not affect either virus multiplication in the inoculated leaves or systemic spread to noninoculated upper leaves. Furthermore, the global gene expression pattern of the reassortant CMV-inoculated leaves undergoing cell death was clearly different from that in hypersensitive response (HR) cell death, which is coupled with resistance to CMV. These results indicated that the observed cell death does not appear to be HR cell death but rather necrotic cell death unrelated to CMV resistance. Interestingly, induction of this necrotic cell death depended on single amino acid substitutions in the N-terminal region surrounding the methyltransferase domain of the 1a protein. Thus, development of necrotic cell death might not be induced by non-specific damage as a result of virus multiplication, but by a virus protein-associated mechanism. The finding of CMV 1a protein-mediated induction of necrotic cell death in A. thaliana, which is not associated with virus resistance and HR cell death, has the potential to provide a new pathosystem to study the role of cell death in virus-host plant interactions.


Asunto(s)
Sustitución de Aminoácidos , Muerte Celular , Metiltransferasas/genética , Hojas de la Planta/virología , Proteínas Virales/genética , Replicación Viral , Arabidopsis/virología , Cucumovirus/genética , Cucumovirus/patogenicidad , Enfermedades de las Plantas/virología
20.
Mol Plant Pathol ; 21(2): 250-257, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31777194

RESUMEN

Cucumber mosaic virus (CMV), which is vectored by aphids, has a tripartite RNA genome encoding five proteins. In tobacco (Nicotiana tabacum), a subgroup IA CMV strain, Fny-CMV, increases plant susceptibility to aphid infestation but a viral mutant unable to express the 2b protein (Fny-CMV∆2b) induces aphid resistance. We hypothesized that in tobacco, one or more of the four other Fny-CMV gene products (the 1a or 2a replication proteins, the movement protein, or the coat protein) are potential aphid resistance elicitors, whilst the 2b protein counteracts induction of aphid resistance. Mutation of the Fny-CMV 2b protein indicated that inhibition of virus-induced resistance to aphids (Myzus persicae) depends on amino acid sequences known to control nucleus-to-cytoplasm shuttling. LS-CMV (subgroup II) also increased susceptibility to aphid infestation but the LS-CMV∆2b mutant did not induce aphid resistance. Using reassortant viruses comprising different combinations of LS and Fny genomic RNAs, we showed that Fny-CMV RNA 1 but not LS-CMV RNA 1 conditions aphid resistance in tobacco, suggesting that the Fny-CMV 1a protein triggers resistance. However, the 2b proteins of both strains suppress aphid resistance, suggesting that the ability of 2b proteins to inhibit aphid resistance is conserved among divergent CMV strains.


Asunto(s)
Cucumovirus/metabolismo , Cucumovirus/patogenicidad , Ciclopentanos/metabolismo , Nicotiana/virología , Oxilipinas/metabolismo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...