Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
PeerJ ; 12: e17304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680887

RESUMEN

The MYB gene family exerts significant influence over various biological processes and stress responses in plants. Despite this, a comprehensive analysis of this gene family in pumpkin remains absent. In this study, the MYB genes of Cucurbita moschata were identified and clustered into 33 groups (C1-33), with members of each group being highly conserved in terms of their motif composition. Furthermore, the distribution of 175 CmoMYB genes across all 20 chromosomes was found to be non-uniform. Examination of the promoter regions of these genes revealed the presence of cis-acting elements associated with phytohormone responses and abiotic/biotic stress. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR), the expression patterns of 13 selected CmoMYB genes were validated, particularly in response to exogenous phytohormone exposure and various abiotic stressors, including ABA, SA, MeJA, and drought treatments. Expression analysis in different tissues showed that CmoMYB genes are expressed at different levels in different tissues, suggesting that they are functionally divergent in regulating growth and abiotic stresses. These results provide a basis for future studies to characterize the function of the MYB gene family under abiotic stresses in pumpkins.


Asunto(s)
Cucurbita , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Estrés Fisiológico , Cucurbita/genética , Familia de Multigenes/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genes myb , Regiones Promotoras Genéticas/genética , Filogenia , Estudio de Asociación del Genoma Completo , Genoma de Planta/genética
2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612673

RESUMEN

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Asunto(s)
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiómica , Regulación hacia Abajo , Carotenoides , Glucosa
3.
BMC Genomics ; 25(1): 384, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637729

RESUMEN

BACKGROUND: Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS: We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS: These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.


Asunto(s)
Cucurbita , Cucurbitaceae , Genoma del Cloroplasto , Humanos , Cucurbita/genética , Cucurbitaceae/genética , Filogenia , China , Cloroplastos/genética , Variación Genética
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673762

RESUMEN

The WRKY gene family is crucial for regulating plant growth and development. However, the WRKY gene is rarely studied in naked kernel formation in hull-less Cucurbita pepo L. (HLCP), a natural mutant that lacks the seed coat. In this research, 76 WRKY genes were identified through bioinformatics-based methods in C. pepo, and their phylogenetics, conserved motifs, synteny, collinearity, and temporal expression during seed coat development were analyzed. The results showed that 76 CpWRKYs were identified and categorized into three main groups (I-III), with Group II further divided into five subgroups (IIa-IIe). Moreover, 31 segmental duplication events were identified in 49 CpWRKY genes. A synteny analysis revealed that C. pepo shared more collinear regions with cucumber than with melon. Furthermore, quantitative RT-PCR (qRT-PCR) results indicated the differential expression of CpWRKYs across different varieties, with notable variations in seed coat development between HLCP and CP being attributed to differences in CpWRKY5 expression. To investigate this further, CpWRKY5-overexpression tobacco plants were generated, resulting in increased lignin content and an upregulation of related genes, as confirmed by qRT-PCR. This study offers valuable insights for future functional investigations of CpWRKY genes and presents novel information for understanding the regulation mechanism of lignin synthesis.


Asunto(s)
Cucurbita , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Factores de Transcripción , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lignina/metabolismo , Lignina/biosíntesis , Sintenía , Genoma de Planta , Semillas/genética , Semillas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo
5.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581090

RESUMEN

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Asunto(s)
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilación de la Expresión Génica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarosa/metabolismo
6.
Sci Rep ; 14(1): 6793, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514827

RESUMEN

Virus diseases are a major production constraint for pumpkin. Recessive resistance to squash leaf curl China virus and tomato leaf curl New Delhi virus has been mapped in Cucurbita moschata (Duchesne ex Poir.) breeding line AVPU1426 to chromosomes 7 and 8, respectively. Molecular markers tightly associated with the resistance loci have been developed and were able to correctly predict resistance and susceptibility with an accuracy of 99% for squash leaf curl China virus resistance and 94.34% for tomato leaf curl New Delhi virus in F2 and back cross populations derived from the original resistance source AVPU1426. The markers associated with resistance are recommended for use in marker-assisted breeding.


Asunto(s)
Begomovirus , Cucurbita , Cucurbita/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Begomovirus/genética , Biomarcadores , China
7.
Plant Physiol Biochem ; 208: 108443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479079

RESUMEN

Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.


Asunto(s)
Cucurbita , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Resistencia a la Sequía , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Agua/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
8.
Physiol Plant ; 176(2): e14232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450746

RESUMEN

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Asunto(s)
Cucumis sativus , Cucurbita , Cucumis sativus/genética , Cucurbita/genética , Xenoinjertos , Cotiledón , Azúcares , Almidón , Sacarosa
9.
Sci Rep ; 14(1): 5930, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467669

RESUMEN

With widespread cultivation, Cucurbita moschata stands out for the carotenoid content of its fruits such as ß and α-carotene, components with pronounced provitamin A function and antioxidant activity. C. moschata seed oil has a high monounsaturated fatty acid content and vitamin E, constituting a lipid source of high chemical-nutritional quality. The present study evaluates the agronomic and chemical-nutritional aspects of 91 accessions of C. moschata kept at the BGH-UFV and propose the establishment of a core collection based on multivariate approaches and on the implementation of Artificial Neural Networks (ANNs). ANNs was more efficient in identifying similarity patterns and in organizing the distance between the genotypes in the groups. The averages and variances of traits in the CC formed using a 15% sampling of accessions, were closer to those of the complete collection, particularly for accumulated degree days for flowering, the mass of seeds per fruit, and seed and oil productivity. Establishing the 15% CC, based on the broad characterization of this germplasm, will be crucial to optimize the evaluation and use of promising accessions from this collection in C. moschata breeding programs, especially for traits of high chemical-nutritional importance such as the carotenoid content and the fatty acid profile.


Asunto(s)
Cucurbita , Cucurbita/genética , Brasil , Fitomejoramiento , Carotenoides , Frutas/genética
10.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468207

RESUMEN

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Asunto(s)
Proteínas de Arabidopsis , Cucurbita , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Estudio de Asociación del Genoma Completo , Plantas/genética , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética
11.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473740

RESUMEN

The mottled leaf is one of the agronomic traits of zucchini and can be applied as a marker trait in aggregation breeding. However, the genetic mechanism responsible for mottled leaf has yet to be elucidated. In the present study, we used two inbred lines (line '19': silver mottled leaf; line '113': normal leaf) as parents for the physiological and genetic analysis of mottled leaf. The synthesis and net photosynthetic rate of chlorophyll were not significantly affected in the mottled areas of leaves. However, we detected a large space between the palisade parenchyma in the leaf mottle area of line '19', which may have caused the mottled leaf phenotype. Light also plays an important role in the formation of mottled leaf, and receiving light during the early stages of leaf development is a necessary factor. Genetic analysis has previously demonstrated that mottled leaf is a quantitative trait that is controlled by multiple genes. Based on the strategy of quantitative trait locus sequencing (QTL-seq), two QTLs were identified on chromosomes 1 and 17, named CpML1.1 and CpML17.1, respectively. Two major loci were identified using R/qtl software version 1.66 under greenhouse conditions in April 2019 (2019A) and April 2020 (2020A) and under open cultivation conditions in May 2020 (2020M). The major QTL, CpML1.1, was located in a 925.2-kb interval on chromosome 1 and explained 10.51%-24.15% of the phenotypic variation. The CpML17.1 was located in a 719.7-kb interval on chromosome 17 and explained 16.25%-38.68% of the phenotypic variation. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, the Cp4.1LG01g23790 at the CpML1.1 locus encoding a protein of the TPX2 family (target protein of Xklp2) may be a candidate gene for mottled leaf in zucchini. Our findings may provide a theoretical basis for the formation of mottled leaf and provide a foundation for the fine mapping of genes associated with mottled leaf. Molecular markers closely linked to mottled leaf can be used in molecular-assisted selection for the zucchini mottled leaf breeding.


Asunto(s)
Cucurbita , Cucurbita/genética , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Hojas de la Planta/genética
12.
BMC Plant Biol ; 24(1): 90, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317069

RESUMEN

BACKGROUND: Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS: This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS: This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.


Asunto(s)
Cucurbita , Cucurbita/genética , Fotoperiodo , Inhibidores de la Bomba de Protones/metabolismo , Diferenciación Sexual , Fitomejoramiento , Perfilación de la Expresión Génica , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Funct Plant Biol ; 512024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38207292

RESUMEN

Root and crown rot incited by an oomycete, Phytophthora melonis , causes significant yield losses in commercial pumpkin (Cucurbita pepo ) production worldwide. Currently, resistant cultivars and knowledge of molecular mechanism of C. pepo against P. melonis are scarce. Here, we analysed the quantitative gene expression changes of 10 candidate gene markers (bHLH87, ERF014, HSF, MYB, PR-1, WRKY21, CPI, POD, PSK, SGT ) in pumpkin roots and leaves at three time points (h post-inoculation, hpi) following inoculation with P. melonis in two resistant (Ghelyani and Tanbal), and two susceptible (Marmari and Khoreshti) varieties of pumpkin. Gene expression using quantitative real time PCR along a time course revealed the strongest transcriptomic response at 48 and 72hpi in resistant genotypes, 1.1-2.7-fold in roots and leaves, respectively, with a high significant correlation (r =0.857**-0.974**). We also found that CPI , PSK, SGT1 and POD act as a dual regulator that similarly modulate immunity not only against P. melonis , but also against other diseases such as early blight (Alternaria cucumerina) , powdery mildew (Podosphaera xanthii ), downy mildews (Pseudoperonospora cubensis ), and pathogenic plant nematodes (Meloidogyne javanica ). Furthermore, significantly higher activities of the ROS scavenging defence enzymes, catalase (1.6-fold increase) and peroxidase (6-fold increase) were observed in the roots of resistant cultivars at different hpi compared with non-inoculated controls. In addition, the biomass growth parameters including leaf and root length, stem and root diameter, root fresh weight and volume were significantly different among studied genotypes. Cumulatively, the transcriptome data provide novel insights into the response of pumpkins for improving pumpkin breeding to P. melonis .


Asunto(s)
Cucurbita , Phytophthora , Cucurbita/genética , Phytophthora/genética , Transcriptoma/genética , Fitomejoramiento , Perfilación de la Expresión Génica
14.
BMC Genomics ; 25(1): 112, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273235

RESUMEN

BACKGROUND: Auxin transcription factor (ARF) is an important transcription factor that transmits auxin signals and is involved in plant growth and development as well as stress response. However, genome-wide identification and responses to abiotic and pathogen stresses of the ARF gene family in Cucurbita pepo L, especially pathogen stresses, have not been reported. RESULTS: Finally, 33 ARF genes (CpARF01 to CpARF33) were identified in C.pepo from the Cucurbitaceae genome database using bioinformatics methods. The putative protein contains 438 to 1071 amino acids, the isoelectric point is 4.99 to 8.54, and the molecular weight is 47759.36 to 117813.27 Da, the instability index ranged from 40.74 to 68.94, and the liposoluble index ranged from 62.56 to 76.18. The 33 genes were mainly localized in the nucleus and cytoplasm, and distributed on 16 chromosomes unevenly. Phylogenetic analysis showed that 33 CpARF proteins were divided into 6 groups. According to the amino acid sequence of CpARF proteins, 10 motifs were identified, and 1,3,6,8,10 motifs were highly conserved in most of the CpARF proteins. At the same time, it was found that genes in the same subfamily have similar gene structures. Cis-elements and protein interaction networks predicted that CpARF may be involved in abiotic factors related to the stress response. QRT-PCR analysis showed that most of the CpARF genes were upregulated under NaCl, PEG, and pathogen treatment compared to the control. Subcellular localization showed that CpARF22 was localized in the nucleus. The transgenic Arabidopsis thaliana lines with the CpARF22 gene enhanced their tolerance to salt and drought stress. CONCLUSION: In this study, we systematically analyzed the CpARF gene family and its expression patterns under drought, salt, and pathogen stress, which improved our understanding of the ARF protein of zucchini, and laid a solid foundation for functional analysis of the CpARF gene.


Asunto(s)
Cucurbita , Filogenia , Cucurbita/genética , Cucurbita/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
15.
J Exp Bot ; 75(7): 1948-1966, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38066672

RESUMEN

The sex determination process in cucurbits involves the control of stamen or carpel development during the specification of male or female flowers from a bisexual floral meristem, a function coordinated by ethylene. A gain-of-function mutation in the miR164-binding site of CpCUC2B, ortholog of the Arabidopsis transcription factor gene CUC2, not only produced ectopic floral meristems and organs, but also suppressed the development of carpels and promoted the development of stamens. The cuc2b mutation induced the transcription of CpCUC2B in the apical shoots of plants after female flowering but repressed other CUC genes regulated by miR164, suggesting a conserved functional redundancy of these genes in the development of squash flowers. The synergistic androecious phenotype of the double mutant between cuc2b and etr2b, an ethylene-insensitive mutation that enhances the production of male flowers, demonstrated that CpCUC2B arrests the development of carpels independently of ethylene and CpWIP1B. The transcriptional regulation of CpCUC1, CpCUC2, and ethylene genes in cuc2b and ethylene mutants also confirms this conclusion. However, the epistasis of cuc2b over aco1a, a mutation that suppresses stamen arrest in female flowers, and the down-regulation of CpACS27A in cuc2b female apical shoots, indicated that CpCUC2B promotes stamen development by suppressing the late ethylene production.


Asunto(s)
Arabidopsis , Cucurbita , Cucurbita/genética , Arabidopsis/genética , Etilenos , Flores , Factores de Transcripción/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Meristema
16.
Plant Biol (Stuttg) ; 26(1): 126-139, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37975550

RESUMEN

Genetic engineering is commonly used to improve the agronomic traits of crops. However, genetic transformation in pumpkin remains a challenge. Conducting transformation trials, we accidentally created transgenic L1 periclinal chimeras in pumpkins. Using our modified Agrobacterium-mediated transformation, we generated transgenic L1 periclinal chimeras which have high value in research on development of the meristem. Fluorescence observations of transformed L1 cells enabled us to reveal cell fates. These L1 cells can develop into stomata, epidermal hairs, seed coat, and epidermis of the root, stem, leaf, flower, and fruit. These periclinal chimeras can be propagated vegetatively with minimal risk of transgene flow. This study offers new perspectives on development of the meristem and a promising technique for creating transgenic periclinal chimeras in plants.


Asunto(s)
Cucurbita , Meristema , Meristema/genética , Cucurbita/genética , Plantas/genética , Fenotipo , Flores , Plantas Modificadas Genéticamente/genética
17.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37969013

RESUMEN

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Asunto(s)
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenotipo
18.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068889

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) is a typical seed-borne tobamovirus that mainly infects cucurbit crops. Due to the rapid growth of international trade, CGMMV has spread worldwide and become a significant threat to cucurbit industry. Despite various studies focusing on the interaction between CGMMV and host plants, the molecular mechanism of CGMMV infection is still unclear. In this study, we utilized transcriptome and metabolome analyses to investigate the antiviral response of bottle gourd (Lagenaria siceraria) under CGMMV stress. The transcriptome analysis revealed that in comparison to mock-inoculated bottle gourd, 1929 differently expressed genes (DEGs) were identified in CGMMV-inoculated bottle gourd. Among them, 1397 genes were upregulated while 532 genes were downregulated. KEGG pathway enrichment indicated that the DEGs were mainly involved in pathways including the metabolic pathway, the biosynthesis of secondary metabolites, plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The metabolome result showed that there were 76 differentially accumulated metabolites (DAMs), of which 69 metabolites were up-accumulated, and 7 metabolites were down-accumulated. These DAMs were clustered into several pathways, including biosynthesis of secondary metabolites, tyrosine metabolism, flavonoid biosynthesis, carbon metabolism, and plant hormone signal transduction. Combining the transcriptome and metabolome results, the genes and metabolites involved in the jasmonic acid and its derivatives (JAs) synthesis pathway were significantly induced upon CGMMV infection. The silencing of the allene oxide synthase (AOS) gene, which is the key gene involved in JAs synthesis, reduced CGMMV accumulation. These findings suggest that JAs may facilitate CGMMV infection in bottle gourd.


Asunto(s)
Citrullus , Cucurbita , Tobamovirus , Transcriptoma , Citrullus/genética , Reguladores del Crecimiento de las Plantas , Comercio , Internacionalidad , Tobamovirus/genética , Cucurbita/genética , Metaboloma , Enfermedades de las Plantas/genética
19.
BMC Plant Biol ; 23(1): 647, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102604

RESUMEN

BACKGROUND: Cucurbita ficifolia is one of the squash species most resistant to fungal pathogens, and has especially high resistance to melon Fusarium wilt. This species is therefore an important germplasm resource for the breeding of squash and melon cultivars. RESULTS: Whole-genome resequencing of 223 individuals from 32 populations in Yunnan Province, the main cucurbit production area in China, was performed and 3,855,120 single-nucleotide polymorphisms (SNPs) and 1,361,000 InDels were obtained. SNP analysis suggested that levels of genetic diversity in C. ficifolia were high, but that different populations showed no significant genetic differentiation or geographical structure, and that individual C. ficifolia plants with fruit rinds of a similar color did not form independent clusters. A Mantel test conducted in combination with geographical distance and environmental factors suggested that genetic distance was not correlated with geographical distance, but had a significant correlation with environmental distance. Further associations between the genetic data and five environmental factors were analyzed using whole-genome association analysis. SNPs associated with each environmental factor were investigated and genes 250 kb upstream and downstream from associated SNPs were annotated. Overall, 15 marker-trait-associated SNPs (MTAs) and 293 genes under environmental selection were identified. The identified genes were involved in cell membrane lipid metabolism, macromolecular complexes, catalytic activity and other related aspects. Ecological niche modeling was used to simulate the distribution of C. ficifolia across time, from the present and into the future. We found that the area suitable for C. ficifolia changed with the changing climate in different periods. CONCLUSIONS: Resequencing of the C. ficifolia accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs identified in this study suggest that environmental factors mediated the formation of the population structure of C. ficifolia in China. These SNPs and Indels might also contribute to the variation in important pathways of genes for important agronomic traits such as yield, disease resistance and stress tolerance. Moreover, the genome resequencing data and the genetic markers identified from 223 accessions provide insight into the genetic variation of the C. ficifolia germplasm and will facilitate a broad range of genetic studies.


Asunto(s)
Cucurbita , Cucurbitaceae , Humanos , Cucurbita/genética , Marcadores Genéticos , China , Fitomejoramiento , Análisis de Secuencia de ADN , Cucurbitaceae/genética , Polimorfismo de Nucleótido Simple/genética
20.
Genes (Basel) ; 14(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38002973

RESUMEN

In higher plants, WRKY transcription factors are broadly involved in a variety of life activities and play an important role in both biotic and abiotic stress responses. However, little is known about the functions of WRKY genes in the popular species, such as Cucurbita maxima (pumpkin), which is planted worldwide. In the present study, 102 CmWRKY genes were identified in the C. maxima genome. Chromosome location, multiple sequence alignment, phylogenetic analysis, and synteny analysis of the CmWRKYs were performed. Notably, we found that silencing CmWRKY22 promoted cucumber mosaic virus (CMV) infection, whereas overexpression of CmWRKY22 inhibited the CMV infection. Subsequently, an electrophoretic mobility shift assay (EMSA) confirmed that CmWRKY22 was able to bind to the W-box at the promoter of CmPR1b, which is a responsive gene of the salicylic acid (SA) signaling pathway. In summary, this study has provided a foundation for the antiviral functions of WRKY transcription factors in C. maxima.


Asunto(s)
Cucurbita , Infecciones por Citomegalovirus , Cucurbita/genética , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...