Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 14(8): e0008669, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866146

RESUMEN

Exposure of adult mosquitoes to pyriproxyfen (PPF), an analog of insect juvenile hormone (JH), has shown promise to effectively sterilize female mosquitoes. However, the underlying mechanisms of the PPF-induced decrease in mosquito fecundity are largely unknown. We performed a comprehensive study to dissect the mode of PPF action in Aedes aegypti mosquitoes. Exposure to PPF prompted the overgrowth of primary follicles in sugar-fed Ae. aegypti females but blocked the development of primary follicles at Christopher's Stage III after blood feeding. Secondary follicles were precociously activated in PPF-treated mosquitoes. Moreover, PPF substantially altered the expression of many genes that are essential for mosquito physiology and oocyte development in the fat body and ovary. In particular, many metabolic genes were differentially expressed in response to PPF treatment, thereby affecting the mobilization and utilization of energy reserves. Furthermore, PPF treatment on the previtellogenic female adults considerably modified mosquito responses to JH and 20-hydroxyecdysone (20E), two major hormones that govern mosquito reproduction. Krüppel homolog 1, a JH-inducible transcriptional regulator, showed consistently elevated expression after PPF exposure. Conversely, PPF upregulated the expression of several key players of the 20E regulatory cascades, including HR3 and E75A, in the previtellogenic stage. After blood-feeding, the expression of these 20E response genes was significantly weaker in PPF-treated mosquitoes than the solvent-treated control groups. RNAi-mediated knockdown of the Methoprene-tolerant (Met) protein, the JH receptor, partially rescued the impaired follicular development after PPF exposure and substantially increased the hatching of the eggs produced by PPF-treated female mosquitoes. Thus, the results suggested that PPF relied on Met to exert its sterilizing effects on female mosquitoes. In summary, this study finds that PPF exposure disturbs normal hormonal responses and metabolism in Ae. aegypti, shedding light on the molecular targets and the downstream signaling pathways activated by PPF.


Asunto(s)
Aedes/efectos de los fármacos , Culicidae/efectos de los fármacos , Insecticidas/farmacología , Metopreno/metabolismo , Esterilización , Animales , Ecdisterona/farmacología , Cuerpo Adiposo/crecimiento & desarrollo , Femenino , Glucógeno/metabolismo , Proteínas de Insectos/genética , Hormonas Juveniles/farmacología , Ovario/crecimiento & desarrollo , Piridinas , Interferencia de ARN , Triglicéridos/metabolismo
2.
Dev Biol ; 461(2): 197-209, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32087195

RESUMEN

The assembly of basement membranes (BMs) into tissue-specific morphoregulatory structures requires non-core BM components. Work in Drosophila indicates a principal role of collagen-binding matricellular glycoprotein SPARC (Secreted Protein, Acidic, Rich in Cysteine) in larval fat body BM assembly. We report that SPARC and collagen IV (Col(IV)) first colocalize in the trans-Golgi of hemocyte-like cell lines. Mutating the collagen-binding domains of Drosophila SPARC led to the loss of colocalization with Col(IV), a fibrotic-like BM, and 2nd instar larval lethality, indicating that SPARC binding to Col(IV) is essential for survival. Analysis of this mutant at 2nd instar reveals increased Col(IV) puncta within adipocytes, reflecting a disruption in the intracellular chaperone-like activity of SPARC. Removal of the disulfide bridge in the C-terminal EF-hand2 of SPARC, which is known to enhance Col(IV) binding, did not lead to larval lethality; however, a less intense fat body phenotype was observed. Additionally, both SPARC mutants exhibited altered fat body BM pore topography. Wing imaginal disc-derived SPARC did not localize within Col(IV)-rich matrices. This raises the possibility that SPARC interaction with Col(IV) requires initial intracellular interaction to colocalize at the BM or that wing-derived SPARC undergoes differential post-translational modifications that impacts its function. Collectively, these data provide evidence that the chaperone-like activity of SPARC on Col(IV) begins just prior to their co-secretion and demonstrate for the first time that the Col(IV) chaperone-like activity of SPARC is necessary for Drosophila development beyond the 2nd instar.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas de Drosophila/fisiología , Chaperonas Moleculares/fisiología , Osteonectina/fisiología , Adipocitos/citología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Sistemas CRISPR-Cas , Tamaño de la Célula , Cistina/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/citología , Cuerpo Adiposo/crecimiento & desarrollo , Genes Letales , Hemocitos/metabolismo , Larva , Osteonectina/química , Osteonectina/deficiencia , Osteonectina/genética , Dominios Proteicos , Alas de Animales/crecimiento & desarrollo
3.
Mol Ecol ; 29(4): 720-737, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31971312

RESUMEN

Many diapausing insects undergo a nutrient storage period prior to their entry into diapause. Bumble bee queens diapause as adults in the winter preceding their spring nest initiation period. Before diapause, they sequester glycogen and lipids, which they metabolize during the overwintering period. We used RNA sequencing to examine how age and nectar diet (specifically, the concentration of sucrose in nectar) impact gene expression in the pre-overwintering bumble bee queen fat body, the "liver-like" organ in insects with broad functions related to nutrient storage and metabolism. We found that diet on its own, and in combination with age, impacts the expression of genes involved in detoxification. Age was also a strong driver of gene expression, especially at earlier ages (up to 3 days). In addition to these molecular correlates of diet and age, we also found a putative molecular signature of diapause entry or preparation in adult queens in the oldest age group (12 days) fed the most sucrose-rich diet, based on comparisons between our data set and another transcriptome data set from bumble bee queens. This transcriptomic pattern suggests that preparation for (or entry into) diapause might be in part mediated by nutritional state in bumble bee queens. Collectively, these findings show that there are molecular processes in the fat body that are responsive to sucrose levels in the diet and/or associated with age-related maturational changes. A better understanding of these processes may shed light on important aspects of bumble bee biology, such as queen responses to nutritional and other forms of stress, and the factors that regulate their entrance into diapause.


Asunto(s)
Abejas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Animales , Abejas/crecimiento & desarrollo , Dieta , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética
4.
Insect Biochem Mol Biol ; 113: 103207, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31421206

RESUMEN

The fat body is distributed throughout the body of insects, playing the essential role in intermediary metabolism and nutrient storage. However, the function of differentiation of fat bodies adhering to different tissues remains largely unknown. Here, we identified a fat body-like tissue (FLT) surrounding testis follicles and described its features at morphological, cellular and molecular levels. The FLT is morphologically distinguished with the abdominal fat body (FB) and dominated by diploid cells instead of polyploid cells. The transcriptomic analysis demonstrated that the FLT and FB have dramatically different gene expression profiles. Moreover, genes in the cell cycle pathway, which include both DNA replication- and cell division-related genes, were successively active during development of the FLT, suggesting that FLT cells possibly undergo a mitotic cycle rather than an endocycle. Deprivation of the FLT resulted in distortion of the testis follicles, disappearance of sperm bundles, reduction of total sperm number and increase of dead sperm, indicating a critical role of the FLT in the spermatogenesis in testis follicles. The special functional differentiation of the two similar tissues suggested that FLT-FB cells are able to establish a promising system to study mitotic-to-endocycle transition.


Asunto(s)
Cuerpo Adiposo/fisiología , Locusta migratoria/fisiología , Espermatogénesis , Animales , Cuerpo Adiposo/crecimiento & desarrollo , Locusta migratoria/crecimiento & desarrollo , Masculino , Testículo/crecimiento & desarrollo , Testículo/fisiología
5.
J Insect Physiol ; 116: 106-117, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077710

RESUMEN

Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.


Asunto(s)
Antibiosis , Escarabajos/fisiología , Metarhizium/fisiología , Animales , Escarabajos/crecimiento & desarrollo , Escarabajos/microbiología , Cuerpo Adiposo/enzimología , Cuerpo Adiposo/crecimiento & desarrollo , Hemolinfa/enzimología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología
6.
Peptides ; 122: 169874, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198647

RESUMEN

Insect allatotropin (AT) plays multi-functions including regulation of juvenile hormone synthesis, growth, development and reproduction. In the present study, the full-length cDNA encoding the AT receptor was cloned from the brain of Helicoverpa armigera (Helar-ATR). The ORF of Helar-ATR exhibited the characteristic seven transmembrane domains of the G protein-coupled receptor (GPCR) and was close to the ATR of Manduca sexta in the phylogenetic tree. The Helar-ATR expressed in vertebrate cell lines can be activated by Helar-AT and each Helar-ATL in a dose-responsive manner, in the following order: Helar-ATLI > Helar-ATLII > Helar-AT > Helar-ATLIII. Helar-ATLI and Helar-ATLII represented the functional ligands to Helar-ATR in vitro, while Helar-AT and Helar-ATLIII behaved as partial agonists. The in vitro functional analysis suggested that the Helar-ATR signal was mainly coupled with elevated levels of Ca2+ and independent of cAMP levels. Helar-ATR mRNA in larvae showed the highest level in the brain, followed by the thorax ganglion, abdomen ganglion, fat body and midgut. Helar-ATR mRNA levels in the complex of the brain-thoracic-abdomen ganglion on the 2nd day of the larval stage and during later pupal stages were observed to be relatively higher than in the wandering and early pupal stages.


Asunto(s)
Desarrollo Embrionario/genética , Hormonas de Insectos/genética , Lepidópteros/genética , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Abdomen/crecimiento & desarrollo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Línea Celular , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Ganglión/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hormonas Juveniles/genética , Hormonas Juveniles/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Lepidópteros/crecimiento & desarrollo , Filogenia , Tórax/crecimiento & desarrollo , Tórax/metabolismo
7.
Insect Biochem Mol Biol ; 101: 108-123, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30171905

RESUMEN

More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and ß-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.


Asunto(s)
Cuerpo Adiposo/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Insectos/genética , Insectos Vectores/metabolismo , Insectos/metabolismo , Metabolismo de los Lípidos/genética , Animales , Apicomplexa/crecimiento & desarrollo , Apicomplexa/metabolismo , Infecciones por Euglenozoos/parasitología , Infecciones por Euglenozoos/transmisión , Cuerpo Adiposo/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Insectos/metabolismo , Insectos Vectores/genética , Insectos Vectores/crecimiento & desarrollo , Insectos/genética , Insectos/crecimiento & desarrollo , Kinetoplastida/crecimiento & desarrollo , Kinetoplastida/metabolismo , Muda/genética , Oogénesis/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Infecciones por Protozoos/parasitología , Infecciones por Protozoos/transmisión , Triglicéridos/metabolismo , Virosis/transmisión , Virosis/virología , Virus/crecimiento & desarrollo , Virus/metabolismo
8.
Arthropod Struct Dev ; 47(5): 521-528, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29909080

RESUMEN

Insect metamorphosis involves a complex change in form and function. In this study, we examined the development of the solitary bee, Megachile rotundata, using micro-computed tomography (µCT) and volume analysis. We describe volumetric changes of brain, tracheae, flight muscles, gut, and fat bodies in prepupal, pupal, and adult M. rotundata. We observed that individual organ systems have distinct patterns of developmental progression, which vary in their timing and duration. This has important implications for commercial management of this agriculturally relevant pollinator.


Asunto(s)
Abejas/anatomía & histología , Animales , Abejas/crecimiento & desarrollo , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Cuerpo Adiposo/anatomía & histología , Cuerpo Adiposo/crecimiento & desarrollo , Larva , Metamorfosis Biológica , Pupa/anatomía & histología , Pupa/crecimiento & desarrollo , Tráquea/anatomía & histología , Tráquea/crecimiento & desarrollo , Microtomografía por Rayos X
9.
Proc Natl Acad Sci U S A ; 115(3): 457-465, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29298915

RESUMEN

Gut microbes positively affect the physiology of many animals, but the molecular mechanisms underlying these benefits remain poorly understood. We recently reported that bacteria-induced gut hypoxia functions as a signal for growth and molting of the mosquito Aedes aegypti In this study, we tested the hypothesis that transduction of a gut hypoxia signal requires hypoxia-induced transcription factors (HIFs). Expression studies showed that HIF-α was stabilized in larvae containing bacteria that induce gut hypoxia but was destabilized in larvae that exhibit normoxia. However, we could rescue growth of larvae exhibiting gut normoxia by treating them with a prolyl hydroxylase inhibitor, FG-4592, that stabilized HIF-α, and inhibit growth of larvae exhibiting gut hypoxia by treating them with an inhibitor, PX-478, that destabilized HIF-α. Using these tools, we determined that HIF signaling activated the insulin/insulin growth factor pathway plus select mitogen-activated kinases and inhibited the adenosine monophosphate-activated protein kinase pathway. HIF signaling was also required for growth of the larval midgut and storage of neutral lipids by the fat body. Altogether, our results indicate that gut hypoxia and HIF signaling activate multiple processes in A. aegypti larvae, with conserved functions in growth and metabolism.


Asunto(s)
Aedes/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de Insectos/genética , Larva/genética , Larva/metabolismo , Masculino , Oxígeno/metabolismo , Transducción de Señal
10.
G3 (Bethesda) ; 8(1): 185-193, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29146584

RESUMEN

Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous lifestyle defines mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, previtellogenic (PV) and postblood meal (PBM), shape its capacity to transmit malaria. Transition between these phases is tightly coordinated to ensure homeostasis between mosquito tissues and successful reproduction. One layer of control is provided by microRNAs (miRNAs), well-known regulators of blood meal digestion and egg development in Aedes mosquitoes. Here, we report a global overview of tissue-specific miRNAs (miRNA) expression during the PV and PBM phases and identify miRNAs regulated during PV to PBM transition. The observed coordinated changes in the expression levels of a set of miRNAs in the energy-storing tissues suggest a role in the regulation of blood meal-induced metabolic changes.


Asunto(s)
Anopheles/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Mosquitos Vectores/genética , Vitelogénesis/genética , Animales , Anopheles/crecimiento & desarrollo , Anopheles/metabolismo , Atlas como Asunto , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Femenino , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Cabeza/crecimiento & desarrollo , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , MicroARNs/clasificación , MicroARNs/metabolismo , Análisis por Micromatrices , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/metabolismo , Especificidad de Órganos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Plasmodium falciparum/fisiología
11.
Biol Trace Elem Res ; 180(2): 327-337, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28361388

RESUMEN

Ag nanoparticles (AgNPs), a widely used non-antibiotic, antibacterial material, have shown toxic and other potentially harmful effects in mammals. However, the deleterious effects of AgNPs on insects are still unknown. Here, we studied the effects of AgNPs on the model invertebrate organism Bombyx mori. After feeding silkworm larvae different concentrations of AgNPs, we evaluated the changes of B. mori body weights, survival rates, and proteomic differences. The results showed that low concentrations (<400 mg/L) of AgNPs promoted the growth and cocoon weights of B. mori. Although high concentrations (≥800 mg/L) of AgNPs also improved B. mori growth, they resulted in silkworm death. An analysis of fat body proteomic differences revealed 13 significant differences in fat body protein spots, nine of which exhibited significantly downregulated expression, while four showed significantly upregulated expression. Reverse transcription-polymerase chain reaction results showed that at an AgNP concentration of 1600 mg/L, the expression levels of seven proteins were similar to the transcription levels of their corresponding genes. Our results suggest that AgNPs lowered the resistance to oxidative stress, affected cell apoptosis, and induced cell necrosis by regulating related protein metabolism and metabolic pathways in B. mori.


Asunto(s)
Bombyx/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Cuerpo Adiposo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/metabolismo , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Apoptosis/efectos de los fármacos , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Exposición Dietética/efectos adversos , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/administración & dosificación , Contaminantes Ambientales/química , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Proteínas de Insectos/agonistas , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Necrosis , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Proteómica/métodos , Plata/administración & dosificación , Plata/química , Análisis de Supervivencia , Aumento de Peso/efectos de los fármacos
12.
J Biol Chem ; 292(24): 10306-10315, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28446607

RESUMEN

Juvenile hormone (JH) controls many biological activities in insects, including development, metamorphosis, and reproduction. In the Aedes aegypti mosquito, a vector of dengue, yellow fever, chikungunya, and zika viruses, the metabolic tissue (the fat body, which is an analogue of the vertebrate liver) produces yolk proteins for developing oocytes. JH is important for the fat body to acquire competence for yolk protein production. However, the molecular mechanisms of how JH promotes mosquito reproduction are not completely understood. In this study we show that stimulation of the JH receptor methoprene-tolerant (Met) activates expression of genes encoding the regulator of ribosome synthesis 1 (RRS1) and six ribosomal proteins (two ribosomal large subunit proteins, two ribosomal small subunit proteins, and two mitochondrial ribosomal proteins). Moreover, RNAi-mediated depletion of RRS1 decreased biosynthesis of the ribosomal protein L32 (RpL32). Depletion of Met, RRS1, or RpL32 led to retardation of ovarian growth and reduced mosquito fecundity, which may at least in part have resulted from decreased vitellogenin protein production in the fat body. In summary, our results indicate that JH is critical for inducing the expression of ribosomal protein genes and demonstrate that RRS1 mediates the JH signal to enhance both ribosomal biogenesis and vitellogenesis.


Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/agonistas , Hormonas Juveniles/metabolismo , Biogénesis de Organelos , Proteínas Ribosómicas/agonistas , Ribosomas/metabolismo , Vitelogénesis , Aedes/crecimiento & desarrollo , Animales , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Proteínas Mitocondriales/agonistas , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Técnicas de Cultivo de Órganos , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Polirribosomas/metabolismo , Interferencia de ARN , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Vitelogeninas/antagonistas & inhibidores , Vitelogeninas/genética , Vitelogeninas/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(10): E1895-E1903, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223504

RESUMEN

The mosquito Aedes aegypti is a major vector of numerous viral diseases, because it requires a blood meal to facilitate egg development. The fat body, a counterpart of mammalian liver and adipose tissues, is the metabolic center, playing a key role in reproduction. Therefore, understanding of regulatory networks controlling its functions is critical, and the role of microRNAs (miRNAs) in the process is largely unknown. We aimed to explore miRNA expression and potential targets in the female fat body of Ae. aegypti, as well as their changes postblood meal (PBM). Small RNA library analysis revealed five unique miRNA patterns sequentially expressed at five sampled time points, likely responding to, and affecting, waves of upstream hormonal signals and gene expression in the same period. To link miRNA identities with downstream targets, transcriptome-wide mRNA 3' UTR interaction sites were experimentally determined at 72 h posteclosion and 24 h PBM through Argonaute 1 cross-linking and immunoprecipitation followed by high-throughput sequencing. Several target sites were validated by means of in vitro luciferase assays with wild-type and mutated 3' UTRs for six miRNA families. With established transgenic lines, consistent results were observed with spatiotemporal knockdown of miR-8 and luciferase assays. We further investigated miRNAs potentially regulating various physiological processes based on Clusters of Orthologous Groups functional categories. Hence, the present work comprehensively elucidated miRNA expression and target dynamics in the female mosquito fat body, providing a solid foundation for future functional studies of miRNA regulation during the gonadotrophic cycle.


Asunto(s)
Aedes/genética , Gonadotrofos/metabolismo , MicroARNs/genética , Transcriptoma/genética , Aedes/crecimiento & desarrollo , Animales , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica
14.
PLoS Genet ; 12(8): e1006154, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27500738

RESUMEN

Cell growth and proliferation depend upon many different aspects of lipid metabolism. One key signaling pathway that is utilized in many different anabolic contexts involves Phosphatidylinositide 3-kinase (PI3K) and its membrane lipid products, the Phosphatidylinositol (3,4,5)-trisphosphates. It remains unclear, however, which other branches of lipid metabolism interact with the PI3K signaling pathway. Here, we focus on specialized fat metabolizing cells in Drosophila called larval oenocytes. In the presence of dietary nutrients, oenocytes undergo PI3K-dependent cell growth and contain very few lipid droplets. In contrast, during starvation, oenocytes decrease PI3K signaling, shut down cell growth and accumulate abundant lipid droplets. We now show that PI3K in larval oenocytes, but not in fat body cells, functions to suppress lipid droplet accumulation. Several enzymes of fatty acid, triglyceride and hydrocarbon metabolism are required in oenocytes primarily for lipid droplet induction rather than for cell growth. In contrast, a very long chain fatty-acyl-CoA reductase (FarO) and a putative lipid dehydrogenase/reductase (Spidey, also known as Kar) not only promote lipid droplet induction but also inhibit oenocyte growth. In the case of Spidey/Kar, we show that the growth suppression mechanism involves inhibition of the PI3K signaling pathway upstream of Akt activity. Together, the findings in this study show how Spidey/Kar and FarO regulate the balance between the cell growth and lipid storage of larval oenocytes.


Asunto(s)
Acil-CoA Deshidrogenasa/genética , Proteínas de Drosophila/genética , Metabolismo de los Lípidos/genética , Oxidorreductasas/genética , Fosfatidilinositol 3-Quinasas/genética , Acil-CoA Deshidrogenasa/metabolismo , Animales , Proliferación Celular/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Larva/genética , Larva/metabolismo , Gotas Lipídicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Triglicéridos/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-26826286

RESUMEN

In the present study, a riboflavin-binding hexamerin (RbHex) was cloned and characterized from the larval fat body of Corcyra cephalonica. The complete cDNA (2121bp) encodes a 706-amino acid protein with a molecular mass ~82kDa. Expression of RbHex 82 was predominant in fat body among larval tissues. Further, it is prominently expressed during the last instar larval development. Homology modeling and docking studies predicted riboflavin binding site of the hexamerin. Spectrofluorimetric analysis further confirmed riboflavin release from the hexamerin fraction. Quantitative RT-PCR studies demonstrated hormonal regulation of RbHex 82. 20-Hydroxyecdysone (20HE) had a stimulatory effect on its transcription whereas JH alone did not show any effect. However, JH in the presence of 20HE maintains the RbHex 82 expression which indicates the JH's role as a status quo factor. This study is the first to report the characterization of riboflavin-binding hexamerin in a lepidopteran pest. Further, the possibility of RbHex 82 as a pest control target is discussed.


Asunto(s)
Cuerpo Adiposo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/fisiología , Riboflavina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Ecdisterona/farmacología , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , India , Proteínas de Insectos/agonistas , Proteínas de Insectos/química , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Metopreno/farmacología , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Peso Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Sistemas de Lectura Abierta , Especificidad de Órganos , Filogenia , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Riboflavina/química , Alineación de Secuencia , Homología Estructural de Proteína
16.
Artículo en Inglés | MEDLINE | ID: mdl-26780217

RESUMEN

Vitamin B6 includes 6 pyridine derivatives, among which pyridoxal 5'-phosphate is a coenzyme for over 140 enzymes. Animals acquire their vitamin B6 from food. Through a salvage pathway, pyridoxal 5'-phosphate is synthesized from pyridoxal, pyridoxine or pyridoxamine, in a series of reactions catalyzed by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. The regulation of pyridoxal 5'-phospahte biosynthesis and pyridoxal 5'-phospahte homeostasis are at the center of study for vitamin B6 nutrition. How pyridoxal 5'-phosphate biosynthesis is regulated by hormones has not been reported so far. Our previous studies have shown that pyridoxal 5'-phosphate level in silkworm larva displays cyclic developmental changes. In the current study, effects of exogenous juvenile hormone and molting hormone on the transcription level of genes coding for the enzymes involved in the biosynthesis of pyridoxal 5'-phospahte were examined. Results show that pyridoxal kinase and pyridoxine 5'-phosphate oxidase are regulated at the transcription level by development and are responsive to hormones. Molting hormone stimulates the expression of genes coding for pyridoxal kinase and pyridoxine 5'-phosphate oxidase, and juvenile hormone appears to work against molting hormone. Whether pyridoxal 5'-phosphate biosynthesis is regulated by hormones in general is an important issue for further studies.


Asunto(s)
Bombyx/fisiología , Hormonas de Insectos/fisiología , Proteínas de Insectos/metabolismo , Piridoxal Quinasa/metabolismo , Fosfato de Piridoxal/biosíntesis , Piridoxaminafosfato Oxidasa/metabolismo , Transcripción Genética , Animales , Bombyx/efectos de los fármacos , Bombyx/crecimiento & desarrollo , China , Ecdisterona/antagonistas & inhibidores , Ecdisterona/farmacología , Ecdisterona/fisiología , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes de Insecto/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Hormonas de Insectos/antagonistas & inhibidores , Hormonas de Insectos/farmacología , Proteínas de Insectos/agonistas , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Hormonas Juveniles/farmacología , Hormonas Juveniles/fisiología , Cinética , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Piridoxal Quinasa/antagonistas & inhibidores , Piridoxal Quinasa/química , Piridoxal Quinasa/genética , Piridoxaminafosfato Oxidasa/química , Piridoxaminafosfato Oxidasa/genética , ARN Mensajero/metabolismo , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/fisiología , Sesquiterpenos/farmacología , Transcripción Genética/efectos de los fármacos
17.
Biometals ; 28(6): 967-74, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26411574

RESUMEN

While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Tracto Gastrointestinal/metabolismo , Neuronas/metabolismo , Zinc/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Transporte de Catión/deficiencia , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/patología , Femenino , Tracto Gastrointestinal/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Transporte Iónico , Masculino , Neuronas/citología , Fenotipo , Transgenes , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Alas de Animales/patología
18.
Cell ; 159(4): 829-43, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417159

RESUMEN

Aging of immune organs, termed as immunosenescence, is suspected to promote systemic inflammation and age-associated disease. The cause of immunosenescence and how it promotes disease, however, has remained unclear. We report that the Drosophila fat body, a major immune organ, undergoes immunosenescence and mounts strong systemic inflammation that leads to deregulation of immune deficiency (IMD) signaling in the midgut of old animals. Inflamed old fat bodies secrete circulating peptidoglycan recognition proteins that repress IMD activity in the midgut, thereby promoting gut hyperplasia. Further, fat body immunosenecence is caused by age-associated lamin-B reduction specifically in fat body cells, which then contributes to heterochromatin loss and derepression of genes involved in immune responses. As lamin-associated heterochromatin domains are enriched for genes involved in immune response in both Drosophila and mammalian cells, our findings may provide insights into the cause and consequence of immunosenescence during mammalian aging. PAPERFLICK:


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/inmunología , Lamina Tipo B/metabolismo , Envejecimiento , Animales , Proliferación Celular , Drosophila melanogaster/química , Drosophila melanogaster/inmunología , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Heterocromatina , Inflamación/inmunología , Mamíferos/inmunología , Modelos Animales , Transducción de Señal
19.
Integr Comp Biol ; 54(5): 931-41, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24920749

RESUMEN

Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph.


Asunto(s)
Saltamontes/fisiología , Proteínas de Insectos/genética , Metabolismo de los Lípidos , Interferencia de ARN , Vitelogeninas/genética , Aminoácidos/metabolismo , Animales , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Saltamontes/genética , Saltamontes/crecimiento & desarrollo , Hemolinfa/metabolismo , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Ninfa/genética , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Vitelogeninas/metabolismo
20.
Arthropod Struct Dev ; 43(5): 511-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24943875

RESUMEN

Programmed cell death (PCD) is a focal topic for understanding processes underlying metamorphosis in insects, especially so in holometabolous orders. During adult morphogenesis it allows for the elimination of larva-specific tissues and the reorganization of others for their functionalities in adult life. In Rhynchosciara, this PCD process could be classified as autophagic cell death, yet the expression of apoptosis-related genes and certain morphological aspects suggest that processes, autophagy and apoptosis may be involved. Aiming to reveal the morphological changes that salivary gland and fat body cells undergo during metamorphosis we conducted microscopy analyses to detect chromatin condensation and fragmentation, as well as alterations in the cytoplasm of late pupal tissues of Rhynchosciara americana. Transmission electron microscopy and confocal microscopy revealed cells in variable stages of death. By analyzing the morphological structure of the salivary gland we observed the presence of cells with autophagic vacuoles and apoptotic bodies and DNA fragmentation was confirmed with the TUNEL assay in salivary gland. The reorganization of fat body occurs with discrete detection of cell death by TUNEL assay. However, both salivary gland histolysis and fat body reorganization occur under control of the hormone ecdysone.


Asunto(s)
Apoptosis , Autofagia , Dípteros/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Dípteros/ultraestructura , Cuerpo Adiposo/crecimiento & desarrollo , Cuerpo Adiposo/ultraestructura , Etiquetado Corte-Fin in Situ , Hormonas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Transmisión , Pupa/crecimiento & desarrollo , Pupa/ultraestructura , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...