Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 10127, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300691

RESUMEN

Deteriorating weight loss in patients with Huntington's disease (HD) is a complicated peripheral manifestation and the cause remains poorly understood. Studies suggest that body weight strongly influences the clinical progression rate of HD and thereby offers a valuable target for therapeutic interventions. Mutant huntingtin (mHTT) is ubiquitously expressed and could induce toxicity by directly acting in the peripheral tissues. We investigated the effects of selective expression of mHTT exon1 in fat body (FB; functionally equivalent to human adipose tissue and liver) using transgenic Drosophila. We find that FB-autonomous expression of mHTT exon1 is intrinsically toxic and causes chronic weight loss in the flies despite progressive hyperphagia, and early adult death. Moreover, flies exhibit loss of intracellular lipid stores, and decline in the systemic levels of lipids and carbohydrates which aggravates over time, representing metabolic defects. At the cellular level, besides impairment, cell death also occurs with the formation of mHTT aggregates in the FB. These findings indicate that FB-autonomous expression of mHTT alone is sufficient to cause metabolic abnormalities and emaciation in vivo without any neurodegenerative cues.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación , Animales , Animales Modificados Genéticamente , Muerte Celular/genética , Proteínas de Drosophila/genética , Ingestión de Alimentos , Exones , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/fisiopatología , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Pérdida de Peso/genética
2.
J Insect Physiol ; 116: 1-9, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30953617

RESUMEN

The hypopharyngeal glands (HGs) of honey bee nurse workers secrete the major protein fraction of jelly, a protein and lipid rich substance fed to developing larvae, other worker bees, and queens. A hallmark of poorly nourished nurses is their small HGs, which actively degrade due to hormone-induced autophagy. To better connect nutritional stress with HG degradation, we looked to honey bees and other insect systems, where nutrient stress is often accompanied by fat body degradation. The fat body contains stored lipids that are likely a substrate for ecdysteroid synthesis, so we tested whether starvation caused increased fat body lipolysis. Ecdysteroid signaling and response pathways and IIS/TOR are tied to nutrient-dependent autophagy in honey bees and other insects, and so we also tested whether and where genes in these pathways were differentially regulated in the head and fat body. Last, we injected nurse-aged bees with the honey bee ecdysteroid makisterone A to determine whether this hormone influenced HG size and autophagy. We find that starved nurse aged bees exhibited increased fat body lipolysis and increased expression of ecdysteroid production and response genes in the head. Genes in the IIS/TOR pathway were not impacted by starvation in either the head or fat body. Additionally, bees injected with makisterone A had smaller HGs and increased expression of autophagy genes. These data support the hypothesis that nutritional stress induces fat body lipolysis, which may liberate the sterols important for ecdysteroid production, and that increased ecdysteroid levels induce autophagic HG degradation.


Asunto(s)
Abejas/fisiología , Ecdisteroides/metabolismo , Cuerpo Adiposo/fisiopatología , Hormonas de Insectos/metabolismo , Lipólisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Abejas/genética , Ecdisteroides/biosíntesis , Glándulas Exocrinas/crecimiento & desarrollo , Glándulas Exocrinas/metabolismo , Femenino , Hipofaringe/crecimiento & desarrollo , Hipofaringe/metabolismo , Hormonas de Insectos/biosíntesis , Transcripción Genética
3.
Cell Host Microbe ; 11(4): 410-7, 2012 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-22520468

RESUMEN

Local infections can trigger immune responses in distant organs, and this interorgan immunological crosstalk helps maintain immune homeostasis. We find that enterobacterial infection or chemically and genetically stimulating reactive oxygen species (ROS)-induced stress responses in the Drosophila gut triggers global antimicrobial peptide (AMP) responses in the fat body, a major immune organ in flies. ROS stress induces nitric oxide (NO) production in the gut, which triggers production of the AMP Diptericin, but not Drosomycin, in the fat body. Hemocytes serve as a signaling relay for communication between intestinal ROS/NO signaling and fat body AMP responses. The induction of AMP responses requires Rel/NF-κB activation within the fat body. Although Rel-mediated Drosomycin induction is repressed by the AP-1 transcription factor, this repressor activity is inhibited by intestinal ROS. Thus, intestinal ROS signaling plays an important role in initiating gut-to-fat body immunological communication in Drosophila.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Drosophila melanogaster/inmunología , Infecciones por Enterobacteriaceae/inmunología , Enterobacteriaceae/fisiología , Cuerpo Adiposo/inmunología , Intestinos/inmunología , Estrés Oxidativo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/fisiopatología , Cuerpo Adiposo/fisiopatología , Humanos , Intestinos/microbiología , Intestinos/fisiopatología , Óxido Nítrico/inmunología , Especies Reactivas de Oxígeno/inmunología
4.
Anat Rec (Hoboken) ; 295(6): 991-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22488847

RESUMEN

Cetaceans possess highly derived auditory systems adapted for underwater hearing. Odontoceti (toothed whales) are thought to receive sound through specialized fat bodies that contact the tympanoperiotic complex, the bones housing the middle and inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen whales), which have very different cranial anatomies compared to odontocetes. Here, we report a potential fatty sound reception pathway in the minke whale (Balaenoptera acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven minke whales was investigated using computerized tomography and magnetic resonance imaging, verified through dissections. Findings include a large, well-formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the tympanoperiotic complex. This fat body inserts into the tympanoperiotic complex at the lateral aperture between the tympanic and periotic bones and is in contact with the ossicles. There is also a second, smaller body of fat found within the tympanic bone, which contacts the ossicles as well. This is the first analysis of these fatty tissues' association with the auditory structures in a mysticete, providing anatomical evidence that fatty sound reception pathways may not be a unique feature of odontocete cetaceans.


Asunto(s)
Oído/anatomía & histología , Cuerpo Adiposo/anatomía & histología , Audición/fisiología , Ballenas/anatomía & histología , Adaptación Fisiológica , Animales , Oído/fisiología , Cuerpo Adiposo/fisiopatología , Femenino , Masculino , Ballenas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...