Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 10(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34571916

RESUMEN

The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.


Asunto(s)
Cuerpos Basales/patología , Centrosoma/patología , Células Germinativas/patología , Infertilidad Masculina/patología , Humanos , Infertilidad Masculina/etiología , Masculino , Espermatogénesis
2.
Semin Cell Dev Biol ; 110: 139-148, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32475690

RESUMEN

Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cilios/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Recesivo/genética , Receptores de Superficie Celular/genética , Canales Catiónicos TRPP/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Adulto , Cuerpos Basales/efectos de los fármacos , Cuerpos Basales/metabolismo , Cuerpos Basales/patología , Niño , Cilios/efectos de los fármacos , Cilios/patología , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Expresión Génica , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Mutación , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Recesivo/tratamiento farmacológico , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología , Receptores de Superficie Celular/deficiencia , Transducción de Señal , Canales Catiónicos TRPP/deficiencia
3.
Dev Cell ; 55(2): 224-236.e6, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33038333

RESUMEN

Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.


Asunto(s)
Cuerpos Basales/patología , Diferenciación Celular/fisiología , Centriolos/patología , Cilios/patología , Células Cultivadas , Centriolos/fisiología , Cilios/fisiología , Células Epiteliales/patología , Epitelio/patología , Humanos , Microscopía/métodos
4.
Tissue Cell ; 64: 101369, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32473706

RESUMEN

Oral-Facial-Digital type I (OFD1) is a rare inherited form of renal cystic disease associated with ciliary dysfunction. This disorder is due to mutations in the OFD1 gene that encodes a protein localized to centrosomes and basal bodies in different cell types. Immunofluorescence analysis demonstrated that OFD1 displays a dynamic distribution during cell cycle. High-content microscopy analysis of Ofd1-depleted fibroblasts revealed impaired cell cycle progression. Immunofluorescence analysis and cell proliferation assays also indicated the presence of a variety of defects such as centrosome accumulation, nuclear abnormalities and aneuploidy. In addition, Ofd1-depleted cells displayed an abnormal microtubule network that may underlie these defects. All together our results suggest that OFD1 contributes to the function of the microtubule organizing center (MTOC) in the cell, controlling cell cycle progression both in vitro and in vivo.


Asunto(s)
Centro Organizador de los Microtúbulos/patología , Síndromes Orofaciodigitales/genética , Proteínas , Aneuploidia , Animales , Cuerpos Basales/patología , Ciclo Celular , Línea Celular , Núcleo Celular/patología , Centrosoma/patología , Cilios/patología , Citoesqueleto/patología , Fibroblastos , Humanos , Mutación , Cultivo Primario de Células , Proteínas/genética , Proteínas/metabolismo
5.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630787

RESUMEN

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Asunto(s)
Ventrículos Cerebrales/patología , Ciliopatías/genética , Factores de Transcripción Forkhead/genética , Hidrocefalia/genética , Mutación/genética , Cuerpos Basales/patología , Cilios/genética , Cilios/patología , Ciliopatías/patología , Epéndimo/patología , Células Epiteliales/patología , Humanos , Hidrocefalia/patología
6.
J Cell Sci ; 132(5)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30665891

RESUMEN

Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Cilios/fisiología , Flagelos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Animales , Cuerpos Basales/patología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Transporte de Proteínas , Olfato , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Tubulina (Proteína)/metabolismo
7.
Genome Biol ; 16: 293, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26714646

RESUMEN

BACKGROUND: Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. RESULTS: Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556 (-/-) null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions. CONCLUSIONS: We have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.


Asunto(s)
Cuerpos Basales/metabolismo , Cerebelo/anomalías , Proteínas Asociadas a Microtúbulos/genética , Mutación , Retina/anomalías , Factores de Ribosilacion-ADP/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Adenosina Trifosfatasas/metabolismo , Adulto , Animales , Cuerpos Basales/patología , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Cultivadas , Cerebelo/patología , Niño , Preescolar , Cilios/genética , Cilios/patología , Exoma , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Humanos , Katanina , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Linaje , Unión Proteica , Retina/patología
8.
Nature ; 510(7503): 115-20, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24899310

RESUMEN

The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.


Asunto(s)
Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/genética , Cilios/genética , Cilios/fisiología , MicroARNs/genética , Morfogénesis/genética , Animales , Animales Recién Nacidos , Cuerpos Basales/metabolismo , Cuerpos Basales/patología , Cuerpos Basales/ultraestructura , Secuencia de Bases , Proteínas de Unión a Calmodulina/metabolismo , Centriolos/metabolismo , Cilios/patología , Cilios/ultraestructura , Epidermis/embriología , Epidermis/patología , Femenino , Infertilidad/genética , Infertilidad/fisiopatología , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Síndrome de Kartagener/fisiopatología , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Fenotipo , Sistema Respiratorio/patología , Sistema Respiratorio/fisiopatología , Análisis de Supervivencia , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...