Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Am J Physiol Cell Physiol ; 326(3): C948-C963, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189128

RESUMEN

Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.


Asunto(s)
Cuerpos Cetónicos , Neoplasias , Animales , Humanos , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Neoplasias/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Fenómenos Fisiológicos Celulares , Mamíferos/metabolismo
2.
Microvasc Res ; 150: 104585, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437687

RESUMEN

Glucose constitutes the main source of energy for the central nervous system (CNS), its entry occurring at the blood-brain barrier (BBB) via the presence of glucose transporter 1 (GLUT1). However, under food intake restrictions, the CNS can utilize ketone bodies (KB) as an alternative source of energy. Notably, the relationship between the BBB and KBs and its effect on their glucose metabolism remains poorly understood. In this study, we investigated the effect of glucose deprivation on the brain endothelium in vitro, and supplementation with KBs using induced pluripotent stem cell (iPSC)-derived brain microvascular endothelial cell-like cells (iBMECs). Glucose-free environment significantly decreased cell metabolic activity and negatively impacted the barrier function. In addition, glucose deprivation did not increase GLUT1 expression but also resulted in a decrease in glucose uptake and glycolysis. Supplementation of glucose-deprived iBMECs monolayers with KB showed no improvement and even worsened upon treatment with acetoacetate. However, under a hypoglycemic condition in the presence of KBs, we noted a slight improvement of the barrier function, with no changes in glucose uptake. Notably, hypoglycemia and/or KB pre-treatment elicited a saturable beta-hydroxybutyrate diffusion across iBMECs monolayers, such diffusion occurred partially via an MCT1-dependent mechanism. Taken together, our study highlights the importance of glucose metabolism and the reliance of the brain endothelium on glucose and glycolysis for its function, such dependence is unlikely to be covered by KBs supplementation. In addition, KB diffusion at the BBB appeared induced by KB pre-treatment and appears to involve an MCT1-dependent mechanism.


Asunto(s)
Células Madre Pluripotentes Inducidas , Cuerpos Cetónicos , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Glucosa/metabolismo , Endotelio/metabolismo , Suplementos Dietéticos
3.
JACC Heart Fail ; 11(10): 1337-1347, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452805

RESUMEN

BACKGROUND: Cardiogenic shock (CS) is a life-threatening condition with sparse treatment options. The ketone body 3-hydroxybutyrate has favorable hemodynamic effects in patients with stable chronic heart failure. Yet, the hemodynamic effects of exogenous ketone ester (KE) in patients with CS remain unknown. OBJECTIVES: The authors aimed to assess the hemodynamic effects of single-dose enteral treatment with KE in patients with CS. METHODS: In a double-blind, crossover study, 12 patients with CS were randomized to an enteral bolus of KE and isocaloric, isovolumic placebo containing maltodextrin. Patients were assessed with pulmonary artery catheterization, arterial blood samples, echocardiography, and near-infrared spectroscopy for 3 hours following each intervention separated by a 3-hour washout period. RESULTS: KE increased circulating 3-hydroxybutyrate (2.9 ± 0.3 mmol/L vs 0.2 ± 0.3 mmol/L, P < 0.001) and was associated with augmented cardiac output (area under the curve of relative change: 61 ± 22 L vs 1 ± 18 L, P = 0.044). Also, KE increased cardiac power output (0.07 W [95% CI: 0.01-0.14]; P = 0.037), mixed venous saturation (3 percentage points [95% CI: 1-5 percentage points]; P = 0.010), and forearm perfusion (3 percentage points [95% CI: 0-6 percentage points]; P = 0.026). Right (P = 0.048) and left (P = 0.017) ventricular filling pressures were reduced whereas heart rate and mean arterial and pulmonary arterial pressures remained similar. Left ventricular ejection fraction improved by 4 percentage points (95% CI: 2-6 percentage points; P = 0.005). Glucose levels decreased by 2.6 mmol/L (95% CI: -5.2 to 0.0; P = 0.047) whereas insulin levels remained unaltered. CONCLUSIONS: Treatment with KE improved cardiac output, biventricular function, tissue oxygenation, and glycemic control in patients with CS (Treatment With the Ketone Body 3-hydroxybutyrate in Patients With Cardiogenic Shock [KETO-SHOCK1]; NCT04642768).


Asunto(s)
Insuficiencia Cardíaca , Choque Cardiogénico , Humanos , Choque Cardiogénico/terapia , Volumen Sistólico , Cetonas/farmacología , Cetonas/uso terapéutico , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/uso terapéutico , Estudios Cruzados , Función Ventricular Izquierda , Hemodinámica , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/uso terapéutico
4.
J Neurochem ; 166(1): 87-106, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328918

RESUMEN

Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Ratas , Animales , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/metabolismo , Endorribonucleasas/farmacología , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Glucosa/metabolismo , Autofagia , Infarto de la Arteria Cerebral Media , Modelos Teóricos , Accidente Cerebrovascular/tratamiento farmacológico
5.
Viruses ; 15(6)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37376562

RESUMEN

One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of ß-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.


Asunto(s)
COVID-19 , Dieta Cetogénica , Humanos , Animales , Ratones , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Dieta Cetogénica/métodos , SARS-CoV-2/metabolismo , COVID-19/terapia , Ácido 3-Hidroxibutírico/metabolismo
6.
J Am Heart Assoc ; 12(10): e028232, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37183871

RESUMEN

Background Pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) are debilitating diseases with a high mortality. Despite emerging treatments, pulmonary vascular resistance frequently remains elevated. However, the ketone body 3-hydroxybutyrate (3-OHB) may reduce pulmonary vascular resistance in these patients. Hence, the aim was to assess the hemodynamic effects of 3-OHB in patients with PAH or CTEPH. Methods and Results We enrolled patients with PAH (n=10) or CTEPH (n=10) and residual pulmonary hypertension. They received 3-OHB infusion and placebo (saline) for 2 hours in a randomized crossover study. Invasive hemodynamic and echocardiography measurements were performed. Furthermore, we investigated the effects of 3-OHB on the right ventricle of isolated hearts and isolated pulmonary arteries from Sprague-Dawley rats. Ketone body infusion increased circulating 3-OHB levels from 0.5±0.5 to 3.4±0.7 mmol/L (P<0.001). Cardiac output improved by 1.2±0.1 L/min (27±3%, P<0.001), and right ventricular annular systolic velocity increased by 1.4±0.4 cm/s (13±4%, P=0.002). Pulmonary vascular resistance decreased by 1.3±0.3 Wood units (18%±4%, P<0.001) with no significant difference in response between patients with PAH and CTEPH. In the rat studies, 3-OHB administration was associated with decreased pulmonary arterial tension compared with saline administration (maximal relative tension difference: 12±2%, P<0.001) and had no effect on right ventricular systolic pressures (P=0.63), whereas pressures rose at a slower pace (dP/dtmax, P=0.02). Conclusions In patients with PAH or CTEPH, ketone body infusion improves cardiac output and decreases pulmonary vascular resistance. Experimental rat studies support that ketone bodies relax pulmonary arteries. Long-term studies are warranted to assess the clinical role of hyperketonemia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04615754.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Embolia Pulmonar , Animales , Ratas , Enfermedad Crónica , Estudios Cruzados , Hipertensión Pulmonar Primaria Familiar , Hemodinámica/fisiología , Cuerpos Cetónicos/farmacología , Arteria Pulmonar , Embolia Pulmonar/complicaciones , Ratas Sprague-Dawley , Humanos
7.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766827

RESUMEN

Mitochondrial activity and quality control are essential for neuronal homeostasis as neurons rely on glucose oxidative metabolism. The ketone body, D-ß-hydroxybutyrate (D-BHB), is metabolized to acetyl-CoA in brain mitochondria and used as an energy fuel alternative to glucose. We have previously reported that D-BHB sustains ATP production and stimulates the autophagic flux under glucose deprivation in neurons; however, the effects of D-BHB on mitochondrial turnover under physiological conditions are still unknown. Sirtuins (SIRTs) are NAD+-activated protein deacetylases involved in the regulation of mitochondrial biogenesis and mitophagy through the activation of transcription factors FOXO1, FOXO3a, TFEB and PGC1α coactivator. Here, we aimed to investigate the effect of D-BHB on mitochondrial turnover in cultured neurons and the mechanisms involved. Results show that D-BHB increased mitochondrial membrane potential and regulated the NAD+/NADH ratio. D-BHB enhanced FOXO1, FOXO3a and PGC1α nuclear levels in an SIRT2-dependent manner and stimulated autophagy, mitophagy and mitochondrial biogenesis. These effects increased neuronal resistance to energy stress. D-BHB also stimulated the autophagic-lysosomal pathway through AMPK activation and TFEB-mediated lysosomal biogenesis. Upregulation of SIRT2, FOXOs, PGC1α and TFEB was confirmed in the brain of ketogenic diet (KD)-treated mice. Altogether, the results identify SIRT2, for the first time, as a target of D-BHB in neurons, which is involved in the regulation of autophagy/mitophagy and mitochondrial quality control.


Asunto(s)
NAD , Sirtuina 2 , Animales , Ratones , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Autofagia , Glucosa/metabolismo , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Lisosomas/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 2/metabolismo
8.
J Clin Endocrinol Metab ; 108(3): 653-664, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240323

RESUMEN

CONTEXT: Exogenous ketone body administration lowers circulating glucose levels but the underlying mechanisms are uncertain. OBJECTIVE: We tested the hypothesis that administration of the ketone body ß-hydroxybutyrate (ßOHB) acutely increases insulin sensitivity via feedback suppression of circulating free fatty acid (FFA) levels. METHODS: In a randomized, single-blinded crossover design, 8 healthy men were studied twice with a growth hormone (GH) infusion to induce lipolysis in combination with infusion of either ßOHB or saline. Each study day comprised a basal period and a hyperinsulinemic-euglycemic clamp combined with a glucose tracer and adipose tissue and skeletal muscle biopsies. RESULTS: ßOHB administration profoundly suppressed FFA levels concomitantly with a significant increase in glucose disposal and energy expenditure. This was accompanied by a many-fold increase in skeletal muscle content of both ßOHB and its derivative acetoacetate. CONCLUSION: Our data unravel an insulin-sensitizing effect of ßOHB, which we suggest is mediated by concomitant suppression of lipolysis.


Asunto(s)
Hormona de Crecimiento Humana , Resistencia a la Insulina , Cuerpos Cetónicos , Humanos , Masculino , Ácido 3-Hidroxibutírico/farmacología , Ácidos Grasos no Esterificados , Glucosa , Técnica de Clampeo de la Glucosa , Hormona del Crecimiento , Hormona de Crecimiento Humana/farmacología , Insulina/farmacología , Resistencia a la Insulina/fisiología , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/uso terapéutico , Lipólisis/efectos de los fármacos , Lipólisis/fisiología
9.
Nutr Neurosci ; 26(12): 1258-1278, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354157

RESUMEN

INTRODUCTION: Ketogenic diet (KD) therapy has been used as a dietary intervention in drug-resistant epilepsy for several years. Research currently suggests that KD therapy may carry neuroprotective and cognition enhancing effects for individuals with non-epileptic conditions as well as for healthy individuals. Therefore, KD may have potential as a non-invasive, nutritional treatment approach for difficult to manage conditions such as neurodegenerative illnesses or mood disorders. The aim of this review is to summarize the available evidence on ketogenic interventions and the resulting cognitive outcomes. MATERIALS AND METHODS: The paper was based on PRISMA 2020 guidelines. The search was conducted in June 2021 on the following databases: CENTRAL, PubMed, EMBASE, PsycInfo, Web of Science. The search yielded 2014 studies, of which 49 were included. RESULTS: There were 22 animal studies assessing murine models and 27 studies on humans. The primary indications in these studies were epileptic conditions, neurodegenerative disorders, cognitive impairment, and healthy populations. DISCUSSION: Administration of KD seems to confer cognitive-enhancing effects in areas such as working memory, reference memory and attention. Studies found that KD treatment in animals has the potential to alleviate age-related cognitive decline. Over 80% of the 27 human studies reported a favourable effect of intervention, and none reported a detrimental effect of KD. While these findings suggest that KD may improve the functioning of certain cognitive domains, definitive conclusions were limited by studies with small sample sizes, the absence of controls and randomization, and the lack of objective measures of cognition.


Asunto(s)
Disfunción Cognitiva , Dieta Cetogénica , Epilepsia Refractaria , Epilepsia , Humanos , Ratones , Animales , Dieta Cetogénica/métodos , Cognición , Disfunción Cognitiva/prevención & control , Cuerpos Cetónicos/farmacología
10.
Eur Rev Med Pharmacol Sci ; 26(23): 8693-8699, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36524488

RESUMEN

OBJECTIVE: This study aimed at investigating the effect of ketogenic and Western diets on pressure wounds. MATERIALS AND METHODS: This randomized controlled study used 33 male Sprague-Dawley rats. They were randomly divided into the control, ketogenic, and Western diet groups. Pressure wounds were created on the rats' backs. RESULTS: Wound healing of the Western diet group on day 42 was better than the ketogenic and standard groups. In the microscopic examinations, wound closure, damaged muscle tissue repair, angiogenesis, vascularization, granulation, and collagenization in the Western diet group were faster than in the ketogenic and standard groups. CONCLUSIONS: The Western diet was potentially effective for pressure wound healing. Future research should be conducted to clarify how this affects the wound-healing process.


Asunto(s)
Dieta Occidental , Cicatrización de Heridas , Animales , Masculino , Ratas , Cuerpos Cetónicos/farmacología , Ratas Sprague-Dawley
11.
Oxid Med Cell Longev ; 2022: 7736416, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847595

RESUMEN

Ketone bodies including ß-hydroxybutyrate (ß-HB) have been proved the therapeutic potential in diverse neurological disorders. However, the role of ß-HB in the regulation of neurological injury after cardiac arrest (CA) remains unclear. We investigated the effect of ß-HB on brain mitochondrial dysfunction and neurological function after CA. A rat model of CA was established by asphyxia. The rats were randomly divided into three groups: sham group, control group, and ß-HB group. Animals received 200 mg/kg ß-HB or same volume vehicle at 10 minutes after return of spontaneous circulation by intraperitoneal injection. Neurological function was evaluated by neurologic deficit score and Y-maze. Neuronal cell loss and apoptosis were detected through hematoxylin-eosin staining, Nissl staining, and TdT-mediated dUTP nick-end labeling assay. Oxidative stress levels were determined by immunohistochemical staining of 4-hydoxynonenal and 8-hydroxy-2'-deoxyguanosine. Furthermore, mitochondrial ultrastructure of brain cells was observed by transmission electron microscopy. In addition, the protein expression levels of Bak, caspase 3, gasdermin D, caspase 1, brain-derived neurotrophic factor, dynamin-related protein 1 (Drp1), and phospho-Drp1 (ser616) were measured. We found that neurological function and survival rate were significantly higher in the ß-HB group compared with the control group. ß-HB also reduced neurons death and neurological oxidative stress after CA. Moreover, ß-HB reduced neurological injury from apoptosis and pyroptosis after CA. In addition, ß-HB maintained the structural integrity of brain mitochondria, prevented mitochondrial fission, and increased brain energy metabolism after CA. In conclusion, ß-HB beneficially affected the neurological function of rats after global cerebral ischemia, associated with decreased mitochondrial fission, and improved mitochondrial function. Our results suggest that ß-HB might benefit patients suffering from neurological dysfunction after CA.


Asunto(s)
Paro Cardíaco , Dinámicas Mitocondriales , Animales , Apoptosis , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Cuerpos Cetónicos/uso terapéutico , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Res Vet Sci ; 143: 134-141, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35026630

RESUMEN

KBs (ketone bodies), i.e., acetoacetate, acetone, and (R)-3-Hydroxybutanoate, constitute the intermediate products of the incomplete oxidative degradation of fatty acids. These KBs are used as a source of energy in the hosts' brain, skeletal muscles, and heart. Additionally, they regulate inflammation and oxidative stress of the host by acting as signaling mediators. Parasitic infection is known to result in abnormal physiological and biochemical metabolism, ketoacidosis, and other damage to the host. In this study, we investigated the effects of Trypanosoma evansi and Toxoplasma gondii on ketone body metabolism in mice, as well as the KB levels in the brain, liver, and peripheral blood. T. gondii was found to significantly increase the KB levels, resulting in ketonemia; T. evansi was found to stabilize KB levels in mice. Further investigations showed that T. evansi downregulated the expression of genes encoding enzymes involved in KBs synthesizing pathway and enhanced KBs synthesizing to eliminate ketonemia. Conversely, T. gondii significantly increased the expression of genes encoding enzymes involved in KBs synthesizing pathway and decreased KBs metabolism pathway ones and resulting in increased KBs levels in peripheral blood, culminating in ketonemia. These findings elucidate the differences in the KBs metabolism resulting from infection with T. evansi and T. gondii.


Asunto(s)
Toxoplasma , Trypanosoma , Animales , Encéfalo/metabolismo , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/farmacología , Ratones , Ratones Endogámicos BALB C
13.
JCI Insight ; 6(20)2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499623

RESUMEN

Autophagy has long been associated with longevity, and it is well established that autophagy reverts and prevents vascular deterioration associated with aging and cardiovascular diseases. Currently, our understanding of how autophagy benefits the vasculature is centered on the premise that reduced autophagy leads to the accumulation of cellular debris, resulting in inflammation and oxidative stress, which are then reversed by reconstitution or upregulation of autophagic activity. Evolutionarily, autophagy also functions to mobilize endogenous nutrients in response to starvation. Therefore, we hypothesized that the biosynthesis of the most physiologically abundant ketone body, ß-hydroxybutyrate (ßHB), would be autophagy dependent and exert vasodilatory effects via its canonical receptor, Gpr109a. To the best of our knowledge, we have revealed for the first time that the biosynthesis of ßHB can be impaired by preventing autophagy. Subsequently, ßHB caused potent vasodilation via potassium channels but not Gpr109a. Finally, we observed that chronic consumption of a high-salt diet negatively regulates both ßHB biosynthesis and hepatic autophagy and that reconstitution of ßHB bioavailability prevents high-salt diet-induced endothelial dysfunction. In summary, this work offers an alternative mechanism to the antiinflammatory and antioxidative stress hypothesis of autophagy-dependent vasculoprotection. Furthermore, it reveals a direct mechanism by which ketogenic interventions (e.g., intermittent fasting) improve vascular health.


Asunto(s)
Ácido 3-Hidroxibutírico/uso terapéutico , Autofagia/efectos de los fármacos , Cuerpos Cetónicos/uso terapéutico , Vasodilatadores/uso terapéutico , Ácido 3-Hidroxibutírico/farmacología , Animales , Humanos , Cuerpos Cetónicos/farmacología , Ratones , Modelos Animales , Ratas , Vasodilatadores/farmacología
14.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502304

RESUMEN

Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and ß-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.


Asunto(s)
Aneugénicos/farmacología , Colon/efectos de los fármacos , Neoplasias del Colon/patología , Cuerpos Cetónicos/farmacología , Microtúbulos/efectos de los fármacos , Resveratrol/farmacología , Acetilación , Animales , Antioxidantes/farmacología , Células Cultivadas , Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Microtúbulos/metabolismo , Ratas
15.
Bioessays ; 43(6): e2000312, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33857328

RESUMEN

Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.


Asunto(s)
Desinfectantes/farmacología , Cuerpos Cetónicos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Desinfectantes/química , Formaldehído/química , Formaldehído/farmacología , Glutaral/química , Glutaral/farmacología , Humanos , Cuerpos Cetónicos/química , Cuerpos Cetónicos/metabolismo , Cetosis/etiología , Cetosis/virología , SARS-CoV-2/patogenicidad , Virión/efectos de los fármacos , Virión/patogenicidad
16.
J Am Coll Cardiol ; 77(13): 1660-1669, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33637354

RESUMEN

Metabolic perturbations underlie a variety of cardiovascular disease states; yet, metabolic interventions to prevent or treat these disorders are sparse. Ketones carry a negative clinical stigma as they are involved in diabetic ketoacidosis. However, evidence from both experimental and clinical research has uncovered a protective role for ketones in cardiovascular disease. Although ketones may provide supplemental fuel for the energy-starved heart, their cardiovascular effects appear to extend far beyond cardiac energetics. Indeed, ketone bodies have been shown to influence a variety of cellular processes including gene transcription, inflammation and oxidative stress, endothelial function, cardiac remodeling, and cardiovascular risk factors. This paper reviews the bioenergetic and pleiotropic effects of ketone bodies that could potentially contribute to its cardiovascular benefits based on evidence from animal and human studies.


Asunto(s)
Cardiopatías/terapia , Cuerpos Cetónicos/uso terapéutico , Animales , Suplementos Dietéticos , Humanos , Cuerpos Cetónicos/farmacología , Cetonas/metabolismo , Miocardio/metabolismo
17.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023814

RESUMEN

Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-ß (Aß) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aß across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aß load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aß transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aß transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aß clearance. Finally, the combined use of KBs promotes Aß efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aß clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Cuerpos Cetónicos/farmacología , Transporte Biológico , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Técnicas In Vitro , Transcitosis
18.
Nutrients ; 11(10)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561520

RESUMEN

The ketogenic diet (KD) has gained a resurgence in popularity due to its purported reputation for fighting obesity. The KD has also acquired attention as an alternative and/or supplemental method for producing energy in the form of ketone bodies. Recent scientific evidence highlights the KD as a promising strategy to treat obesity, diabetes, and cardiac dysfunction. In addition, studies support ketone body supplements as a potential method to induce ketosis and supply sustainable fuel sources to promote exercise performance. Despite the acceptance in the mainstream media, the KD remains controversial in the medical and scientific communities. Research suggests that the KD or ketone body supplementation may result in unexpected side effects, including altered blood lipid profiles, abnormal glucose homeostasis, increased adiposity, fatigue, and gastrointestinal distress. The purpose of this review article is to provide an overview of ketone body metabolism and a background on the KD and ketone body supplements in the context of obesity and exercise performance. The effectiveness of these dietary or supplementation strategies as a therapy for weight loss or as an ergogenic aid will be discussed. In addition, the recent evidence that indicates ketone body metabolism is a potential target for cardiac dysfunction will be reviewed.


Asunto(s)
Dieta Cetogénica/métodos , Suplementos Dietéticos , Cuerpos Cetónicos/farmacología , Obesidad/dietoterapia , Sustancias para Mejorar el Rendimiento/farmacología , Ejercicio Físico/fisiología , Humanos , Obesidad/metabolismo , Rendimiento Físico Funcional
19.
Life Sci ; 222: 125-132, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30851335

RESUMEN

AIMS: ß-Hydroxybutyrate (ßOHB) is a metabolic intermediate that constitutes about 70% of ketone bodies produced in liver from oxidation of fatty acids released from adipose tissue. A recent study showed that ßOHB inhibits HDAC1, 3 and 4 (classes I and IIa) in human embryonic kidney 293 (HEK293) cells. Therefore, ßOHB could regulate epigenetics via modulating HDACs. However, little is known about the protective effect of ßOHB on renal cells through epigenetics. The aim of this study is to investigate whether ßOHB reduces cisplatin-induced nephrotoxicity in human renal cortical epithelial (HRCE) cells by modulating HDACs. MAIN METHODS: In this study, we used human renal cortical epithelial (HRCE) cells. The anti-apoptotic effect of ßOHB was evaluated using flow cytometry analysis. The expression of apoptosis-related proteins and HDACs was evaluated by western immunoblot. KEY FINDINGS: The results showed that ßOHB significantly reduced cisplatin-induced apoptosis in HRCE cells. Furthermore, ßOHB significantly reduced cisplatin-induced cleavage of caspase-3, acetylation of histone H3, and phosphorylation of AMP-activated kinase. This anti-apoptotic effect of ßOHB was markedly attenuated by an inhibitor of HDAC4/5, and ßOHB-mediated suppression of cleavage of caspase3 was significantly blocked by siRNA-induced gene silencing of HDAC5. SIGNIFICANCE: ßOHB attenuates cisplatin-induced apoptosis by activation of HDAC5 in HRCE cells, suggesting that ßOHB may be a new therapeutic agent for cisplatin nephropathy.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Cisplatino/toxicidad , Células Epiteliales/metabolismo , Histona Desacetilasas/metabolismo , Cuerpos Cetónicos/farmacología , Corteza Renal/metabolismo , Animales , Antineoplásicos/toxicidad , Células Cultivadas , Cisplatino/antagonistas & inhibidores , Citotoxinas/antagonistas & inhibidores , Citotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Humanos , Corteza Renal/citología , Corteza Renal/efectos de los fármacos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...